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Preface

The five papers which appear . this volume were all written more than fifteen
years ago. For various reasons, they have never appeared in print. The papers
incfude the theses of J. Arthur, M. 8. Osborne, and W. Schmid; the fundamental
paper of R. P. Langlands on the classification of irreducible admissible represen-
tations of real reductive Lie grours; and an expository paper by P. Trombi on the
work of Harish-Chandra on harmonic analysis on real semisimple Lie groups, in
particular, the theory of the Eisenstein integral. Three of these works (Arthur,
Osborne, Trombi) have received limited circulation through the Lecture Notes in
Representation Theory published by the Mathematics Department of the Uni-
versity of Chicago. Langlands' paper and Schmid’s thesis were distributed as
preprints by the authors. However, because of the basic nature of the material
contained therein, the Editors have concluded that these papers deserve much
broader exposure.

In a real sense. one could say that most of this material has either ap-
peared elsewhere or has been subsumed in later publications. Nonetheless,
these later publications cannot replace the vitality and viewpoint of the orig-
inal manuscripts. We also include a brief introduction to each paper and a
synopsis of the major developments which have occurred in the area covered by
each paper. The debt owed by the authors to Harish-Chandra and his work
is obvious from the contents of their papers. The debt owed by the Editors is
equally real This volume is dedicated to Harish-Chandra, and the royalties will
be donated to the Visiting Members Fund at the Institute for Advanced Study.

Paul J. Sally, Jr.
David A. Vogan, Jr.
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Introduction

Arthur and Trombi. The thesis of Arthur and the paper of Trombi are
closely related. They both deal with harmonic analysis on real semisimple
Lie groups, in particular, analysis on the Schwartz space of Harish-Chandra.
Arthur’s thesis is concerned with the image under the Fourier transform of the
Schwartz space of a semisimple Lie group of real rank one, while Trombi’s pa-
per provides an expository account of the harmonic analysis associated to the
decomposition of the Schwartz space under the regular representation.

The Schwartz space % (G) of a real, connected, semisimple Lie group G was
introduced by Harish-Chandra [HCS5] in connection with his profound analysis of
the discrete series &3(G). For semisimple Lie groups, & (G) is intended to serve
as the analogue of the classical Schwartz space on R™. While the space C¢°(G)
of complex valued, compactly supported, infinitely differentiable functions on G
is suitable for many aspects of harmonic analysis, &(G) is precisely the space
of smooth functions needed for L? harmonic analysis on G, in particular, for
the Plancherel formula. The topology on & (G) is defined by a family of semi-
norms, and, with this topology, #(G) is a Hausdorff, locally convex, complete
topological vector space. The inclusion of C°(G) (which is given the standard
Schwartz topology) into % (G) is continuous and the image is dense in & (G).
Moreover, #(G) C L?(G), and the operation of convolution is continuous from
Z(G) x €(G) to F(G). In contrast to the Schwartz space of R®, functions
in &(G), while rapidly decreasing in L?(G), are not necessarily in LP(G) for
1<p<2 :

For (m,H) an irreducible, unitary representation of G, f € C¥(G),
and dz a Haar measure on G, Harish-Chandra proved that f +— ‘w(f) =
fG f(z)r(z) dz is of trace class, and that there exists a locally integrable function
6, on G which is analytic on the regular set in G such that f(r) = trace r(f) =
Jg F(2)Bx(z)dz. The function By is called the character of 7. A distribution on
G is a continuous linear functional on C®(G). Among these are the tempered
distributions, those which can be extended to continuous linear functionals on
#(G). The map f — f(x) is a distribution on G, and = is said to be a tem-
pered representation of G if this extends to a tempered distribution on G. The
tempered representations of a real, semisimple Lie group have been classified
by Knapp and Zuckerman [KZ). The collection of irreducible, tempered rep-
resentations of G is called the tempered spectrum of G, and it is this set of
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2 INTRODUCTION

representations which supports the Plancherel measure on (;’, the unitary dual
of G. From another perspective, it is exactly the tempered spectrum of G which
is used to decompose the regular representation of G acting on L?(G) (or (G)).

The analysis of the Schwartz space of a real, semisimple Lie group, in partic-
ular, the theory of the constant term, wave packets, the Maass-Selberg relations,
and the Plancherel formula is contained in three long papers by Harish-Chandra
[HC10, HC11, HC12]. These papers represent the culmination of Harish-
Chandra’s work on harmonic analysis on semisimple Lie groups. An illuminat-
ing acount of this work is conained in three (shorter) papers by Harish-Chandra
[HCG HC7, HCS8] which, upon careful reading, yield a remarkable overview of
Harish-Chandra’s philosophy of harmonic analysis.

The paper of Trombi contained in this volume is an exposition (with many
proofs) of the material described above. It is based on lectures given by Harish-
Chandra at the Institute for Advanced Study and provides a very readable in-
troduction to Harish-Chandra's work on harmonic analysis. Another version
written by Trombi may be found in [T¥].

Without reproducing Harish-Chandra’s (or Trombi’s) papers in their entirety,
we will attempt to describe in more detail some of the components in the analysis
of the Schwartz space. A parabolic subgroup P of G can be decomposed in the
form P = MAN, where M is a reductive group, A is the split component of
P, and N is the unipotent radical of P. The group P is said to Le a cuspidal
parabolic subgroup of G if M has a compact Cartan subgroup or, equivalently,
& (M) # &. The tempered spectrum of G consists of the irre?ucible components
of representations induced (unitarily) from the cuspidal parabolic subgroups of
G. Specifically, suppose that P = MAN is a cuspidal parabolic subgroup of G.
Let (¢,V) be in &(M), and let v be an element of A*, the real dual of the Lie
algebra of A. Then, the map '

(0,v): man — exp(iv(loga))o(m)

defines a representation of P on V. The (unitary) representation mp(c,v) =
Ind€(o,v) is a (generalized) principal series representation which depends only
on the class of 4 (i.e., the set of all parabolic subgroups whose split component
is A). Subject to certain equivalences, the tempered spectrum of G is made
up of the irreducible components of the representations 7p(o,v). Of course, if
&(G) # D, then G itself is a cuspidal parabolic subgroup to which the discrete
series of G are attached as part of the tempered spectrum.

For P = M AN a parabolic subgroup of G, f € #(G), and dn a Haar measure
on N, define fF(z) = Jy f(zn)dn, z € G. This integral converges, and f is
called a cusp form on G if f¥ = 0 for all proper parabolic subgroups of G.
The subspace of cusp forms on G is denoted by °%(G). It is a closed subspace
of #(G), and °F(G) # {0} if and only if &(G) # @ in which case °F(G)
is spanned by the K-finite matrix coefficients of the discrete series of G. If A
denotes the left regular representation of G on H = L?(G), and °H denotes
the closure of °%’(G) in L?(G), then °H is invariant under A and (A,° H) is the
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orthogonal direct sum of the discrete series of G each occurring with infinite
multiplicity.

The next task in the analysis of #(G) is the decomposition of the orthogonal
complement of °% (G) in (G). To this end, let {4;} be a set of representdtives
for the split components of classes of cuspidal parabolic subgroups of G. Each A;
indexes a closed subspace &;(G) of #(G) which is, roughly speaking, generated
by the matrix coefficients of the principal series representations 7 p, (o, v) induced
from a cuspidal parabolic subgroup P; = M A;N. This last statement must be
properly interpreted since these matrix coefficients are not square integrable
(unless P = G) and hence not in #(G) (or L%(G)). It is here that Harish-
Chandra introduced the Eisenstein integrals and, with these, wave packets to
yield the contribution of the representations mp, (o, v) to &;(G). The Eisenstein
integrals may be regarded as a form of the matrix coefficients of the principal
series representations. Wave packets are obtained by integrating the Eisenstein
integral against a smooth, compactly supported function in the v parameter. It
is the wave packets which lie in the Schwartz space and, ultimately, yield the
decomposition of &(G).

In Arthur’s thesis, he determines the image of ’(G) under the map f — = (f),
f € #(G), 7 a tempered representation of G. There is a natural candidate for
this image which is denoted 8’((3). The main problem is the proof of surjec-
tivity which requires the full range of harmonic analysis on & (G) as outlined
above. As noted by Harish-Chandra [HCS8], Arthur’s thesis develops an inter-
esting connection between Eisenstein integrals and the reducibility of principal
series representations. While Arthur’s thesis applies only to groups of real rank
one, a number of his results are valid for groups of general rank. In later work
[A1], Arthur proved similar results for groups of general rank. These results
were announced in [A2].

The Schwartz space of Harish-Chandra has been generalized by Herb and Wolf
to a general semisimple Lie group with infinite center. In a series of papers [Hel,
He2, HW1, HW2, HW3, HW4, HWS5], they have carried out a program of
harmonic analysis on these groups which is analogous to that of Harish-Chandra
for groups with finite center. While Herb and Wolf use much of the full power
of Harish-Chandra’s work, their investigation requires considerable care because
of the difficulties which arise from the existence of an infinite center.

At the present time, there is nothing approaching a classification of the dis-
crete series for p-adic groups. Recent work by Kazhdan and Lusztig [KL] and
Morris [Mo] is a promising start. Despite the lack of knowledge of the discrete
series, Harish-Chandra was able to carry out a major portion of his program on
the harmonic analysis of the Schwartz space and the Plancherel formula for p-
adic groups [HC9, HC13]. (The text of [HC13] may be found in the Collected
Papers of Harish-Chandra {HC14}.) The book of Silberger {Si2] contains many
of the details of this work.



4 INTRCGDUCTION

Langlands. The idea of studying a class of irreducible representations of a
semisimple Lie group which is larger than the collection of unitary representa-
tions originated in Harish-Chandra’s papers [HC1] and [HC2] in 1953 and 1954.
(Harish-Chandra also attributes this idea to Chevalley.) Harish-Chandra proved
a series of powerful general results about admissible representations— for exam-
ple, two irreducible admissible representations are infinitesimally equivalent if
and only if they have the same global character. He also proved the (startlingly
concrete) subquotient theorem which states that any irreducible admissible rep-
resentation must be (infinitesimally equivalent to) a composition factor-—that is,
a quotient of two subrepresentations—of a principal series attached to a minimal
parabolic subgroup. Thus, to study arbitrary abstract representations, one had
to look no further than some finite dimensional vector bundles on a compact
homogeneous space.

Unfortunately, principal series representations turned out to be extraordinar-
ily complicated objects. Harish-Chandra never realized his hope of studying dis-
crete series representations as subquotients of principal series. By the late 1960s,
complete lists of irreducible admissible representations were available for only a
few noncompact semisimple groups. In general, it was not even known .vhich
principal series representations were themselves irreducible. In 1974, Zhelobenko
[Zh] showed how to sharpen Harish-Chandra’s subquotient theorem into a classi-
fication of admissible representations of complex semisimple Lie groups. Specif-
ically, he showed that certain principal series representations have distinguished
irreducible quotient representations, and that every irreducible admissible repre-
sentation appears in an essentially unique way as such a distinguished quotient.
This established a bijection between some principal series (which are given by
simple explicit parameters) and irreducible admissible representations (all of this
for complex groups, of course).

Motivated also by Hirai’s work [Hi] on SU(n,1), Langlands saw how to ex-
tend Zhelobenko’s work to all real semisimple Lie groups. The .ey idea was
not to sharpen the subquotient theorem, but rather (in a sense) to weaken it.
Langlands considered not only principal series representations induced from the
minimal parabolic subgroup, but also series induced from tempered representa-
tions on other parabolic subgroups. He showed that any irreducible, admissible
representation could be realized in a distinguished way as a quotient of such
a “generalized principal series” representation. The tempered representations
had already been parameterized in a finite-to-one way by Harish-Chandra. This
was refined to a one-to-one parameterization by Knapp and Zuckerman in 1982
[(KZ). Thus, the work of Knapp and Zuckerman combined with that of Langlands
gives an explicit parameterization of the irreducible admissible representations
of a real semisimple Lie group.

Zhelobenko characterized the distinguished quotient representations in sev-
eral ways, notably, as cokernels of certain intertwining operators and in terms
of their restrictions to a maximal compact subgroup K. Langlands generalized
only the first of these characterizations. In 1975, Schmid [Sc1] showed how to
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characterize the discrete series in terms of their restrictions to K. Using that
work, Vogan [V1], in 1979, showed how to characterize Langlands quotients in
termns of restrictions to K. (The proof is not difficult, but it is not illuminating
either. There is still no really satisfactory understanding of the equivalence of
the analytic and algebraic characterizations.)

Vogan's work suggested the existence of an entirely different way to construct
admissible representations, using certain parabolic subalgebras of the complex-
ified Lie algebra in place of real parabolic subgroups. Zuckerman found such a
construction; it is described in [V2]. Current work on the classification of ir-
reducible unitary representations relies heavily on the interplay of Zuckerman's
construction with Langlands. There is a survey in [V4].

The constructions of Langlands and Zuckerman have a common generalization
in that of Beilinson and Bernstein [BB]. Roughly speaking, that paper provides
a sort of geometric description of any irreducible representation of the complexi-
fied Lie algebra ®, in terms of the algebraic variety of all Borel subalgebras of &.
For admissible representations, this description can be made into an explicit pa-
rameterization, which can, in turn, be shown to coincide with that of Langlands
and Knapp and Zuckerman. The paper [HMSW] of Heckt, Milicic, Schmid,
and Wolf treats these relationships in depth.

Langlands’ formulation as sketched above can be carried over to p-adic semi-
simple groups without difficulty. The corresponding results were proved by Borel
and Wallach in [BW], and Silberger in [Si1]. Unfortunately, there is not yet a
classification of tempered representations in the p-adic case like that of Harish-
Chandra and Knapp and Zuckerman in the real case. Thus, the p-adic result
is more in the nature of an abstract structure theorem than a classification.
Nevertheless, it has been used by Tadic in [Ta] to describe all the irreducible
unitary representations of GL(n) over a p-adic field in terms of the discrete series
of GL(m), m < n.

Using Harish-Chandra’s finité-tc-one parameterization of tempered represen-
tations, Langlands obtains (from his realization of admissible representations
in terms of generalized principal series) a finite-to-one parameterization of irre-
dueible admissible representations. He formulates this parameterization in terms
of maps of the Weil group Wgr of R into a group called the L-group of G. This
formulation, with some modification, also makes sense in the p-adic case, and is
currently an area of intensive investigation.

Osborne. Because it is much less well known than some of the other papers
in this volume, we will describe Osborne’s thesis at some length before tumink
to other developments.

Osborne was motivated by the fixed point theorem of Atiyah and Bott, and by
their application of it to deduce the Weyl character formula from the Bott-Borel-
Weil theorem. ‘The Atiyah-Bott theorem concerns an elliptic complex & on a
compact manifold M, and an automorphism f uf M and &. (The prototypical
example is the deRham complex on any compact M; any automorphism of M
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automatically extends to an automorphism of this complex.) Then f defines
automorphisms f* of the cohomology H*(M,&). Since these spaces are<finite
dimensional, it makes sense to form the alternating sum 3"(—1)* tr(f*). Under
an appropriate hypothesis on f (that it should have only simple fixed points),
the theorem computes this alternating sum of traces as a sum of local terms at
the fixed points of f.

Suppose now that G is a semisimple Lie grbup and T is a discrete subgroup
with I'\G compact. The representation of G on L%(I'\G) has a distribution
character. One can ask for a formula which computes this character in terms of
the local data at fixed points. The fixed points of G acting on I'\G are never
simple, so nothing like the Atiyah-Bott result can apply directly. What is desired
is an analogous result. An element of G has a fixed point on I'\G if and only if
it is conjugate to an element of ', so one is asking to compute the character in
terms of data on the conjugacy classes of elements of I'. This is exactly what is
accomplished by the Selberg trace formula.

At first glance, the Selberg trace formula does not look like a very good ana-
logue of the Atiyah-Bott fixed point formula, because the character of L2(I'\G)
does not appear to be an alternating sum of traces on cohomology groups. Os-
borne’s most difficult technical goal was therefore to realize such distribution
characters as alternating sums. He did this “one representation at a time,” then
patched the results together using some more or less formal methods. More
precisely, let P = M AN be a minimal parabolic subgroup of G, (7, H) an irre-
ducible unitary representation of G, and O, the character of . Write H* for
the space of smooth vectors of . This is a representation 7°° of the Lie algebra
8 of G. The complex computing the Lie algebra cohomology of N with coeffi-
cients in 7 has as its jth term Hom(A’ 9, H*°). The group M A acts on this
complex and on its cohomology. Roughly speaking, Osborne conjectured that,
for g a regular element of G belonging to M A, 8,(g) is equal to the alternating
sum of the traces of g on the cohomology groups of this complex, divided by the
alternating sum of the traces of g on A' M. (For H finite-dimensional, this fact
is a consequence of elementary linear algebra.) For technical reasons, one has to
require g to lie in a certain Weyl chamber for this to have a chance to be true in
general. In this form, Osborne proved the result for SL(2,R) and SL(2, C), and
for “most” principal series for SO(n,1).

Finally, Osborne constructed a complex of vector bundles on I'\G, with fiber
(A? M)*. Very roughly speaking, the alternating sum of the traces of a regular
element g of M A on the cohomology groups of this complex is {assuming ‘the
conjecture in the previous paragraph) the value at g of the character of L?(T'\G).
Combining this with the Selberg trace formula, one gets a reasonable analogue
of the Atiyah-Bott theorem.

To the best of our knowledge, Osborne’s results have not been used in later
work on L2(T\G). (Exactly the same ideas are at the foundafion of almost all
work on the occurrence of elliptic representations (such as discrete series). The
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. point is that then one can identify the complexes that arise with Dolbeault com-
plexes on compact, complex manifolds, so a lot is known about them. This line
of research predates Osborne’s thesis, however.) What has survived is the con-
jectural relationship between Lie algebra cohomology and character formulas.
A version of this relationship was established in the late 1970s by Hecht and
Schmid, and appears in [HS2]. This paper reflects enormous advances in the
understanding of 9t-homology (or cohomology) over the previous decade. At the
beginning of these developments was a result of Casselman and Osborne [CO] re-
lating the 9-cohornology with coefficients in a representation to the infinitesimal
character of that representation. What finally emerged was this. It had been
understood since the 1950s that representations of a semisimple group should
be attached in some way to characters of Cartan subgroups, and, in discussing
the papers of Langlands and Schmid elsewhere in this Introduction, we see a bit
of how that was accomplished. Osborne’s conjecture helped to establish that
N-cohomology is a kind of inverse of that process; it starts with a representa-
tion and produces characters of Cartan subgroups. The culmination of all these
ideas is the Beilinson-Bernstein theory, which brings all constructions and their
inverses into one geometric setting.

Osborne’s thesis also contains nice accounts of a number of more or less well-
known (but rarely proved) technical resuits. For example, there is a complete
proof that the space of smooth vectors in an induced representation is (some-
times) the space of smooth sections of the corresponding vector bundle. All of
this material makes splendid reading for a graduate student. ‘

Schmid. In [HC4] and {HC5], Harish-Chandra gave a complete parameter-
ization of the discrete series of a semisimple Lie group G. In particular, for each
parameter A, he gave an explicit formula for part of the character 6, of the
corresponding representation 7, and an algorithm for computing the remain-
ing values of ©,. He also computed the formal degrees of the discrete series
and proved enough about their matrix coefficients to complete his proof of the
Plancherel formula for G.

In Harish-Chandra’s work, he did not give explicit realizations of the represen-
tations mx. In this respect, his work paralleled that of H. Weyl on the characters
of compact Lie groups. In 1955, A. Borel and A. Weil constructed a realiza-
tion of the representations of a compact Lie group K on holomorphic sections
of appropriate line bundles over K/T, T a maximal torus in K. In [HC3], for
noncompact semisimple GG, Harish-Chandra found all the discrete series which
admit analogous realizations in sections of holomorphic vector bundles. These
are the holomorphic discrete series for G. However, except in a few special cases,
such discrete series are quite rare.

1n [Bt}, Bott generalized the Borel-Weil realization of representations of com-
pact Lie groups by considering higher Dolbeault cohomology with coefficients
in a holomorphic vector bundle. (The zero cohomology is just the space of
holomorphic sections.) He obtained no new representations, but rather new

-
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constructions of old ones. Soon thereafter, B. Kostant and R. P. Langlands re-
alized that Bott’s construction made sense for some noncompact semisimple Lie
groups as well. Specifically, suppose that T is a compact Cartan subgroup of
G. Any character u of T defines a homogeneous complex line bundle Z, ou
G;/T. A choice of positive roots R* of T in the complexified Lie algebra of G
gives rise to a complex structure on G/T, and %, acquires the structure of a
holomorhic line bundle. We may therefore speak of the Dolbeault cohomology
HYG/T; R*; £,) of G/T with ccefficients in Z,. This is a vector space on
which G acts. It may be infinite-dimensional (since G/T is noncompact). That
it is a Hausdorfl, topological vector space requires a difficult proof; one must
show that a certain d operator has closed range.

The simplest example is G = SL(2,R). Here, the homogeneous space G/T
may be identified with the unit disk, and H°(G/T;Z,) is essentially the space
of holomorphic functions on the unit disk. Such a space is too big to be given
a reasonable Hilbert space structure; one must impose growth conditions at the
boundary. In general, the representations H'(G/T; R*:.Z},) are too big to be
isomorphic to discrete series representations, but they may be infinitesimally
equivalent to such representations. Kostant and Langlands offered two conjec-
tures. The first is a generalization of the Borel-Weil theorem: each discrete
series represenlation my is infinitesimally equivalent to a certain Dolbeault coho-
mology representation H*(G/T; R*;.%,). Here, s depends only on G, and R*
and u depend in a simple way on Harish-Chandra’s parameter A. The second
conjecture generalizes Bott's theorem. One replaces Dolbeault cohomology by
certain spaces of L2-harmonic forms H(G/T; R*;.%,). (When G/T is compact,
H* coincides with H' by Hodge theory.) The conjecture is that each nonzero
H(G/T;R*;.%,) is isomorphic to a certain discrete series 7. We note that
only the second of these two conjectures was precisely formulated.

Schmid's thesis is concerned with (formulating and) proving the first of these
conjectures. He introduced powerful algebro-geometric techniques for studying
the Dolbeault cohomology representations and their restrictions to a maximal
compact subgroup. In particular, he proved that Blattner's conjectured multi-
plicity formula for the restriction of ) to a maximal compact subgroup K was
usually valid, at least for that H*(G/T; R*;.%,) which was a conjectured model
for my.

Schmid’s work provided concrete models for most discrete series represen-
tations—the first new ones of any generality since Harish-Chandra’s work on
the holomorphic discrete series ten years earlier. Over the following few years,
Schmid went on to prove completely both of the conjectures of Kostant and Lang-
lands, 4nd (with H. Hecht) the conjecture of Blattner (see [Sc2} and [HS1]). This
wealth of information has proved very useful in a variety of problems in harmonic
analysis in which discrete series arise, especially in the theory of automorphic
forms.
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Omnce Schmid had established téchniques for studying Dolbeault cohomology
on G/T, it was natural to consider cohomology on larger classes of complex ho-
mogeneous spaces. That idea has several descendents today, each with its own
claim to the throne. One such is the theory of cohomological induction (see [V3]
and the references contained therein). TH now allows one to construct many
wonderful families of unitary representations that, like the discrete series, are
more or less inaccessible by parabolic induction. A more direct descendent is
the work of Rawnsley, Schmid, and Wolf [RSW] on the direct geometric con-
struction of unitary structures on Dolbeault cohomology representations. This
has proven to be an almost intractable problem. The best general results say
only that the Dolbeault cohomology construction is well-behaved on admissible
representations. Finally, the work of Beilinson and Bernstein on D-modules and
representation theory ([BB, HMSW]) is very much in the spirit of Schmid's
thesis. Recent work of Hecht and Taylor [HT] makes an explicit connection.
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