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Preface

These notes originated from a graduate course given at Cornell Univer-
sity during the fall of 1998. One of the aims of the course was to present
Sobolev inequalities and some of their applications in the context of analysis
on manifolds —including Harnack inequalities and heat kernel estimates—
to an audience not necessarily very familiar with analysis in general and
Sobolev inequalities in particular. The first part (Chapters 1-2) introduces
the reader to Sobolev inequalities in R". An important application, Moser’s
proof of the elliptic Harnack inequality for uniformly elliptic divergence form
second order differential operators, is treated in detail. In the second part
(Chapters 3-4), Sobolev inequalities on complete non-compact Riemannian
manifolds are discussed: What is their meaning and when do they hold true?
How does one prove them? This discussion is illustrated by the treatment
of some explicit examples. In the third and last part, Chapter 5, families
of local Sobolev and Poincaré inequalities are introduced. These turn out
to be crucial for taking full advantage of Sobolev inequality techniques on
Riemannian manifolds. For instance, complete Riemannian manifolds sat-
isfying a scale-invariant parabolic Harnack inequality are characterized in
terms of Poincaré inequalities and volume growth. These notes give the first
detailed exposition of this fundamental result.

We warn the reader that no effort has been made to include a comprehen-
sive bibliography. Many important papers related to the topics presented
in these notes are not mentioned. Actually, the literature on Sobolev in-
equalities is so vast that it would certainly be difficult to list it all. A few
of the classical books on the subject have been listed here.

Concerning Riemannian geometry, the books [5, 29] and [12, 13] are
very useful references and contain some material related to the present text.
There is some overlapping between these notes and the monographs (39, 40,
but it may be less than one would think in view of the titles. In particular,
the applications presented here and in [39, 40} are different.

Some of the techniques from functional analysis used here are developed
in greater generality in [21, 72, 87]. Of these three books, the closest in spirit
to these notes might be [21], although there is very little direct overlapping
and the two complement each other. Grigor’yan’s survey article [34] is a
wonderful source of information for many related topics not treated in this
monograph.
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Introduction

This introduction describes some of the main ideas, problems and techniques
presented in this monograph.

Chapter 1 gives a brief but more or less self-contained account of Sobolev
inequalities in R™. The Sobolev inequality in R™ asserts that

([ ueresa)™ " <omn ([ wrepa) ",

that is,
Ifllg < Clr.p)IVFllp, a=np/(n-p),

for all smooth functions f with compact support and each 1 < p < n. When
p > n, the Holder continuity estimate

{lf(x) — f)

vern | Jz — g/

z,yeR"

}smwmp

holds instead. We discuss a number of different proofs of Sobolev inequali-
ties in R™. Each yields a different and useful point of view on the meaning
of Sobolev inequalities. Of course, this material is covered in greater detail
in a number of books and monographs including [1, 30, 60, 79]. The impor-
tant topic of Sobolev inequalities in subdomains of R™ (see, e.g., [61]) is not
treated here.

The theory of partial differential equations provides a host of important
applications of Sobolev inequalities. Consider for instance the equation

n
> 84 5(x)u(z) = 0
ig=1
where the coefficients a; ; are real measurable functions such that
laislleo < C

and

VzeR",V{€R", Z a;j(2)6&; > ¢ Zﬁf

1,5=1 1



2 INTRODUCTION

That is, consider a divergence form, uniformly elliptic equation in R™.
Moser’s elliptic Harnack inequality [30, 63] states that any positive weak
solution u of this equation in an Euclidean ball B satisfies

sup{u} < Cinf{u}
iB 3B

where C' depends neither on u nor on B but only on the constants Ci,¢;
above and the dimension n. Moser’s proof, presented in Chapter 2, is a
striking application of Sobolev inequalities. It also serves as an introduction
to our later treatment of parabolic Harnack inequalities on manifolds.

In Chapter 3, Sobolev inequalities are discussed in the context of Rie-
mannian manifolds. A number of related functional inequalities are intro-
duced and relations between these inequalities are established. One of the
most basic facts is that any Sobolev inequality implies a lower bound on
the volume growth of the geodesic balls. In particular, the inequality

VielrM), |Iflla<CIVEl,

for some fixed ¢ > p > 1, implies that the volume of any ball of radius r
must be bounded below by a constant times r¥ with v related to p,q by
1/v=1/p-1/q.

A more technical but very important fact is the equivalence between
strong forms and weak forms of Sobolev inequalities. An example of this
phenomenon is that it is enough to have the weak Sobolev inequality

Viece(), sup{su(z:1f@)>sh"} < OIS,

with 1 < p < q to conclude that the strong inequality || f||; < C||V f||, holds
(with different constants C'). Another example is the equivalence between
the Nash inequality

VeceM), |fISH < CIvilllf”
and the Sobolev inequality
Vf € CSO(M)7 ”f”ZV/(V—Z) S C”Vf”z

when v > 2 (again with different C’s). The Nash inequality is (a priori)
weaker in the sense that it is easily deduced from the Sobolev inequality
above and Holder’s inequality. Chapter 3 gives a rather complete treatment
of this phenomenon using elementary and unified arguments taken from [6].
Related results and interesting developments concerning Sobolev spaces on
metric spaces can be found in [38].

The equivalence between weak and strong forms of Sobolev-type inequal-
ities turns out to be extremely useful when it comes to prove that a certain
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manifold satisfies a Sobolev inequality. This is illustrated in the last sec-
tion of Chapter 3 where some fundamental examples are treated. A basic
tool used here is the notion of pseudo-Poincaré inequality. Given a smooth
function f, let f.(xz) denote the mean of f over the ball of center x and
radius 7. One says that M satisfies an LP-pseudo-Poincaré inequality if, for
all f € CP(M) and all r > 0,

If = Fellp < CTIIVEllp-

For manifolds satisfying a pseudo-Poincaré inequality, Sobolev inequalities
can be deduced from a simple lower bound on the volume growth. This is
more precisely stated in the following theorem.

Theorem Let M be a complete Riemannian manifold. Fiz p,v with 1 <
p < v and assume that M satisfies an LP-pseudo-Poincaré inequality. Then
the Sobolev inequality

VieCe M), |fllvpw-p < CIV Sy

holds true if and only if any ball B of radius r > 0 has volume bounded
below by u(B) > cr”.

The idea behind this theorem first appeared rather implicitly in [72] in
the setting of Lie groups. It was later developed in [6, 19, 74] and other
works. To illustrate this result, we treat in detail the case of unimodular Lie
groups equipped with a left-invariant Riemannian metric as well as mani-
folds with non-negative Ricci curvature and maximal volume growth. The
L?-pseudo-Poincaré inequality should be compared with the more classical
LP-Poincaré inequality

vieexm), ([ 1w~ fBI”dy) "o ( / IVﬂyﬁlde) "

where B = B(z,r) denotes a geodesic ball of radius r and fg = fr(z) is
the mean of f over B. This last inequality may or may not hold on M,
uniformly over all balls B = B(z,r), 2 € M, r > 0. The pseudo-Poincaré
inequality may hold for all 7 > 0 in cases where the Poincaré inequality
does not (for instance on unimodular Lie groups having exponential volume
growth).

Chapter 4 develops two different but related applications of Sobolev-type
inequalities. These two applications have been chosen for their importance
and their simplicity.

First, we show that Nash inequality is equivalent to a uniform heat kernel
upper bound of the form

sup h(t,z,y) < Ct™/?
T, yeEM
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where h(t, z,y) denotes the fundamental solution of the heat equation
(G +Au=0

on (0,00) x M, with A = —div o V. In particular, under a Nash inequal-
ity, the heat diffusion semigroup (H,);>o is ultracontractive (i.e., sends L!
to L*). This has been developed in the last fifteen years into a powerful
machinery which produces Gaussian heat kernel upper bounds. Although
this circle of ideas has its roots in Nash’s 1958 paper [67], it was only after
1980 that the full strength and the scope of this technique was identified.
The books [21, 72, 87] contain different accounts of this topic, various ap-
plications and further developments. Here, under the basic hypothesis that

Vt>0, sup ht,z,y) < Ct™"/?,
z,yeEM

we prove that the heat kernel satisfies the Gaussian upper bound
h(t,z,y) < Clt""/{‘)(l + d2/t)v/2e—d2/4z

where d = d(z,y) is the Riemannian distance between = and y. Our proof
is somewhat different from those found in the literature. It is adapted from
[41] and uses complex interpolation as a main technical tool (and, ironically,
no Sobolev-type inequality).

The second topic treated in Chapter 4 is a spectral inequality known as
the Rozenblum-Lieb—Cwikel estimate. This inequality was first proved in
R" by Rozenblum in 1972. It asserts that the number of negative eigenvalues
of the Schrédinger operator A—V is bounded above by C(v)||V, |” /g as soon

as the manifold M satisfies the Sobolev inequality

| fll2v/—2) < ClIV £z

The proof presented here is due to P. Li and S-T. Yau, [55]. A central part of
this proof is very close in spirit to Nash’s ideas concerning ultracontractivity.
It illustrates well what can be done by a skillful use of Sobolev inequality
and basic functional analysis.

Despite important examples such as R™ and hyperbolic spaces, many
Riemannian manifolds fail to satisfy a global Sobolev inequality of the form

Vel (M), |Iflayw-2) < CIIVSli2

for some v > 2. For one thing, such an inequality implies that the volume
of any ball of radius r is at least cr” for all 7 > 0, ruling out many sim-
ple interesting manifolds such as S™ x R* (the product of an m-sphere by
a k-dimensional Euclidean space). More generally, such a global Sobolev
inequality requires too much “uniformity” of the Riemannian manifold M.
Fortunately, there is a way to cope partially with this difficulty. The idea
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is to use families of local Sobolev inequalities instead of one global Sobolev
inequality. For any ball B = B(z,r) on a complete Riemannian manifold,
one can find a constant C'(B) such that, for any smooth function f with
compact support in B,

q *a C(B)r? 2 —2) 12
([irran) ™ < SO [ (@9s 4217 a

where g, v > 2 are some fixed constants related by 1/g =1/2 —1/v. A lot
of information is encoded in the behavior of the function B + C(B). The
simplest and perhaps most interesting case is when this function is bounded,
that is, supg C(B) = C' < oco. This can happen in cases where the global

Sobolev inequality
2/q R
([ 1#eau) " < [ @ity an
M M

does not hold. For instance, the manifold S™ x R¥, m+k > 2 does not satisfy
any global Sobolev inequality (assuming m # 0) but satisfies a family of
local Sobolev inequalities with v = m+k, ¢ = 2v/(v —2) and supy C(B) =
C < oo. In the other direction, the hyperbolic space of dimension n satisfies
the same global Sobolev inequality as R™ but does not have sup 5 C(B) < oo.
In fact, as far as many applications are concerned (e.g., heat kernel bounds),
a family of local Sobolev inequalities with supg C(B) < oo contains more
useful information than a global Sobolev inequality.

Chapter 5 develops these ideas and culminates with a complete proof
of the following theorem, where V(z,7) denotes the volume of the ball of
center z and radius r, and d is the Riemannian distance. For anyx € M
and s,7 > 0, let Q = Q(z,s,7) be the time-space cylinder

Q(z,s,t) = (s —r%,s) x B(z,r).
Let @, Q_ be respectively the upper and lower subcylinders
Qs = (s—(1/4)r%s) x B(z,(1/2)r)
Q- = (s—(B3/9r*s—(1/2)r*) x B(z, (1/2)r).

We say that M satisfies the scale-invariant parabolic Harnack principle if
there exists a constant C such that for any x € M and s,r > 0, and any
positive solution u of (3; + A)u =0 in Q = Q(z, s,r), we have

sup{u} < Cinf{u}.
Q_ Q+

Theorem A complete Riemannian manifold M satisfies the scale-invariant
parabolic Harnack principle if and only if M satisfies the doubling property

VzeM, Vr>0, V(z,2r) < DoV(z,r)
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and the scale-invariant Poincaré inequality
vB=Br), [ 17~ faldu< Ro® [ VSFan
B B

where fg denotes the mean of f € C*®°(B) over the ball B.

In fact, the equivalent properties above are also equivalent to the fact
that the heat kernel h(t, z,y) satisfies the two-sided Gaussian estimate

~Crd(z,y)?/t Coe—c2d@y)*/t
A <htmy) <
V(z, V1) V(z, V1)

Such a two-sided heat kernel bound was first derived for uniformly elliptic
divergence form second order differential operators in R™ by Aronson [3].

These results are taken from [32, 74] (a more complete discussion is given
at the beginning of Section 5.5). The equivalence between the parabolic
Harnack inequality on the one hand and the (more geometric) doubling
property and Poincaré inequality on the other hand is a very useful tool.
Both directions of this equivalence are interesting and this illustrated by a
few simple examples. For instance, it follows from the theorem above that
the parabolic Harnack principle is stable under quasi-isometries.

Vt>0, Vz,y € M,



Chapter 1

Sobolev inequalities in R"

1.1 Sobolev inequalities

1.1.1 Introduction

How can one control the size of a function in terms of the size of its gradi-
ent? The well-known Sobolev inequalities answer precisely this question in
multidimensional Euclidean spaces. On the real line, the answer is given by
a simple yet extremely useful calculus inequality. Namely, for any smooth
function f with compact support on the line,

1 +o0 ,
for<g [ (111)

The factor 1/2 in this inequality comes from the fact that f vanishes at
both +00 and —oco. In this respect, note that if f is smooth but no other
restriction is imposed the inequality above may fail.

It is natural to wonder if there is such an inequality for smooth compactly
supported functions in higher-dimensional Euclidean spaces. More precisely,
for each integer n, can one find p,q > 0 and C > 0 such that

VIeCPRY), flls < CIVLIL? (1.1.2)

Here and in the sequel C§°(R™) denotes the set of all smooth compactly
supported functions in R™. For f € CZ°(R"), we set

it = ([, @)™, 1t = supis

i, = ([ 19s@par)”

where Vf = (01f,...,0.f) is the gradient of f and |V f| = /3.7 |0:f]?
is the Euclidean length of the gradient. In R", we denote by u, = i the

and

7
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Lebesgue measure and by p,,_; the volume measure on smooth hypersurfaces
of dimension n — 1. When using coordinates z = (z, ..., z,), we also write

du(z) =dz =dz; ... dz,.

This question was first addressed in this form by Sobolev in [78] which
appeared in Russian in 1938. Fixing a function f € C3°(R™) and replacing
z— f(x) by  — f(tz), ¢ > 0, in (1.1.2) yields

9 flly < CETP VSl

Letting ¢ tend to zero and to infinity shows that (1.1.2) can only be satisfied
if the exponents of ¢ on both sides of the inequality above are the same. That
is, (1.1.2) can only be satisfied if

1 1 1 . np
-=—-—— le,q= . 1.1.3
g p n n—p ( )
For instance, in R?, this says that one might possibly have
VS eCE®), Ifle< [ 1VFG)Pdy (114)

The next example shows that this last inequality fails to be true.

EXAMPLE 1.1.1: Consider the function

_ [ toglloglal| it || < 1/e
flz) = { 0 otherwise.

Then |Vf|2 = 2n fol/e ﬁ = 27 but f is not bounded. Of course, f is
not smooth, but it can easily be approximated by smooth functions f, such
that |V full2 — |V fllz and f, — f. This shows that that (1.1.4) cannot be

true.

What is true is recorded in the following theorem.

Theorem 1.1.1 Fiz an integer n > 2 and a real p, 1 < p < n and set
g =np/(n —p). Then there exists a constant C = C(n,p) such that

VieCE®RY, |l < ClUV Sl (1.1.5)

This inequality is called the Sobolev inequality although the case p = 1 is
not contained in [78]. Note that the case p = n (i.e., ¢ = 00) is excluded in
this result as should be the case according to the preceding example.

In the next few subsections we will give or outline several proofs of
(1.1.5). As it turns out, when p = 1, (1.1.5) has a very simple proof based on
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(1.1.1) and Hélder’s inequality. This well-known proof (due independently
to E. Gagliardo [28] and L. Nirenberg [68]) is presented in the next section.
Moreover, as we shall see in 1.1.3 below, the case p > 1 follows from the
case p = 1 by a simple trick.

We conclude this short introduction to Sobolev inequalities by record-
ing a couple of useful remarks concerning the validity of (1.1.5). First, if
(1.1.5) holds for all f € C§°(R"), it obviously also holds for a larger class
of functions including for instance all C* functions with compact support or
even Lipschitz functions vanishing at infinity. In fact, (1.1.5) holds for all
functions vanishing at infinity whose gradient in the sense of distributions
is in LP. Second, (1.1.5) restricted to non-negative functions in C°(R") suf-
fices to prove (1.1.5) in its full generality. Indeed, (1.1.5) for such functions
implies that it also holds true for non-negative Lipschitz functions with com-
pact support and, if f € C§°(R"), |f| is Lipschitz and satisfies |V|f|| < |V ]|
almost everywhere. It then follows that (1.1.5) holds for f € CP(R™).

1.1.2 The proof due to Gagliardo and to Nirenberg

Recall that Holder’s inequality asserts that, for any positive measure i,

[ soa

for all f € LP(u), g € L (1), 1 < p,p’ < oo with 1 = 1/p+1/p. Bya
simple induction we find that

< 7 Nglly

] [ah-. fkdu( < Wfilllell - 1 felle (1.16)

forall fie I* 1<i<k,1<pi<oo,1/pi+1/py+---+1/py = 1.
Now, fix f € Cg°(R™). By (1.1.1), for any z = (%1,...,2,) and any
integer 1 < ¢ < n, we have

1 [t
If(.'l,‘)l <= / laif($1, e ,.’Ei_l,t, Titly--- ,.’En)ldt

=3/

(with the obvious interpretation if i = 1 or n). Set

400
E("E) :/ 'aif(l'],...,xi_l,t,$i+1,...,$n)|dt

and
Fin(e)= | Lo Jo 10 (@)ldar . dop ifi<m
wm fj;o .- fj: F(z)dz,...dz,, ifi>m.

Note that each F; depends only on n — 1 variables, i.e., all coordinates but
the i*®. Similarly, Fm depends on either n — m or n — m — 1 variables



