Computer-Aided Software Engineering
the methodologies, the products, and the future

- Chris Gane

Rapid System Development Inc.

Computer-Aided Software Engineering
the methodologies, the products, and the future

Chris Gane

Rapid System Development Inc.

Prentice Hall, Englewood Cliffs, New Jersey 07632

Editorial/production supervision: bookworks
Cover design: Diane Saxe
Manufacturing buyer: Mary Ann Gloriande

€ 1990 bv Rapid System Development Inc.

Published by Prentice-Hall, Inc.

- A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this bock may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

While all reasonable efforts have been made to supply complete and

accurate information, and to ensure that the procedures given in this book
function as described, the author and Rapid System Development Inc.
present this publicaticn “as is” without warranty of any kind either express or
implied, including, but not limited to, the implied warranties of
merchantability or fithess for a particular purpose, and accept no
responsibiiity for its use, nor for any infringements of patents or other rights
of third parties which would result.

The publisher offers discounts on this book when ordered in bulk
quantities. For more information write: '
Snecial Sales/College Marketing
Prentice-Hali, inc.
College Technical and Reference Division
Englewood Cliffs, NJ 07632

Printed in the United States of America
0 9 8 7 6 58 4 3 21

ISBN 0-13-17623%-1

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Austratia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delki
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Ple. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

- ——— ———

introduction:

What is CASE?

The acronym CASE is generally used to refer to Computer-Aided Software
Engineering, though some writers have tried to extend it to mean Computer-Aided
Systems Engineering, on the grounds that the field extends beyond the production
of just software. The term was coined in the early 1980s, when it became clear that
graphical tools like data flow diagrams (DFDs), entity-relationship diagrams (ERDs),
and structure charts couid help with systems analysis and design. Since
aerospace, automobile, and other engineers got great value out of computer-
aided design (CAD) systems for developing drawings and doing calculations, it
seemed that computer-aided graphics might be similarly helpful to Information
Systems professionals. in fact, McDonnell Douglas used their CAD expertise to
produce the first product in 1981. STRADIS/DRAW.

it soon become ciear, though, that a mere graphics capability was not enough;
the diagram objects should be piaced in a design database, which couid also hold
details of data elements and process logic. The systern logical model buiit up in
the design database could be tested for completeness and consistency before
being printed out {0 form a system specification. This group of facilites was
realized in EXCELERATOR, released in 1984 and described in detail in Part ii of this
report. : S

The success of EXCELLERATOR really established the CASE market segment; this
report describes 17 other products which essentially compete with EXCELERATOR
in allowing graphical modelling of systems and the creation of a design databass.
As the market analysis in Chapter 10 shows, the sales of this group of products,
which are referred to variously as modeliing tools, analyst/designer worikbenches,
analysis toolkits, or front-end CASE products, are growing at a rate of some 70%
per year, and will soon constitute a billion-dollar software market.

With this success, vendors of other aids to system development, such as data
dictionaries, code generators, restructuring tools, and project management
packages, have'sought to get on the bandwagon and reposition their products as
CASE products. Indeed, if sofiware engineering is the discipline of software
development and maintenance, and if their products use the computer to aid any
part of those activities, they have a perfect right to do so. One may ask, however,
where this process should stop. is a debugger a CASE product? Is a fest-data
generator a CASE product? To an assembly language programmer, a COBOL
compiler couid be seen as a CASE product; after all, it uses the computer to aid
in the preduction of software!

xi

This report suggests that the distinguishing characteristic of a CASE product is that
it builds within itself a design database, at a higher level than code statements or
physicai data element definitions. This design database, referred to in the report
as a repository, typically holds information about the data to be stored in the
system, the business logic of the processes to be implemented, the physical
layout of screens and reports, and other requirements/design information. On this
definition, it is not necessary to have graphicai capability 10 be a CASE product,
though moest of the products reviewed here do so.

CASE products are thus a special sub-class of development/maintenance aids.
They inciude code generators and reverse-engineering fools which extract
specificaiion-level logic from code. On this definition, programming aids such as
code exercisers, debuggers, and iest data generators would not be classed as
CASE tools, since they do not build a design database; nror would restructuring
tools which simply translate one set of source statements into a (more
reacable/changeable) set of source statements.

However the defining linas are drawn, it should be clear from this report that we are
dealing with an important, dynamically-growing, new class of software which has a
lot to offer in improving the speed, quality, and cost of system development and
maintenance.

Structure of the report

As the Contents shows, the report is divided into three parts:
Parti: The methodocliogies

This section of the report presents each of the main interactive graphical and other
techniques supported by some or all CASE tools, with an explanation of where the
technique should be used in system development, and of how the techniques fit

together.

Logical modelling of data/process

The purpose of logical modeiling is io provide a reasonably rapid way for the users
and designers of a system o express, exchange, and refine their initial (usually
vague) ideas about its scope and content, using diagrams to show the data, the
processes (functions), and their inter-reiationships. Two main diagram types are

used:

data flow diagrams (DFDs), which show the processes, data stores, and
data flows into, around, and out of the system. The Gane/Sarson and
Yourdon/DeMarco DFD notations are presented and compared.

¥ii

s entity-relationship diagrams (ERDs), which show the data entities in the
system and the nature of their associations. The Martin, Chen, Ross, and
LBMS notations for ERDs are presented and compared.

Other graphical technigues are discussed.

Meta-data repository

DFDs and ERDs show the relationship between data entities and process logic, but
do not show the details. Each CASE product needs a place to store the details of
data elements, data structures, and process logic, as well as requirements and
other textua! information. Physical information such as screen/report layout,
database definitions, and program logic may be stored in the design database.

Data analysis - normalization
Whether or not the eveniual system database will be relational or non-relational, the

data structures describing each entity should be expressible in third normal form.
Automatable techniques for data analysis are discussed.

Process design
Once the processes/procedures in the system have been identified, some

automated aid can be provided in their detailed specification and implementation:

. Screen painting/prototyping
. Action diagrams for expressing the detailed logic to be implemented.
. Structure charts for designing invocation hierarchies of procedural programs;

the Yourdon/Constantine and Jackson techniques are presented.

Code generation
Once the data structures have been designed and the logic of a process has been
exactly specified, what is involved in automatic generation of code in any desired

target language?

Project management
When analysts and programmers are developing systems with a CASE package,

much valuable project management data can be captured as a side-benefit. The
CASE package provides a shared data store of project information that can be used

to record and analyze progress.

Step-by-step approaches

Two main types of step-by-step approaches to developing systems are in use:
Information Engineering and Structured Systems Engineering. The report
describes each one and discusses the extent to which they are converging.

Part | concludes with a brief overview of the CASE maiket-place and a discussion of
the likely future of this type of software.

xiii

Part Ii: EXCELERATOR

Part Il consists of a fairly detailed description of EXCELERATOR, the product whose
success has, in many ways, served to establish this market segment.

Part lil: Product summaries

This part of the report describes a total of 82 products from 24 vendors, including
graphic modeiling tools, data dictionaries, design aids, code generators and
interfaces to code generators, project management aids, reverse engineering
tools, and other associated products.

ror each product, the repoﬂ gives:
vendor’'s address and phone number(s).
the hardware/software platform(s) that support the product.

]
. the minimum PC configuration, where relevant.
P the first-copy price.

For each product, the report has an entry dealing with:

. the diagram types which the product supports, and whether the diagram
symbois and syntax can: be modified by the users.

. any significant limitations on the diagrams.

" the objecis that can be storad in the Repository (design database).

. how the Repository is integrated with the graphics facility (where relevant),
and how it is integrated with mainframe Repositories.

. what provision the product makes for allowing more than one user to share

the Repository at a given fime.
the facility for producing reports to analyze the contents of the Repository.

" the facility for prototyping screens and reports.

. the facility for code generation.

x the facility for generating documents in various formats.

2 any facility for supporting a project manager.

. any built-in assistance with design, such as an interactive dialog for
normalization.

. the vendor's statement of direction. A

a figures supplied by the vendor, or gleaned from industry sources, on unit
voiume and revenues.

€ whether the vendor has a user’s group.

Xiv

ntroduction:

Part i:
Chaptar 1

1.1
1.2
1.3

Chapter 2

2.1
2.2
2.3
2.4
2.5

Chapter 3

©ww
WK

Chapter 4

4.1
4.2
4.3
4.4

Chapter 5
5.1

5.2
5.3

CONTENTS

What is CASE?
Structure of the Report

The Methodologies

Graphical fogical modelling of data/process: data flow diagrams

Gane/Sarson DFD technique
Yourdon/DeMarco DFD technique

Gane/Sarson and Yourdon/DeMarco notations compared '

Graphical logical modelling of data: entity-relatioriship diagrams

Overview

What is an entity? What is a relationship?
Describing relationships '
Sub-types and super-types of entities
Other notations for ERDs

Graphical logical modelling: other techniques
Entity-life-history diagrams (ELHs)

Decomposition diagrams

Matrices and affinity analysis

Building a meta-data/process repository

What is a repository?

Data structures

Data element naming and description

Process description

Data analysis: normalization

Simplifying data structures through normalization -

Code-interpretation tables
Automated help with normalization

vii

xi
Xii

14
18

21
25
26
29
31

33

35
36

39
40
43
49

51
59
60

Chapter 6

6.1
6.2
6.3
6.4

Chapter 7

74
7.2
7.3

Chapter 8

8.1
8.2
8.3
8.4
8.5

Chapter 9
9.1

9.2
8.3

Chapter 10

Chapter 11

114
11.2
11.3

Process design

Screen painting and prototyping

Dialog planning diagrams

Action diagrams and Structured English
Structure charts

Code generation

A default application generator

A screen-painter -

Where's the source code?

Project management support - IPSE

Project planning and estimating

On-line access to a system development methodology and standards
Project document control and version control

Time accounting, event recording, and status reporting

Problem recording and tracking

Step-by-step approaches to system development/maintenance
Information Engineering (IE)

Structured Systems Engineering (SSE)
The convergence of IE and SSE

Market analysis
The tuture of CASE
What would be an ideal system development/maintenance environment?

How much expertise can be built into automated aids?
Short-to-medium-term trends :

viii

61
62

74

72
8L
85

87
88
89
91
92

a3
98
104

105

109

112
127

~~

Partll: Detailed analysis of EXCELERATOR

Part iii:

Analyst/Designer Toolkit
ANATOOL

APS Development Center
BACHMAN Product Set -
CorVision

Deft

DESIGN/1

THE DEVELOPER
ER-DESIGNER
EXCELERATOR

IEF

IEW _

MAESTRO

Meta Systems Tool Set
MULTIY/CAM
ProKit*WORKBENCH
ProMod

Software through Pictures
SYSTEM ENGINEER
TEAMWORK

TELON

TRANSFORM

Visible Analyst Workbench
vsDesigner

Product summaries

{Yourdon Inc.} . .
(Advanced Logical Software AR
(Sage Software) - R
{Bachman Informatjon Sysiems)
(Cortex) : .
(DEFT)
{Arthur Andersen) ol
(Asyst Technologies) ;
(Chen}) :

(Index Technoiogy)

(Texas Instruments) -
{Knowledgeware}

(Softlab)

{Meta Systems)

(AGS)

{(McDonnell Douglas)

{(Promod)

(IDE)

(LBMS)

(CADRE Technologiés) -
{Pansophic)

{Transform Logic)

{Visible Systems)

(Visual Software)

129

170
172
174
176
178
180
182
184
186
188
180
192
194
196
198
200
202
204
205
208
210
212
214
216

Part {

The methodoclogies

Chapter 1

Graphical logical modelling of
data/process: data flow diagrams

The purpose of a data fiow diagram (DFD) is to show, for a business area or a
system or part of a system, where the data comes from, where the data goes
to when it leaves the system, where the data is stored, what processes
transform it, and the interactions between data stores and processes.

Two principal techniques are widely used: that associated with Gane and
Sarson (Ref 1-1), and that associated with Yourdon and DeMarco (Ref 1-2).
The two techniques are quite similar; the differences between them are
discussed in Section 1.3.

1.1 Gane/Sarson DFD technique

Consider this diagram; it shows CUSTOMERS (an external entity, something
outside the system) sending in a stream of "Sales orders" along the data flow

arrow.

{o1 | PRODUCTS

Product
data

CUST- Sales Process
OMERS orders orders

Sales
data

]Ds | SALES

Chapter 1:

Data flow diagrams

Process 1, "Process orders,” handles those orders using information from the
data store of PRODUCTS (the eiongated rectangie, D1), and puts informaiion
about sales inio the data store named D3 SALES.

The diagram beiow shows the whole of the business area, using oniy the same
four symbols. For each sale, Process 1 updates the inventory daia store, D2,

witn the units sold.

The data stored in D3 is used by Processes 2 and 3 tc

prepare bank deposit documerits and send them to the bank and to prepare
sales reports and send them to management.

{11 PROCUCTS

D2 | IWVENTORY

{04 ! surPLIERS

| Produet l Prices,
data Quoled
Inventory delivery times
slatus
—E— —
<] Pracess Units scid Determine . S
Sales sales . o re-order Purchase - |
CUST- orders . P quantity ordsrs SUPPLIERS
OMERS . roeealle and
\ 'gaécgm N \ suggier) J
Sales ssles
detaits P.O. data
— Increments
D3 | SALES to DS } POs_IN_°ROGRESS
- inveniory : T Shipment
| | I information
|
] f 1]
| . Accepted | i
f 2 | | Sates (.3 $ quantities / i
Prepare) ldata Froduce |
} bark _ sates \ Analyze Outstanding _/
i deposits Amounts shipment FOs)
i
- S
Deposit
documents
B M
BANK MANAGE
MENT !

EY

Lepor

Tq

Chapter 1: Data flow diagrams

At some appropriate time (notice that timing is not shown on the data flow
diagram), Process 4 extracts information about the inventory status of various
products and combines it with information from D3 about their past sales, to
determine whether a product needs to be reordered. If so, based on
information in D4, which describes the prices and delivery times quoted by
suppliers, Process 4 chooses the best supplier to order from.

Purchase orders (POs) are sent out to the external entity SUPPLIERS and
information about each PO is stored in D5: POS_IN_PROGRESS. When
(again at some later time) a shipment is received from a suppligr, Process 5 is
used to analyze it, extracting data from POS_IN_PROGRESS, to see whether
what has been received is what was ordered, incrementing the inventory with
the accepted amount, and storing the accepted quantities in the
POS__IN_PROGRESS data store.

Note the things that this (DFD) achieves:

1. The DFD sets a boundary to the area of the system and the area of the
business covered by the system. Things which are represented by the
external entity symbol (in this case, customers, the bank, managers,
and suppliers) are, by definition, outside the system.

Processes that are not shown on the DFD are not part of the project. For
example, the diagram shows the receipt of shipments from suppliers,
but not the handling of invoices received from them. This implies that
“Accounts Payable" is outside the scope of the project. (This DFD is
clearly not complete, by the way; there is no provision for updating
PRODUCTS and SUPPLIERS, for example.)

2. The DFD is non-technical. There is nothing shown on a DFD that is not
easily understandable to business people who are familiar with the
business area depicted, whether or not they know anything about
computers.

Since the DFD’s symbols are non-physical, it shows the underlying
logical essence of the information system, and therefore is highly
meaningful to business people whether or not they know anything about
computers. After a minute or two’s explanation of the symbols, anyone
who can read a map can read a data flow.

Chapter 1: Data flow diagrams

Note that the word "logical" has two meanings. It can mean “according
to the rules of logic," or, as used here, it can mean “describing the
underlying essence of something."

3. The DFD shows both the data stored in the system and the processes
which transform thai data. It shows the relationship between the datain
the system and the processes in the system. (As wo've noled, it doesn’t
show timing, but thal’s an important simplification.)

DFD object symbols

External entities (EEs) (also called source/sinks, source/destisations,
external agents)

Gane/Sarsor’s conventional symbo! for an EE is a square given solidily by
shading on two sides. Often the external entily is given an identifying leticr: M
for Management, C for Customers, and so on.

c M

CUSTOMERS MANAGEMENT]

External entities are sources and/or destinations of flows of data into and out of
the system. They are, by definition, outside the system under consideration.
it's helpful to consider the external entity as being "behind a hole in a wall.”
That is to say, the system knows nothing about what is going on in the external
entity. Data comes into the system through the hole in the wall; what
happened to it before it came into the system does not conscem us. Data from
the system goes back through the hole in the wall and disappears; we are not
concerned with what becomes of it. Data comes into the system only from
external entities; it goes out of the system only to external entitics.

If, as an analyst, you find yourself describing what goes on inside an external
entity, you need 1o recognize that your system boundary really is wider than
you are presently considering.

The external entity may be physically represented by a group of people, such
as customers, or perhaps by a system, such as a payroll systern. It ray be
just one person: the President or Comptroller.

Chapter 1: Data flow diagrams

Sometimes, for clarity, it's necessary to duplicate external entities to prevent
long data flow arrows going from one side of a diagram to another. This is
conventionally done by putting a diagonal stroke in the bottom right-hand
comer of the external entity symbol, which says to the reader of the diagram,
"There is more than one of this entity."

j CUSTOMERS

On very large diagrams, it may be convenient to put a number inside the
triangle to show how many instances of the entity there are. Of course, if this
is done, and then another instance of the symbol is added, all the numbers in
all the instances of the symbol will need to be updated.

Data flows

Unlike an arrow on a conventional flowchart, which shows the transfer of
control from one program step or module to another, the arrow on a DFD is to
be thought of as a pathway, down which one or more data structures may pass
as some unspecified time. - The timing of the flow of data and the operation of
the processes is dealt with in the specification of the processes themselves. A
data flow diagram resembles a railroad map; it shows where the train tracks are
laid, but it does not give the time tables.

Usually each data flow arrow has a name which describes only one data
structure. Sometimes, several similar data structures may be shown passing
down the same data flow, as shown here:

l

Sales history

Retrieve Shipment history Generale
history Payment history customer

profile

