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Preface

The subject of Geophysical Fluid Dynamics (GFD) has a rich history
of interplay with mathematics, an interplay that has resurged in recent
years. Astrophysical Fluid Dynamics (AFD) can be thought of as the ex-
tension of GFD to larger scales, beyond the planetary to the stellar and
galactic. This is an oversimplification, but is close enough to the truth
that one might expect more interaction among geophysicists, astrophysi-
cists, and mathematicians than has in fact taken place. A step toward
facilitating such interactions was taken in the form of the Thirteenth
Summer Seminar in Applied Mathematics, sponsored jointly by the Amer-
ican Mathematical Society and the Society for Industrial and Applied
Mathematics, which was held on the campus of the University of Chicago
from June 29 through July 10, 1981.

Beyond creating an atmosphere promoting interaction among practi-
tioners in the fields of GFD, AFD, and mathematics, the purposes of the
seminar were to present, in a form accessible to graduate students and
recent Ph.D.’s, background and perspective in these areas and some of
the currently exciting research topics. The present volume, which grew
out of the seminar, has these same purposes.

The seminar was organized by a committee including (aside from me)
Victor Barcilon, Richard di Prima, Peter Goldreich, Joseph Pedlosky, and
Alan Toomre. My thanks to all these individuals, with special thanks to
Professor Barcilon for devoting time and energy far beyond the call of
duty. Further thanks are due to Dr. William LeVeque, Executive
Director of the AMS, Ms. Carole Kohanski, and Professor W.H. Meyer
for keeping the administrative machinery running smoothly; and to
the National Science Foundation, the National Oceanographic and
Atmospheric Administration and the National Aeronautics and Space
Administration for their financial support. Last but by no means least,
my thanks to the speakers and contributors to this volume.

NORMAN LEBOVITZ, EDITOR
University of Chicago



Contents

Preface

1. Geophysical fluid dynamics

Lectures on geophysical fluid dynamics
PeETER B. RHINES

Nonlinear waves in geophysics: long internal waves
LARRY G. REDEKOPP

Nonlinear evolution equations and critical layers
P. HUERRE AND L.G. REDEKOPP
I1. Astrophysical fluid dynamics

Problems in astrophysical fluid dynamics
B.F. ScHutZ

Protostar collapse
PETER BODENHEIMER

Galactic dynamics
C. HUNTER
II1. Mathematical technique

Bifurcation from spherical symmetry
D.H. SATTINGER

An introduction to chaotic motion and strange attractors

JouN GUCKENHEIMER

A comparison of solutions of two model equations
for long waves
J.L. BonaA, W.G. PrITCHARD AND L.R. ScorT

59

79

99

141

179

207

225

235



I. GEOPHYSICAL FLUID DYNAMICS
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Volume 20, 1983

Lectures in Geophysical Fluid Dynamics
Peter B. Rhines

1. Introduction. I was asked to prepare a presentation of some of the
fundamental ideas in geophysical fluid dynamics (GFD) assuming the
reader to be competent with fluids but unacquainted with meteorology,
oceanography or planetary physics. These five lectures approach from a
physical standpoint the motions of planetary fluids, rather than develop-
ing the mathematical structures abstracted from them. They lean toward
oceanography, which is my home ground.

Historical notes. GFD has long been a part of fluid dynamics. Before
the Industrial Revolution, in fact, much of scientific theory was under-
taken to explain the natural world. Aristotle, Newton and Laplace all
produced theories of the ocean tides. Though less divine than astronomy,
“natural” fluid dynamics was prominent in the new continuum theory.

An independent strain influencing “terrestrial” GFD was exploration,
commerce, and warfare that involved the sea. Science has often ridden
on the worldly ambitions of nations, as with the Royal Society’s sponsor-
ship of the first major observational survey of the deep sea, on H.M.S.
Challenger, 1873, and as with the current scientific outposts in Antarctica,
The polar explorations were particulary fruitful for oceanography. Before
the days of orbiting satellites, observations of the high-latitude oceans
required unusual enterprise. The Norwegian Fridtjof Nansen and col-
leagues are the best-known example. In the summer of 1893 he and
Captain Otto Sverdrup steamed and sailed the specially designed vessel
Fram into the Arctic Ocean, purposely to become entrapped in the ice
as winter descended. Beside their ambition to reach the North Pole lay
the far more important notion of Aow they would reach it. They imagined
rightly that the winds and ocean circulation would drive the ice westward,

1980 Mathematics Subject Classification. Primary 86A05, 86A10, 76MO05; Secondary
76C20, 76F10.
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4 P.B. RHINES

near the Pole and then carry them south between Greenland and
Spitzbergen where they would be freed to sail home. Nansen set off across
the ice when they had drifted seemingly to the highest latitude (in fact
the Fram drifted 100 miles further north thereafter). He never reached the
Pole, but walked home via Franz Josef Land. He arrived just as the
3-year drift of the ship ended, more or less as predicted.

This familiar story is worth retelling not merely to add glamor to GFD,
but to emphasize that a complex system like the air and sea requires
difficult on-site observations built into a long, stable tradition of thought,
before it can progress as a deductive science. Beyond Nansen’s inspiration
of Ekman, which led to a key theory of the wind-driven boundary layer,
there were decades of systematic GFD in Scandinavia that produced
Bjerknes, Bergeron, Rossby and many others. Even today, you will find
oceanographers to be particularly fond of taking their own data at sea.
A young theoretician should not be surprised if he soon finds himself
unsnarling cable on the fantail, in the stormy wintertime North Atlantic.

The nature of the fluid. The circulation models we abstract are often of
homogeneous density, smoothly and steadily flowing around in little
gyres driven by mythically steady winds. These are oceans the size of a
tea-cup, as judged by the Reynolds number, UL/y, for which the solutions
are valid. U is a characteristic horizontal velocity, L the horizontal scale,
and v the kinematic viscosity. Of course the real terrestrial domain has
some ten decades of scale between the largest motions and the smailest,
and many different dynamical regimes fit between the extremes. It is a
challenge to isolate, understand, and finally to recombine this chain of
distinct regimes into a description more successful than the tea-cup oceans
and snow-globe atmospheres of classical times.

Here we consider length-scales greater than a few km, and time scales
greater than a day, such that the Rossby number Ry = U/QL, is small.
Ry and Ry-(QT), where T is the time-scale of the dominant motion. are
the relative measures of acceleration and Coriolis force. Even within this
restricted range there is a great wealth of phenomena. To emphasize how
far we have to go, I want to recount a few properties of the earth’s ocean
and atmosphere.

The 10° (km)3 of seawater have a reasonably constant mixing ratio of
dissolved salts, for dissolution and river run-off are slow relative to the
circulation of the seas themselves. Fortunately the much more variable
nutrients (like oxides of phosphorus, nitrogen, silicon) and dissolved
oxygen involved in life cycles in the sea rarely affect the dynamics of the
fluid (although one could argue in favor of a feedback between plankton
blooms, bio-convection, and solar heating of the water). What matters
most to the buoyancy of the fluid is the concentration of salts and the
temperature, both of which are highly variable. The potential density of
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seawater varies by a couple of percent across most of the oceans and
increases perhaps by 0.29 from the surface to bottom at a given latitude
and longitude. Small indeed, but it would require some 1029 ergs of work
to mix the seas to a uniform state, far more than the total kinetic energy
of the currents (~ 1025 ergs). This “heavy” stratification combines with
“rapid” planetary rotation to define the essential dynamical problems.
Except for the tidal potential, most of the driving of the seas occurs by
heating, cooling, evaporation, pressure and turbulent stress exerted at
their surface. It is traditional for oceanographers to take as given these
boundary conditions, and to proceed with models of the circulation.
Meteorologists in the same fashion take sea-surface temperature as a
given lower boundary condition, over 7/10 of the earth’s surface. Both
groups have in several areas reached the limit of this approach, however,
for the interaction of the two fluids is great and coupled ocean-atmosphere
models will be an important part of the near future. Although usually
invoked in the study of long-term climatic variation, this interaction also
governs the state of a constant ocean and a constant atmosphere.

The heavy stable stratification makes it difficult to ventilate the deeper
regions. The Black Sea, for example is so dense at depth that contact
with the surface is denied these layers, which remain anoxic and con-
sequently unable to support life. One of the earliest “GFD” laboratory
experiments by Count Luigi Ferdinando Marsigli, in 1681, showed how
flow through the Bosporus is driven by the contrast between these waters
and the yet denser waters of the Mediterranean.

Only with the strongest transfer of buoyancy across the sea surface
can the vertical stratification be broken down. To appreciate the range
of interesting dynamics that this may lead to, imagine the simple experi-
ment of heating or cooling a beaker of uniformly salty water from above.
Heating a simple fluid from above leads to a stable conductive temperature
profile, and very little motion (perhaps some shallow cells of flow due
to lateral temperature gradients at the top). But the evaporation accom-
panying the heating of salt water leads to an increased salinity tending of
itself to make the surface waters heavy. Who wins? Because the molecular
diffusivity of heat is so much greater than that of salt, the hotter, saltier
water near the surface can readily give up its thermal, stabilizing buoyancy,
leaving its saline, unstable buoyancy to drive deep vertical convection.
Separation into distinct species occurs at the molecular level, aliowing
the salt to “fall out™. Just the same phenomenon used to be seen frequently
in layers of hot cigarette smoke drifting about a quiet room, with streamers
dropping down from the cloud base. The picturesquely named mamma
clouds that descend from seemingly stable cloud base may have this same
origin; thermal contrasts radiate and diffuse more quickly than water
droplets.
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Thus, in the eastern Mediterranean Sea, insolation is so great that,
with salinity “winning” out over the more mobile heat, dense water is
formed. As it passes out toward the Atlantic it is cooled by the Mistral
winds whereupon it sinks to the floor of the Mediterranean. These seem-
ingly localized events, very much a quirk of the geometry of geological
basins and mountain chains, have a world-wide influence. The water and
heat carried to mid-depth by its overburden of salt makes possible further
sinking when the water reaches high latitude, where more of its heat is
removed by the atmosphere. In this manner the precipitation and river
run-off is the sink of salinity, and evaporation and freezing its source.
Several of the dominant branches of the general circulation are directly
traceable to these sources and sinks. In the atmosphere the complementary
circulation of water vapor occurs.

A salinity source just as intricate is the freezing of seawater from above.
Once again species are separated, with brine draining through self-
determined channels in the relatively fresh ice. The production of water
so heavy as to sink right to the sea floor (requiring a surface density of
perhaps 1.30 gm/cm3, in contrast with the normal subtropical surface
waters of density ~1.26 gm/cm3) requires extreme atmospheric cooling
and the right collaboration of saltiness and coldness. If sea-ice forms it
creates some heavy brine just beneath, but also insulates the seawater
from any further atmospheric cooling or evaporation.

The net result is that only two sites in the world are known to produce
abyssal water: the Greenland-Norwegian Sea in the North Atlantic and
the Weddell Sea in the South Atlantic. The entire deep world ocean
depends upon this chance confluence of effects for its respiration. You
will now appreciate that the evolution of the physical ocean, and life
within it must be closely tied to the geological evolution of ocean basins.
The closing about 3 x 108 years ago of the Isthmus of Panama, for
example, and the separation of Australia from Antarctica some 40 x 106
years ago seem to have caused major, observable changes in the climate
and circulation. Such changes are recorded in the faunal distributions
preserved in sea-floor sediments; distinct transitions like the onset of ice
ages and the sudden cooling of the Southern Ocean have been speculatively
linked to the changing topology of the bounding continents.

2. Derivation of equations. The large-scale dynamics of a rotating fluid are
best expressed through vorticity relations, because a modified “potential”
vorticity is a scalar which is exactly conserved following fluid elements, in
the limit of no molecular diffusion. A number of different versions of the
equation exist, for different applications. The spherical geometry alone pre-
sents major complications, and forces us to make some slightly worrisome
approximations. An interesting way to write the momentum equations is
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u + (€ +20) x u + V(—g + l/2|u|2> g (mom)

where p is pressure, p density, g is the geopotential gradient (gravity +
centrifugal), £ = V x u, Q is the polar rotation vector, u the velccity
(u, v, w). Also x = (x, y, z) are (east, north, up) while r, 1, ¢ are spherical
polar coordinates. This shows the local acceleration to be balanced by
Bernoulli gradient, the “vortex force” due to the absolute (inertial-space)
vorticity £ + 2Q, and g.

The vorticity is just the antisymmetric part of the rate-of-stra'n tensor,
or the average angular velocity of “Pooh-sticks” cast on the water, times
two. This spin-like quantity must be expected whenever streamlines curve,
or when there is shear across streamlines.

Take V x (mom), equivalent to cross-differentiating the scalar equations
to remove pressure:

Cot+ @V +20) = (¢ +20)-V)u+ Vp x v%,
or

D& +29) _ . 1
D o = ¢ + 2©£)1) Viu + Vp x@Vp- Q.1

D/Dt is the rate of change following the fluid. We take the fluid to be
incompressible, with basic vertical stratification, p = p(z) + p'(x, y, z, t).

Do/Dt = 0, Do'[Dt = —wp,, V-u=0. (cont)

The absolute vorticity changes by stretching and bending of vortex lines
(®) or due to intersections of isobars and isopycnals (®). The effect of
(@ can be seen by realizing that (if 3) = 0) this same equation is satisfied
by vectors representing dyed lines of fluid; call such a “dye-arrow” S.
D3S/Dt is the rate of change of §S seen by an observer following the
fluid and (0S - V)u is a vector expressing the rotation and stretching of
dS by gradients of u. The classical result is thus that (if 3 = 0) vortex
tubes behave just like dye-tubes until dissipation occurs (a vortex tube
lies everywhere parallel to £, and has cross-section area proportional to
1&n.

The p & g effect, term @), is the production of spin by pressure forces.
Clearly, if p = constant, the center of mass and center of pressure of a
small sphere of fluid coincide, and so no spin results. If Vp # 0, this is
no longer true. Imagine, for example, a uniform horizontal Vp acting
on a vertically stratified density field. The same force acts at each level,
z, yet the inertia varies in z, so the acceleration u, is greater above than
below: this yields horizontal vorticity. The buoyancy twisting may be
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written

1 |
— =5 Vp x Vo = — = J(p, p).
oz VP % Vp o (p, )

Thus, when isolines of p and p intersect, the twisting effect is proportional
to the number of intersections (“‘solenoids™).

In the geostrophic case, Vp and Vp are nearly vertical, implying that
the vorticity they can produce is horizontal, with Vp x V(1/p) normal to
and perpendicular to the z-axis, almost. This helps to explain why the
large-scale vertical vorticity ( <0 (10~6) sec™1) remains small, yet dominates
the dynamics of the large-scale flow. The horizontal vorticity in these
currents may readily exceed f (~ 107 sec™1), so that one must be wary
of departures from geostrophy that could twist horizontal vorticity into
vertical.

The most general potential vorticity principle is due to Ertel. Form
Vp-(2.1) and manipulate;

D C+2)-Vp 0
Dt [/ -

(2.2)

This resolves the vorticity equation in a direction normal to isopycnal
(p = const) surfaces. In that direction, Vp x Vp = 0, so that no buoy-
ancy twist is felt, This suggests a local Kelvin’s theorem taking a circuit
lyingina p = const surface. The result is (3/9?) {f ({ + 2Q)-ndS = Oor,
roughly, |£, + 2Q,|-S = const where S is the area enclosed, ( ), are
normal components. Now S is directly proportional to Vp (by (cont)),
hence we have (2.2).

Geophysical scaling. (2.1) and (2.2) apply to all scales of motion from
internal waves, 3-D turbulence on up. They become simple for time-
scales T » Q~1, and length scales L »» H, the fluid depth. Then the vertical
acceleration is so slight (~ W/T~(RyH/L)U/T where Ry = U[QL) that
vertical (mom) is hydrostatic, and ““traditional”

Dw o
—Dt—‘*‘Pz/P‘- g—20 xul,.

Horizontal (mom) is geostrophic,

uw + {xu + 20xu=—-Vp/p—- Vipu?|,
oQn oL o) o(1) o(u/QL)

(A subscript & denotes the horizontal compontent.) The geostrophic
balance occurs when each of the two Rossby numbers, (7)1 and U/QL
is small.
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Now, p acts as a stream-function for u,

ul, = 2—2%% (1 + O(Ry);  (Z = vertical unit vector).

Ry = UJfL + (QT)L.

The horizontal divergence ou/ox + 9v/oy ~ U/L-Ry = — 0w/0z is very
small. Vp is nearly vertical as is Vp.

Thence (2.1) becomes the quasi-geostrophic vorticity equation, with
Cartesian components

vertical: D¢, — 20,2_‘;’ =0 20,=2Q 4 (2.3)

Dt
horizontal ; —2(},% =—plg gi
) ) (2.3b)
ou _ 1, 90
—-2Q, 57 08 3y
Here
D_o, VpxV(-) J(p, ()
Di= 5 ()+ 00 ()+ 20,

since w is so small. The neglect of DZ,/Dt relative to 20,0v/dz is an error
owQr)L.

The dominant effect of spherical geometry is included in this tangent
*“B-plane” approximation by allowing the local vertical component of Q
to vary linearly in y. The Coriolis frequency becomes 2Q, = f = f; +
By. See Pedlosky (1979).

The horizontal parts give the thermal-wind balance to O(R,) (which
is thus a vorticity-statement), while the vertical gives a simple balance
between stretching of planetary (z-comp) vorticity and production of
relative vorticity. No production of vertical vorticity by density twisting
(to O(Q2L?/gH)) occurs.

We now manipulate (2.3) into an equation in a single variable, the
quasi-geostrophic potential vorticity equation.

9 ( f¢ 9¢ _a. 9%, 9
[¢+ 8 az)+ﬁy:|—0, i-Z+2 o9

Here ¢ is p/pfy, and N the buoyancy frequency, N2 = — (g/p)(9p/92).
This equation can be derived from Ertel also, by careful application of

geophysical scaling. It is closely related to the barotropic potential vorticity
equation which applies under similar scaling to an unstratified fluid.



