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PREFACE

There are two major directious in the development of automatic control
systems:

1. Improvements in components
2. Making the best use of the components

The second aspect, which is generally known as system design, is the
main topic of this book.

Up until 10 years ago, most literature on control systems regarded com-
ponents as no more than transfer functions. Admittedly, one of the most
essential aspects of a component is its transfer function. Admittedly
also, experienced system designers do not regard components as transfer
functions alone. They use them merely for studying a closed-loop
system’s stability and response to medium-sized signals, but in selecting
components to be used, a fair amount of attention is also paid to the sys-
tem’s power capacity, stability of its characteristics, internal noise,
linearity, ete. While this double-pronged approach -linear stability
theory plus common sense—has been highly successful and is still being
used by most servo designers, it is not adequate to cope with a complex
system in which ultimate response characteristics are desired. To
design such a system, experience is insufficient, and experiments are likely
to be too slow.

In the past decade, systematic treatments of the optimum-design
problem, which considers one or the other limiting features of the so-called
fixed (or unalterable) component in addition to its transfer function,
have appeared in the literature. In the author’s opinion, there are four
basic methods in this category:

1. Wiener’s least-square optimization with quadratic constraint and its
manifestations in nonstationary and sampled-data systems
2. The maximum principle and its forerunner, the “bang-bang’’ servo
principle
3. Self-optimizing systems of various types
4. Computer optimization and control of nonlinear systems
Yii



vili PREFACE

The present volume consists of a treatment of the above four basic
methods plus two auxiliary topies:

1. Estimation and measurement of power spectra and correlation
functions

2. An analysis of the changes in a closed-loop system’s response because
of component inaccuracies

The material selected is based on the author’s opinion of what addi-
tional knowledge is most useful to a servo designer in his work, assuming
that he has mastered the basic tools of the trade such as Laplace trans-
forms, Bode plot, Nyquist plot, Evans’s root-locus method, cte. This
additional knowledge is treated in the simplest possible way (known to
the author), but the reader is assumed to be fairly well prepared at least
in undergraduate mathematics. Knowledge of contour integration is
essential and of probability theory and statisties desirable but not neces-
sary, as the prerequisite knowledge on this subject is treated briefly in
Appendixes A and C. Matrix algebra is used in some parts of the book,
but a reader can understand most of the book without it.

The book may be used as a graduate text by itself or as an auxiliary
text in a graduate course based on one of the standard texts. It will also
be useful as a reference book for servo designers and research engineers.

It is the author’s pleasure to acknowledge the encouragement and good
suggestions from Dean John R. Ragazzini of New York University, Dr.
J. G. Truxal of Brooklyn Polytechnic Institute, Professor T. J. Higgins
of the University of Wisconsin, and Dr. J. H. Chadwick of the Sperry
Gyroscope Company. Many thanks are due to Miss Maryann Regan
for typing most of the manuscript and also to Mrs. Mary Rooney, Mrs.
Eleanor Gilmore, Mrs. Marie Trotta, and Mrs. Beatrice Schwartz for
helping to make various revisions and corrections on the manuseript.

Sheldon S. L. Chang
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CHAPTER 1

INTRODUCTION

1-1. Some Remarks on the Technological Development of Feedback
Control Systems. The modern theoretical development of feedback con-
trol systems started in the 1920s or 1930s and is marked by Minorsky’s
paper on the steering of ships (1922), Nyquist’s paper Regeneration
Theory (1932), and Hazen’s paper Theory of Servomechanisms (1934).
Before that, the development of feedback controls was mainly in the
hands of inventors. While there were isolated instances of successful
applications of the concept of feedback control, such as Watt’s applica-
tions of the flyball governor to the steam engine (1788), Whitehead’s
torpedo control (1866), and Sperry’s gyro stabilizer (1915), there were
many, many more attempts that were left unrecorded because they failed.
The lack of theory prevented consistent success and economical design
toward a prespecified objective.

The theoretical developments made it possible for engineers to design
satisfactory feedback control systems as daily routine, using such now
classical methods as the Nyquist plot, Bode diagram, Nichols chart, and
Evans’s root-locus method. However, one common denominator of
these design techniques is that they have been developed without critical
consideration. Each method leads to one way or another of compen-
sating a system so that it is stable and satisfies a set of more or less
arbitrary performance requirements, e.g., rise time, bandwidth, error
coefficients, peak overshoot, etc. As these requirements can be satisfied
in many ways, the selection of system configuration as well as time con-
stants of the compensating networks is left largely to the discretion or
experience of the designer. There is no place in the above-mentioned
techniques for many factors which are known by experience to be sig-
nificant, e.g., the torque-to-inertia ratio of a servomotor, the noise in the
sensing elements, etc. Consequently, the question of what makes the
best system under actual operating environment and component limita-
tions cannot be answered by these techniques alone,

In the past one or two decades, while the classical design techniques
have been reaching their fruition, the trend of research work has veered
toward optimization. This has been for good reason: The problem is no

longer how to design one of many systems that work but to design the
1



2 SYNTHEEIS OF OPTIMUM CONTROL SYSTEMS

system that works best. In many applications, notably fire-control and
inertial-guidance systems, no degree of accuracy is too good; in missile-
steering systems, no response is {oo fast. When we try to improve the
accuracy and speed of response of a system, the ultimate limits, which
are reached sooner or later, are noise and saturation. Any design tech-
nique, if it is to be realistic, must take due account of these factors. The
outstanding work in this direction is represented by Wiener’s theory of
optimum filtering and prediction. However, as Wiener’s theory was not
intended originally for control systems, it did not give due consideration
to the power limitations of the components. This significant addition
to the theory was due to Newton. Other developments of wide engineer-
ing implications include the phase-plane technique or predictor control of

Load disturbance D
Reference input Controlled
and noise A Controfled _ variable C
R;=R+N, - system g o
System \
controlier
) Measuring
- instrument

Noise or instrument error N,

Fi1c. 1-1. Basic components in a feedback control system.

systems with simple saturation, the development of sampled-data sys-
tems, and the recent developments in self-optimizing systems. The last
is perhaps the culminating point of the trend toward optimization. An
ideal self-optimizing system learns about its environment and adjusts
itself to optimum expected performance in a continual process of measur-
ing and adjusting. While developments in this area are still in their
infancy, the importance of the self-optimizing concept cannot be over-
emphasized.

1-2. The Given Conditions in a Servo-design Problem. Perhaps the
compelling need or reason for the recent developments and trends in
servo theory can be understood by an examination of the problems facing
a servo designer today. In doing so, we shall also define a number of
terms. that will be useful later.

A general representation of a control system is shown in Fig. 1-1. The
cqntrollec{ system may be a stabilized platform including a torque motor,
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a steering system including the control surface and its hydraulic drive, or
a combination of a servomotor, gears, and marking pen. We assume that
we may install instruments to measure whichever system variable we like.
However, there is always the error or noise in measurement. The refer-
ence input may be transmitted from remote places, with unavoidable
noise in the transmission link. Finally there are disturbing forces and
moments applied to the load system. The elements possess varying
degrees of inalterability. While a bigger and faster hydraulic drive, a
better torque-to-inertia ratio in a motor-driven system, or a better signal-
to-noise ratio in a measuring instrument is sometimes possible by using
more expensive hardware, there is a limit on what one can do beyond any
cost consideration. Furthermore, in order not to use expensive hardware
unnecessarily, there is a point in investigating what is the best one can do
with the given hardware.

By contrast, the system controller with its amplifiers and compensating
networks, linear or nonlinear, is almost entirely up to the designer.
While an increase in gain that requires an additional stage amplifier
incurs some added expense, it is nowhere nearly comparable to the cost
of a bigger hydraulic system. The noise in well-designed electronics is
usually an order of magnitude lower than that of the measuring instru-
ments and dees not constitute a valid limitation on system gain. The
saturation of amplifiers, if it is by noise of various types, cah usually be
alleviated by proper prefiltering. If an amplifier is saturated by an actu-
ating error signal before the controlled system is saturated, economic
considerations usually dictate a change of the setup. We can safely
say that, at least in systems where high performance is at a premium, no
limitation of any kind should be imposed on the controller itself.

Thus we may classify the elements in a control system into three
categories:

1. The controlled system, which is also called the plant, the fixed cora-
ponent, or the unalterable component, meaning that its choice is usually
not up to the servo designer

2. The measuring or sensing elements

3. The system controller

The first two items are more or less given, and a servo designer’s job is
essentially to design the system controller itself. However, that is only
the first step. If we find it possible to design a controller to meet some
given performance specification, the problem does not stop there. We
are usually asked what is the best one can do with the given hardware
(items 1 and-2). Sometimes we find it very difficult to meet the specified
performance; then we must be prepared to answer the question: Is it at
all possible to meet the specified performance with the hardware on hand?
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Or, what improvement in the hardware is necessary in order to obtain the
specified performance?

1-3. Some Classical Fallacies. These questions are difficult or impos-
sible to answer if one knows only the classical techniques or theory.
Compounding this, we shall see that some classical notions of perform-
ance and of what one can do with a system no longer represent the abso-
lute truth. We shall confine our discussion to three areas:

1. System response to input
2. System response to load disturbance
3. Effect of variations in plant transfer function

Perhaps the best-known notion is the following: The most desirable
system response is the one with the shortest rise time and adequate damping.

The above is no longer true when noise is considered. A shorter rise
time also implies a larger passband for noise, which increases the over-all
error. Another point is that what one can obtain on paper is different
from what one would obtain in an actual system, because of plant satura-
tion and a number of other factors. A shorter rise time usually means
larger transient as well as noise input to the plant for the same reference
input. Once the plant is saturated, the system is likely to be more slug-
gish than one which has a longer rise time on paper but operates in the
linear range. A third point is that two systems with widely different
pole-zero locations can have the same rise time and peak overshoot but a
different order of magnitude of peak value of transient plant input.
Considering the small-signal transient response alone is not enough, since
a system with a lower peak value of plant input performs better when
the reference input signal is large.

The best response to load disturbance is the stiffest one. In other words,
the most undisturbable system is the best. This is not always true,
depending on the available torque, rate, or power of the controlled sys-
tem. For instance, in a platform-stabilization system we nearly always
provide sufficient torque in the torque motor to balance out the disturb-
ing moments. This is not so in the roll stabilization of an airplane or a
ship and is even less so in a steering or attitude-control system. Conse-
quently we try to balance out the disturbances as much as poseible
in a platform-stabilization system, the only limit to system bandwidth
being instrument noise. In the roll stabilization of a ship we try to
balance out nearly all the disturbing roll moment due to ocean waves
when the sea state is not very heavy, so that the passengers can enjoy
their voyage. However, in a really stormy sea, the roll moment is many
times larger than the available stabilizing moment of the fins (or acti-
vated tanks, etc.), and all one can do is to use the fins to damp out the
predominant resonant mode of the ship response to lessen the danger of
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capsizing. If the servo is designed with unduly large bandwidth, it would
simply be jammed and would not serve any useful purpose at all. In
steering and attitude-control systems, the rudder or control surface is
used to keep a mean course or attitude, as its moment and speed of move-
ment are not adequate to keep up with the instantaneous disturbances
due to ocean waves or atmospheric turbulence.

From the frequency-response point of view, because of load inertia
and other integration or resonant effects, some Fourier components of
the load disturbance cause far more change in the controlled variakble
than others. When the stabilizing forces or moments at our disposal are
limited, our problem is to design not the stiffest system but one which is
properly selective, so that these forces or moments can be most effectively
utilized.

The closed-loop response of a control system can be made as independent
of plant transfer characteristics as one likes by using shunt compensation
and increasing the gain of the inner loop. The problem of the sensitivity
of closed-loop response to plant variations is one of the greatest current
interest. An example of its practical application is the control of a
ballistic missile. Within a relatively short time of less than a minute
the Mach number changes from zero to 10 or higher and then to some-
thing undefined as the air pressure changes from 1 atm to practically
zero. During the same period the mass changes as much as 10:1, with a
corresponding shift of the center of mass. Obviously there is a drastic
change in plant transfer characteristics; however, the closed-loop system
response is required not only to be well damped but also to stay close to
some specified performance at all times.

At first glance, one would think that the problem could be readily
solved by using shunt compensaton with a large inner-loop gain. The
inner loop, can be stabilized by introducing a sufficient number of zeros
in the vicinity of the plant poles and keeping the poles of the compensat-
ing network far enough to the left. A close examination reveals that
there is a definite relationship between the sensitivity function and ‘the
system’s responses to load disturbance and instrument noise. This,
together with the possible existence of transportation lag or nonminimum-
phase effect in the plant, imposes a limit on how far we can go with inner-
loop feedback.

Various ingenious schemes such as conditional feedback or the use of a
model have been suggested, tried out, and published in the literature;
however, from the analytical point of view, they are not different fromthe
simple series-shunt compensation system. These points will become
obvious from a discussion in the next section.

1-4. Basic Relations of Linearly Compensated Systems. With
reference to Fig. 1-1, a control system is called linearly compensated if the
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controller is linear. It does not matter whether the controlled system
and measuring instrument are linear or not. In other words, we can
write an equation between R, (), and A:

A(s) = Hi(s)Ra(s) — Ha(s)Co(s) (1-1)

where s is the Laplace-transform variable.
The above definition of a linearly compensated system can be general-
ized to include systems that have nonlinear elements in cascade with the
controlled system, since these cascade elements can be viewed as part of
the controlled system.
Our first basic relationship is that of equivalence: A hnear system con-
troller is completely specified by the transfer functions H,(s) and Hq(s).
Two system controllers with different configurations but the sare H(s)

D,

R,~R+N
—t— H,(®)

- >

—~<t—{ Hy(s)

N,

Fia. 1-2. Block-diagram representation of a linear system.

and H,(s) are completely equivalent as far as every aspect of the system
response is concerned (such as stability and responses to input, to noise,
to load disturbance, etec.).

When the problem is formulated in the form of Fig. 1-1, the equivalence
relation is almost self-evident. The controlled system and measuring
instrument are described by an equation relating cl(t) to all previous
values of d(t), n:(t), and a(t):

a(t) = fld(),na(t"),a(t”),1] (1-2)

There is no need to discuss Eq. (1-2) except to note that it is completely
independent of the system controller. Because Eqs. (1-1) and (1-2)
determine a(t), and consequently c(f), the dependence of the controlled
variable ¢(f) on the system controller is only through the network func-
tions H,(s) and H.(s). This proves the equivalence relation.

In case the controlled system and measuring instruments are linear, a
basic relationship exists between the sensitivity function, system response
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to load disturbance, and system response to instrument noise. It can
be derived as follows:

In Fig. 1-2, G(s) and Hn.(s) are transfer functions of the controlled
system and measuring instrument, respectively. The load disturbance is
represented by its equivalent value d;(f) at the output end. Physically,
di(t) is the output variable if the control is completely cut off. The
noise in the measuring instrument is represented by its equivalent value
na(t) of the measured variable., The closed-loop transfer functions
C/R, C/D,, and C/N, are defined as the response in C due to R, D,, and
N, alone. From an inspection of Fig. 1-2, we have

C _ H,(s)G(s) -
E©® = TT m 00060 (1-8)
C 1
D, ¢ = T H,0H.(06() (1-4)
C ,\ _  —His)Hn(s)G(s) }
¥, O =TI H,H.()60) (1-5)
For an infinitesimal variation in G(s) or AG(s), Eq. (1-3) gives
C
AR a6 1 6
C ( T G() 1+ Ha(s)H.(8)G(s)
A
The sensitivity function S is defined as
c C
S V4 5 o
~ T AG(8)/G(s)

It represents the ratio of per-unit change in C/R to per-unit change in G
and gives a quantitative measure of the dependence of the system transfer
function to the plant transfer function. Equations (1-4) to (1-7) give

S=1 & =1+ @ (1-8)

Because of the equivalence relation, Eq. (1-8) is completely inde-
pendent of the system configuration. It holds as long as the system is
linear.

Equations (1-3) and (1-4) imply that the transfer funection C/R and
C/Dy can be independently selected. For any given G(s), we can find
H, and H; to give the desired C/R and C/D. However, Eq. (1-8) shows
that the sensitivity of C/R to variations in G is closely tied to C/D, and
C/N,. Inorder to make C/R insensitive to variations in @, the loop gain
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H,H,.G must be maintained at some fairly high value for all possible
values of G. A sketch of the various gain functions is given in Fig. 1-3.
The C/R function is approximately H,/H:H. The loop gain (H:H.G)
varies as f varies and must be allowed to decrease gradually beyond C/R
on account of system stability. Consequently, the system bandwidth
to instrument noise is considerably higher than that of C/R, and the sys-
tem’s stiffness to load disturbance is also necessarily high over a wide
band. It is obvious that how far the noise bandwidth extends depends on
how insensitive to plant variations the C/R function is made to be.
Thus we see that instrument noise and load disturbance are limiting
factors to the degree of insensitivity that one can achieve in the system
response function to plant variations. Of course there are other limiting

Gain, db

F16. 1-3. Gain versus log w of various transfer functions in a system with changing
plant. -

factors, e.g., transportation lag and high-frequency resonant modes of the
plant. While these high-frequency effects are not very significant in the
passband of C/R itself, they nevertheless limit the extended gain band-
width of H, H.G.

1-5. Scope of This Book. The above is an illustration of the various
factors entering into a control problem and how they are interrelated.
Present control theory does not give a cookbook solution of every problem
that may arise, but it does provide a number of basic tools for solving
these problems. To be more explicit, we have a number of idealized
situations for which exact mathematical solutions are feasible. Some-
times a control problem falls within one of these, and we have an immedi-
ate solution. However, many problems do not fall into one idealized
situation alone, and a direct mathematical solution is either too cumber-
some or impossible with our present knowledge of mathematics. The



