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Introduction

This book focuses on a new aspect of the theory of Lie groups and Lie
algebras, namely, the consideration of semigroups in Lie groups. The systematic
development of a Lie theory of semigroups is motivated by their recent emergence
in different contexts. Notably, they appeared at certain points in geometric control
theory and in the theory of causal structures in mathematical physics. Beyoud
that, it is becoming increasingly clear that the broader perspective of considering
not just the analytic subgroups of a Lie group, but the appropriate subsemigroups
as well, leads to a fuller and richer theory of the original Lie group itself. Hence it
is appropriate to consider this work as a new branch of Lie group theory. too.

Historically, the rudiments of a Lie theory of semigroups can be detected
in Sophus Lie’s own work. Jf the language had been available at the time, he could
have expressed one of his basic results in this sentence: The infinitesimal generators
of a local semigroup of local differential transformations of some euclidean domain
is a conver cone in a vector space. However, in Lie's own diction, any family
of transformations of a set which is closed under composition is called a group,
irrespective of the presence of an iden ity or the existence of inverses. In fact, Lie
attempted for a while to deduce the existence of an identity and the inverse from
his other assumptions until the first concrete examples credited to Friedrich Engel
showed the futility of such efforts. The word semigroup belongs to the vocabulary
of the 20th century. There were some initiatives to deal with Lie semigroups s:ch
as the attempts by Einar Hille in the early nineteen-fifties which also made their
way into the the book by Hille and Phillips, and the studies of Charles Loewner on
certain types of subsemigroups of Lie groups extending into the nineteen-sixties. By
and large, these efforts remained somewhat isolated and they were either aborted
or ignored, or both.

It may appear surprising that further systematic juvestigations of semi-
groups in Lie groups were not undertaken. However, the technical obstacles are
constderable, and incisive results of both generality and mathematical depth did
not quickly appear on the horizon. Indeed the traditional tools of Lie theory were
inadequate for dealing with the new theory. One needed to introduce the geome-
try of convex sets; certain techniques and ideas from geometric control theory also
turned out to be quite useful. Additionally, specialized methods appropriate to the
circumstances had to be introduced and developed. Only in very recent years has
a significant body of results begun to emerge. A notable example is the investiga-
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tior: of invariant cones in Lie algebras due to KOSTANT, VINBERG, PANEITZ, and
OL'SHANSKII.

Besides having to cope with these technical obstacles and a historical
scarcity of external stimuli, the Lie theory of semigroups often found itself in a
no-man’s land. Semigroup theorists have tended to regard subsemigroups of groups
as a branch of group theory, while group theorists have concentrated on the sub-
groups of a group and paid scant attention to the subsemigroups. This has been a
serious oversight. The Lie theory of semigroups is an interesting, rich, and applica-
ble branch of study. This book is a first attempt to present a systematic Lie theory
of semigroups. Numerous examples are also included. Apart from some background
theory which we felt we should provide, its contents are of recent origin.

Although a strong motivation for this book is the development of a useful
and applicable Lie theory of semigroups, major lines of applications will be deferred
to later volumes. Nevertheless, let us briefly illustrate the emergence of semigroups
in the context of geometric control. Let § denote a set of smooth vector fields on
a manifold M each vector field X € Q determines a local flow, say, t — Fy(X)
which associates with any m € M the unique largest solution z:7 — M, [ C R,
z(t) = Fy(X)-m of the initial value problem

(1) () = X («(t)), z(0) = m.

In order to keep this illustration short let us assume that each X € §2 is complete in
the sense that (1) has a solution forall t > 0 andall m € M. Then F: M — M isa
smooth self-map of M for each t > 0. Now let us consider a function ¢: [0, T] — £,
called a steering function, which is piecewise constant. Typically, we are thinking
that such a function selects for each interval of constancy [tx—i,tx[ a vector field
Xy = c(t) with t € [tg—1,t[, and that each jump at time tx, k =0,1,...,n,
t, = T represents a sudden switch which redirects the trajectory from one vector
field Xi to the next vector field Xx,1. A solution of the initial value problem

{2) i(t) = c(t)(z(t)), z(0) =m
is then a concatenation of solutions

Ei(t) = Xp(zk(t)).  zelte-1) = re-1(te-1) for ti-1 StE<t
with to = 0, t,, = T and x;(0) = m. In the terms of the flows we have
(3)  z(t) = Fropy ((Xi)Fyy p(Xp—1) - Fyy (K1) (mn) for te—1 <t < t,
and for k = 1,....n — 1. A typical problem in systems theory is to determine
the points of M which are attainable from a point m € M by traversing one of
these trajectories obtained from the system Q and all piecewise constant steering
functions. This problem is then clearly tantamount to the question of which ele-

ments of M are in the orbit S-m of m where S is the semigroup generated (under
composition) by all Fy(X), t >0, X € Q.
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If, in particular, M is the underlying manifold of a Lie group G and all
vector fields X € § are left-invariant. that is, if Q is a subset of the Lie algebra
g of all left-invariant vector fields, then F3(X) = expt-X, and § = §(Q) is the
semigroup of all elements expt;-X; expty- Xz ---expt,-X, in G. Indeed, in several
decisive parts of the general theory of semigroups in Lie groups, the framework of
geometric control theory will organize our procedures.

The simplest special case, of course, is that of the the group G = R™. in
which case we may also write 2 C g = R™. Then S is the additive semigroup
S{R*-X: X € Q} which is stable under multiplication by non-negative scalars.
The example of the group R® and its subsemigroups demonstrates right away that
a treatment of all subsemigroups i1s unreasonable. It is clearly those semigroups
which are generated by the rays RT.z C S that are amenable to a general theory.
Therefore, the idea of an inf nitesimally generated semigroup in a Lie group will be
crucial, and the whole theory will eventually have te concentrate on them.

The title of the book features the word semigroup. This word means
different things to different people. For many a functional analyst, a semigroup
is a strongly continuous one-parameter family of bounded operators on a Banach
or a Hilbert space. Then semigroup theory is the description of the infinitesimal
generation of these semigroups by unbounded closed operators and, as a branch
of ergodic theory, the study of their behavior for large parameter values. For the
algebraist, semigroup theory is a vast body of structure theory involving ideals,
equivalence and order relations, idempotents, and generalized inverses, in short. a
theory blending algebra with order. In topological semigroup theory a prevalent
image is that of a compact semigroup, whose one outstanding feature is a minimal
ideal full of idempotents.

None of these images is pertinent in the context of this book. While one-
parameter semigroups do indeed play a crucial role here, they are only the raw
material from which a distinctly multiparameter theory is built. We deal primarily,
albeit not exclusively, with subsemigroups of Lie groups. In algebraic semigroup
theory one has a whole subtheory characterizing semigroups which are embeddable
in groups, but there is an inclination to consider those semigroups of little semigroup
theoretical interest thereafter. And as far as compact semigroups are concerned, as
soon as they are contained in a group, they are themselves compact groups: thus
they instantaneously become the topic of classical group theory.

A helpful preliminary idea of the type of semigroup which shall occupy us
in this book is that of a closed convex cone in R™. In fact, the theory of such
cones is basic and thus needs much initial attention. Thus in the kind of Lie theory
we have to deal with, geometry of convex sets is added to linear algebra, calculus,
global analysis, and topology.

1

To highlight by comparison and contrast the main coucerns of this book.
let us recall the basic components of the theory of Lie groups. Traditional Lie group
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theory deals, firstly, with the infinitesimal structure theory of Lie groups and their
subgroups. The basic tool is linear algebra applied to Lie algebras. Secondly, it
deals with the local structure theory by means of the exponential function in which
an amazing wealth of information is encoded. This approach to Lie theory uses
analysis on open sets in R™, that is, calculus of several real variables. Finally, one
has to deal with the global structure of Lie groups by means of global differential
geometry, analysis on manifolds, and algebraic topology. The structure of a Lie
group is uniquely determined by two data, one infinitesimal, one global: its Lie
algebra and its universal covering homomorphism whose kernel is the fundamental
group.

These features of classical Lie group theory roughly correspond to the lines
of its historic development: Sophus Lie, its creator, developed the idea of infinit-
esimal transformations of a local group of transformations and thus the concept of
infinitesimal generators of a flocal) Lie group, and he invented for their analysis
the type of algebra which now bears his name. The tools of analysis available
to him in the later decades of the vineteenth century allowed him to develop an
infinitesimal and local theory constrained to open domains of euclidean space. He
was able to inspect examples of global groups. Indeed the groups of geometry
provided an ample supply even at that time. A systematic treatment of the global
theory, however, required the tools of topology and global differential geometry that
soon became available through the work of Henri Poincaré, Georg Frobenius, Elie
Cartan, Hermann Weyl, Heinz Hopf, and numerous other mathematicians.

Even more distinctly than in the case of groups. the Lie theory of semigroups
falls into at least three parts:

1) the infinitesimal theory,
2) the local theory, and

3) the global theory.

The infinitesimal theory deals with those subsets of Lie algebras which are
the exact infinitesimal generating sets of (local) subsemigroups of Lie groups. The
tools belong to classical Lie algebra theory and to the theory of convex bodies
and cones. The local theory has the task of characterizing local infinitesimally
generated semigroups in a Lie group and must lead to the Fundamental Theorem in
the sense of Lie. Historically, the direction of constructing, for a given Lie algebra.
a (local) group with the given algebra as tangent set at the origin was hard. The
corresponding task is much harder in the case of semigroups. Fiually, the global
theory, perhaps the least developed »ortion of the Lie t aeory of semigroups at this
time, is concerned with the structure of infinitesimally generated subsemigroups of
Lie groups and, in particular, with the global variant of the Fundamental Theoren:
If a set of infinitesimal generators is given which is already known to be the tangent
set of a local semigroup, is it always the tangent set of a (global) subsemigroup of
a Lie group? Since one discovers very quickly that the answer to this question is
negative, it converts immediately to the hard question: Which local infinitesimal
generating sets are global? More accurately: Given a subset W in the Lic algebra
g of a Lie group G such that W is the precise set of tangent vectors at the origin
of some local subsemigroup in G, what are necessary and sufficient conditions that
there is a (global!) subsemigroup § in G whose set L(S) of infinitesimal generators
is exactly W?
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These outlines were drawn foliowing the contcuars of classical Lie v
1 !

theory. Yet in developing a Lie theory of semigroups, one recognizes very <
that the analogy with Lie group theory does not carry very far at ail. T o
account for the apparent fact that most previous attempts at a Lie theor, ot
semigroups were abandoned sooner or later. -

However, there are more pieces to this puzzle. Up to this point wo Lave
considered subsemigroups of Lie groups as the proper territory of a Lie semigroup
theory. But in looking back at classical vistas of Lie group theory, we find other
views on a possible Lie semigroup theory just as natural: Given a topological
semigroup, say, on a manifold with or without boundary, introduce a suitable
differentiable structure and study the objects so obtained in the abstract! Clarity
to which extent the semigroups arising in this fashion can be embedded into Lie
groups—at least locally in the vicinity of an identity! Even on the historical plane,
this viewpoint is natural because it is close to Sophus Lie’s original vantage point.
As a consequence we have to face a fourth aspect which we might call

4) the abstract Lie semigroup and embedding theory.

We shall address this issue, too, and find that our original attitude is
justified. Any reasonably defined Lie semigroup can be embedded into a Lie group
at least locally on a neighborhood of the identity. This is reassuring. Yet many
interesting problems remain open in the entire theory.

Let us now look at the lay-out of the book and highlight some of its results.
We begin with a fundamental fact which was, in a way, known to Sophus Lie, which
is explicitly and clearly stated in Loewner’s work, and appears in some form in
a variety of contexts where semigroups in Lie groups have been considered. Let
us consider a subsemigroup S of a Lie group G and its exponential function
exp: L(G) — G. In order to skip technicalities—which eventually we shall have
10 face squarely - we shall assume for now that S is closed. We define

L(S) = {X € L(G): expR*-X C S}.

Then the set W = L(S) is topologically closed; it is stable under addition and
is closed under multiplication by non-negative scalars in the finite dimensional real
vector space L(S). We shall call such sets cones or, more frequently, wedges. Indeed,
W will contain a largest vector subspace W N —W called the edge, which in general
is not zero and plays a crucial role in the overall theory; this is one reason why
we prefer the terminology of “wedge” (another is that the word “cone” sometimes
refers to not necessarily convex objects). But in the literature the terminology
“cone” is so prevalent that we have decided to use the two terms synonymously.
Those wedges, whose edge is zero, will be called pointed cones.

We have to prepare adequate background information on wedges. Chapter
1 serves this purpose. We deal with the structure theory of wedges in two ways:
Firstly in terms of duality, secondly in terms of geometry. If W is a wedge in a
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finite dimeusional real vector space L then the dual wedge W* is the set of all
functionals w in the dual L of L satisfying (w,z) > 0 for all z € W. Frequently
we can realize the dual wedge in L itself; this happens as soon as we are given,
through natural circunmstances. a nondegenerate bilinear symmetric form B on L
(for instance. a scalar product. or a Cartan-Killing form) in which case we have
W* = {y € L: B{z.y) > 0forallz € W}. We are particularly interested
in wedges with interior points; this means that the dual is a pointed cone. The
geometry of such wedges is determined by the structure of their boundary. A helpful
concept is that of a face. A special type of face is particularly suited for duality,
namely. the concept of an exposed face. We shall analyse this concept in terms
of duality in great detail; at this point it suffices to understand its geometrical
meaning. A support hyperplane of a wedge with inner points is a hyperplane
meeting the wedge non-trivially and bounding a closed half-space containing the
wedge. An exposed face is the intersection of a support hyperplane with the wedge
{or the whole wedge). A non-zero point on the wedge is an erposed point if it lies
on a one-dimensional exposed face. Unfortunately, if W has a non-zero edge then
W has no exposed points. We need focus on the next best object. namely, those
points x € W™ for which ¢ + (W N —-W) is an exposed face. These points are called
El-points. If W is pointed, then the E!-points are exactly the exposed points. Of
even greater importance are the so-called C!-points. A point z is a C!-point of
a wedge with inner points if there is one and only one support hyperplane of the
wedge containing r. In an arbitrary wedge. a point is called a C!-point if it is a
C'-point of W™ in the vector space W — W in which W does have inner points.
There is a close correspondence between the C!-points of W and the E!-points of
W™ which is encapsuled in the so-called Transgression Theorem (1.2.35).

Two types of wedges are particularly familiar: polyhedral and Lorentzian
ones. A wedge is polyhedralif it is the intersection of finitely many closed half-spaces;
it is Lorentzian if it is one half of the solid double cone defined by a Lorentzian form.
A boundary point of a polyhedral cone is either a C1-point or a E!-point or neither
of the two; each non-zero boundary point of a Lorentzian cone is both a C*- and
an El-point. This is the starting point of a small theory of round cones which we
shall develop because we need it later in the infinitesimal Lie theory of semigroups.

There are several results in the first Chapter which are applied later. Some
of them are of independent interest. The first is a classical theorem of MAZUR’S
saying that the set of C'-points C'(W) of a conver closed set W with inner points
i a separable Banach space is a dense Gs in the boundary OW . This result is
non-trivial even in the case of finite dimensional vector spaces. Since the C*-points
play a central role. we give a complete proof of the Density Theorem. In the finite
dimensional situation this implies a dual result due to STRASZEWICZ which says
that a finite dimensional cone W is the closed additive span of E*(W), the set of
its EY(T3")-points.

A further tool of crucial importance is a theorem on ordinary differential
equations due to BONY and BREZIS. It deals with the invariance of closed sets under
flows. For a brief discussion let A denote a closed subset of a finite dimensional
vector space and let [7 be an open subset containing A. Let X be a vector
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field on U satisfying a local Lipschitz condition. Then X defines a local tHow
(t,u) = Fi(u) on U via Fy(u) = z(t), where z is a solution of the initial value
problem #(t) = X (z(¢)), z(0) = u. We say that A is invariant under the flow F if
Fi(a) € A for all @ € A and all ¢ > 0 such that Fi(a) is defined. The point is that
the invariance of A under F can be expressed in terms of X and the geometry of
A. For this purpose we need a definition.

1. Definition. A subtangent vector of a subset W of a topological vector space
L at a point w € L is a vector x such that there are elements w, and numbers 7,
such that

(i) limw, =w, w, € W,

(i) 0<r, €R,

(iif) z = limr, (w, — w).
The set of all subtangent vectors of W at w will be denoted L, (W). If w =20, we
shall write L{W) instead of Lo(W). We shall call  a tangent vector of W at w
if both £ and —z are subtangent vectors. The set of tangent vectors of W at w,
denoted T, (W), therefore is L, (W) N —L,(W).

(It is no problem to define a subtangent vector = of a subset W of a
differentiable manifold M at a point w € M. Under such circumstanceas, = is an
element of the tangent space T(M),, of M at w.)

2. Theorem. If A is a closed subset of a finite dimensional vector space L
and U an open subset containing A, and if X s a vector field on U satisfying a
local Lipschitz condition, then A 1is invariant under the local flow defined by X if
and only if

X(a) € Ly (A4) forall a€ A

(The theorem, by the way, remains intact for closed subsets and vector fields
on differentiable manifolds.)

Our primary applications of this theorem concerns wedges in finite dimen-
sional vector spaces and their invariance under linear flows. In fact we shall prove
the following Invariance Theorem for Wedges:

3. Theorem. LetW be a generating wedge in a finite dimensional vector space
L and X:L — L a linear map. Then the following conditions are equivalent:

(1) e¢XW CW for all t € R (respectively, for all T € R).

(2) X(w) € Ly,(W) (respectively, X (w) € T,(W)) for all we W.

(3) X(c) € L(W) (respectively, X(c) € T.(W)) for all c € C*(W).

(4) X(e) € Le(W) (respectively, X(e) € T.(W)) for all e € E}X(W). =

The equivalence of (1) and (2) is a rather immediate consequence of the
Bony-Brezis Theorem; the equivalence of (3) with these conditions requires the
Mazur Density Theorem—but that is not enough; the proof further requires a result
which we shall call the Confinement Theorem which says that a flow confined in
a wedge by the tangent hyperplanes in all C'-points cannot seep out through the
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corners. A duality argument will establish the equivalence of (4) with the other
conditions.

The reading of Chapter I will not demand many prerequisites. We have
some cause to formulate the theory of wedges without restriction of the dimension
as far as this gencrality can be sustained painlessly. However. for a first reading
little is lost to the reader who prefers to restrict attention to the finite dimensional
. case. In this situation, most of the material is elementary, yet not trivial. For the
"Mazur Density Theorem, some background in functional analysis is required such

as familiarity with Baire category arguments. The Bony--Brezis Theoremn demands
somie knowledge on ordinary differential equations. Given all of this, however. the
first chapter is self-contained.

The second and third chapter are devoted to the infinitesimal Lie theory of
semigroups: they deal with those wedges in finite dimensional Lie algebras which
arise as taugent sets of semigroups and local semigroups in Lie groups.

Let S denote again a closed subsemigroup of a finite dimensional real Lic
group G and set W = L(S). It is not hard to verify that L(S) = Lo(exp™!(S)).
We have observed above that W is a wedge in the Lie algebra L = L(G). More
generally, if U is an open neighborhood of the identity in G and S C U a subset
catisfying SN C S, then the set W = Lo(exp™!(S)) of subtangent vectors of
the pull-back of S under the exponential function is always n wedge. But how does
such a wedge relate to the Lie algebra structure of L7 The answer is not part of
the classical repertorv. It was discovered independently hy OL'SHANSKI and by
HOFPMANN and LAWSON., that every subtangent wedge W of a local semigroup in a
Lie olgebra satisfies

*) AW =W forall TeWN-W.

where adr: L — L as usual is the inner derivation of L given by (ad z)(y) = [z. y].
Recall. in this context, that every derivation D of L gives rise to an automorphsm
e’ of the Lie algebra L. It is clear that every pointed cone trivially satisfies
condition (*). and that this condition implies that the edge W N —W of the wedge
is a Lie subalgebra,

All of this. once understood. is comparatively easyv to establish. It is much
harder to accomplish Sophus Lie’s Fundamental Theoremn for a local theory of
semigroups by showing that, conversely. if a wedge W i the Lie algebra [1(()
of a Lie group satisfes (x). then there 1s an open neighborhood U7 of the identaty in
G and a subset S CU with SSNU C S such that W = {45 xp~ ' §) . This result
is the core of the entire local Lie theory of seniigroups and was established by the
authors. A whole chapter is devoted to a proof of this fact. namely, Chapter TV,

However. this carries us beyond the infinitesinusi theory, but it amply
justifies the terminology of calling Lie wedge any wedge i« Lie algebra satisfring
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condition (*) above.

Condition { =) has a drawback. An infinitesimal equivalent of the semigroup
property should be expressed in terms of the Lie bracket alone and not with the
ald of a convergent power series. An immediate corollary of Theorem 3 is the key
to such a reformulation.

4. Corollary. If W s a wedge in a finite dimensional Lie algebra L. then
for ¢ yelement y € L. the following conditions are equivalent:

(1) Myl = .

(2) [w,y] € TW(W) for all we W.

(3) [c.y] € T(W) for all c € CH{W).

(1) e,y € T(W) for all e € EX{W). ]

This allows us to conclude

5. Theorem. (The Characterization Theorem for Lie wedges) For a wedge W
in a finite dimensional Lie algebra L. the following conditions are equivalent:

(1) W 15 a Lie wedge.

(2) [w,Wn-W]CTy,(W) forallweW.

(3) [eeWN-W|]CTAW) for all c € CH{W).

4) [e.WN-W]C TAW) for all e € EXY{W). ]

Let us pause to inspect condition (2) for the elements w € W N —W of the
edge. For each such element, T, (W) = WN—~W . Thus we note once more that the
edge of a Lie wedge is a Lie subalgebra. In particular if W happens to be a vector
space—which is the case precisely when W = —W = W N —W —then Theorem 5
expresses nothing else but the fact that a vector space is a Lie wedge if and only if
it is a Lie subalgebra.

The Lie wedge condition (*) is of the type of an invariance condition which
suggest the concept of an invariant wedge which will engage much of our energy in
this book.

6. Definition. A wedg. W in a Lie algebra L is tnvariant if

(%) AW =W forall ze<lL.
From Corollary 4 we obtain

7. Theorem. (The Characterization Theorem for Invariant Wedges—Ele-
mentary Version) For a wedge W in a Lie algebra L. the following conditions
are equivalent:

(1} W is invariant.

(2) w, L) CTu(W) forall we W.

(3) [e, L) C TAW) for nil c € CHW).

(4) (e, L] C TAW) for all e € EY(W). [ ]



xviii Introduction

If, in condition (2) we consider once again only elements w € W N -W in
the edge, we find that
Wn-W, L CWn-W,

that is, that the edge of an invariant wedge is always an ideal. More trivially, ()
directly implies that W — W is an ideal, too. In particular, a vector space is an
invariant wedge if and only if it is an ideal. Thus in a very immediate sense, Lie
wedges generalize subalgebras, invariant wedges generalize ideals.

One of the familiar properties of Lie group theory is that local Lie subgroups
of a Lie group are ruled smoothly by local one parameter subsemigroups. Sometimes
this is expressed as the theorem of the “existence of canonical coordinates of the
first kind”. It is one of the unpleasant surprises that even in the simplest examples,
nice infinitesimally generated local subsemigroups in Lie groups fail to be ruled by
local one-parameter semigroups. Such examples exist in 3-dimensional Lie groups
such as the Heisenberg group, the group R? x SO(2) of euclidean motions of the
plane, in SI(2,R) and in SO(3). We shall discuss such examples explicitly and in
detail in various parts of the book. The one-parameter subsemigroups of a closed
subsemigroup § of G are ¢ — expt-X with X € L(S). Even if S is algebraically
generated by exp L(S) and L{S) is the exact set of subtangent vectors of exp™(S)
at 0, in general there are arbitrarily small elements of the form exp X; ---exp X,
with Xy,....: X, € L(S} which cannot be written in the form expY with some
Y € L(S). If S happens to be a group, this is always the case. This deficiency in
the Lie theory of semigroups is a fact of life we have to live with whether we like it
or not.

However, if W is an invariant wedge in the Lie algebra L(G), then there is
always an open neighborhood B of 0 in L(G) which is mapped homeomorphically
onto an identity neighborhood U in G under the exponential function such that
(exp(BﬂW))zﬂU C exp(BNW ). In other words, invariant wedges always define lo-
cal subsemigroups which are ruled smoothly by one-parameter subsemigroups. How-
ever, not every subsemigroup which is locally ruled by one parameter subsemigroups
is invariant. Hence the hunt is on for those Lie wedges which belong to local semi-
groups behaving more like local groups. The Campbell-Hausdorff multiplication

i 1 1
which is give near 0 by X+Y = X+Y+~2-[X, Y]+ D (XX, v+ 3 Y, [V, X]]+- -
in terms of a universally defined infinite series in Lie monomials allows us a definition
in terms the Lie algebra L:

8. Definition. A wedge W in a finite dimensional real Lie algebra L is a Lie
semialgebra if there is an open neighborhood B of 0 such that the series for X « Y
converges for all (X,Y) € B x B and such that

L4

(1) (BNW)*(BNW)C W.

There is minute variance in terminology among the authors here. Because
the idea was first introduced by Hofrnann, in his papers Lawson has called a
Lie semialgebra also a Hofmann wedge. In this book we shall use the term Lie
sernialgebra.



