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PREFACE

Laplace transforms and Z-transforms are essential mathematical cquipment
required In engineering, operations research, and the applied sciences. Con-
current with their usefulness is a level of sophistication which requires serious
study beyond the stage of manipulative skills if one is to realize their full
potential. Frequently a student acquires-knowledge of transform methods
as an aside in a course which is not devoted to transforms. Under such cir-
cumstances, the student may learn a set of recipes to solve certain standard
problems but may be more apt to make serious errors than to benefit from
the knowledge. This book was developed from material for an undergraduate
course on transform methods which has been taught for a number of scars
at the Department of Industrial and Systems Engineering at the University
of Florida. This course is taken by all undergraduate students. usually in
their junior year, and by most entering graduate students. The objective of
the course is primarily to give the student complete facility in using trans-
forms, as well as a thorough understanding of the underlying mathematics,
the reasoning. and the possible pitfalls. Applications are shown for motiva-
tion, but are not the primary emphasis. Our students have ample occasion to
apply transforms later in their program, in such courses as: methods of opera-
tions research, inventory theory, reliability engineering. product:on control.
and forecasting. In teaching our undergraduate course, we found 111 nove of
the available texts met our objectives. While there are many books which deal
1o some extent with the Laplace transform, they are either at a too abstract
mathematical level, or their orientation is stronghyv towards electrical engineer-
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x Preface

ing and circuit theory. Books devoted to the Z-transform are scarce, and
whatever coverage is given to this transform in books on related subjects
1s usually dominated by the sampled-data viewpoint of electrical engineers.
There is, of course, a historical reason for this, in that electrical engineers
were the first to make extensive use of both transform methods.

This book is written for junior or senior students of engineering, opera-
tions research, and applied mathematics. Prerequisites are the basic courses
in differential and integral calculus that are usually covered during the
freshman and sophomore years in engineering and science curricula. The
organization of the material, and the development of methods and ideas
from first principlgs, make the book suitable for self study and as a reference.

One of the purposes of the book is to provide a balanced treatment of
both transform methods and to exploit the similarities between the methods.
A basic treatment of complex variables without which transform methods
cannot be understood is provided in Chapter 1. The structure of Chapters
2 and 3 for the Laplace transform is paralleled in Chapters 5 and 6 for the
~ Z-transform. However, the motivation for using transforms given in Sections
2-1 and 2-2 and for the partial fraction expansion method given in Section

3-3 is not repeated in Chapters 5 and 6. For a study of Z-transforms alone,
the student would cover Chapters 1 and 5 through 7. In the latter case, it is
useful to also read sections 2-1, 2-2, and 3-3.

There are probably as many good pedagogical reasons for intermixing the
theory and the applications as for keeping them separate. In this book I
have purposely provided a separation of theory and applications. One reason
for this is that 1 prefer to approach the material this way. In my years as
student and practicing engineer | have been many times frustrated because
[ knew how to do it, but nut why, and I believe strongly that the student
should learn to walk before he can run. Another reason for the separation is
that it provides greater flexibility and more ways in which the book can be
uscd. For example, Chapters 1, 2, 3, 5, and 6 can be followed without the
requircment that the student be familiar with the jargon of any particular
engincering discipline. This sequence of chapters may be used in a course as it
would typically be taught by a mathematics department, and may be open to
anyone with background in calculus only. Chapters 4 and 7 cover applications
from a variety of disciplines. Whereas the theory has been developed in depth
and in great detail, the applications are broad. One obijective here is to show

. the versatility of transform methods and the spectrum of problems that can
be solved by them. A new dimension in the applications chapters is that they
tnvolve physical principles and modeling of natural phenomena. | have
attempted to keep the discussion of these as elementary as possible in order
to make it accessible to students not having backgrounds in the specialty.
The sections in these chapters are self-contained and the instructor can there-
tore freely select and amplify applications in accordance with the specialty
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of his course and the emphasis he wishes to give it. Furthermore, particularly

. with students who have had some prior exposure to transforms, an instruc-
tor may wish to start out his course in the applications chapters, and then
refer back to the operational rules and the theory as they are needed.

E.J. MutH

Gainesville, Fla.
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1

INTRODUCTION TO
COMPLEX VARIABLES

Functions in the transform domain of the Laplace transform or the Z-trans-
form are, treated generally, functions of a complex variable It 1s therefore
important in the study and application of these transforms to have some
knowledge of the theory of complex varniables The more advanced apphca-
tions of complex variables to transform calculus are the contour integration
in the complex plane and the theory of residues Such advanced methods
are outside the scope of this book, knowledge of the clements of complex
variable theory, combined with some manipulative skills. will suffice This
chapter deals brieflty with those necessary elements, but 1t assumes no prior
knowlidge of them Thereader who wishes to study the subject more thorough-
ly should consult a text devoted to complex variables such as Churchill [4]

1-1 Need for Complex Numbers

The system of complex numbers forms an extenston of the system of rcal
numbers The need for this extension becomes apparent when one attempts
to solve algebraic equations The simplest example 15 that of the quadratic
equation

2 2bz s 0 O (-1

where z 1s a variable and b and ¢ are real coefficients The values of = that
satisfy this equation are known as the roots of the equation A quadratic
equation has exactly two roots We denote the roots of (1-1) by z, and z,.

1



2 Introduction to Complex Variables Chap. 1

The quadratic function of z can be written in factored form as
224-2bz + ¢ = (z — 2,0z — z,)
Clearly, this function 1s 0 when z = z, or z = z,. Solution of (1-1) yields

z, = —b+ /bt — ¢, z, = —~b— /b —¢ (1-2)
and these solutions are real numbers provided that b2 > ¢ For 4% < ¢, the
radicands in (I1-2) are negative, in this case (1-1) does not have a solution in
the sense of real numbers. If we wish to solve equation (1-1) in all cases, then
we must agree to the existence of a new mathematical object z that is not a
real number. This new object is called a complex number.

1-2 Definitions

We can wnite a complex number z in terms of two real numbers x and y as

Z=Xx+ y /1

but so far, this expression 1s meaningless, because ./—1 has not yet been
defined. However, we see that there is a correspondence between the com-
plex number and two real numbers. This 1s used as the basis for the following
axyomatic definition.

A complex number z 15 an ordered pair (x, y) of real numbers x and ¥
subject to certain rules of operation.

z=(x,») (1-3)
The complex number (x, 0) 15 defined to be equal to the real number x:
x = (x,0) (1-4)

The system of real numbers 1s thus imbedded in the system of complex num-
bers. The rules of operation mvolve the equality, sum, and product of two
complex numbers. Let z, = (x,, y;}and z, = (x,, ;). The rules are:

z, = z, if and only if x; = x, and y, = y, (1-5)
Zit zp=(X; + X5 ¥ + ) . (1-6)
212y = (X, X3 — Y1 V2, X1 V2 + X291) (1-7)

Equations (1-3) through (1-7) form a complete definition of complex num-
bers. All other properties and rules of operation are logical consequences of
these definitions,

1-3 Algebra of Complex Numbers

It is convenient to give names to the elements of the pair (x, y). Thus, x is
called the real part of z and y the imagmary part of z. This is written as

x = Re z, y=1Ihz



Sec. 1-3 Algebra of Complex Numbers ' 3

By definition, a pair of the form (x, 0) is a real number. A pair of the form
(0, y) is called a pure imaginary number. Application of the rule of addition

(1-6) lets us write
(X, }’) = (x, O) + (O’Y) (1’8)
Hence every éomplgx number is the sum of a real number and a pure
imaginary number. The product of the real number a and the complex num-
ber (x, y) follows from (1-7) as
a(x, y) = (a, 0)(x, y) = (ax, ap)

and with this result, (1-8) is decomposed further into

(x, ¥} = x(1,0) + (0, 1) (1-9)
An ordered pair of numbers is also called a two-dimensional vector. The
reader who is familiar with vector algebra will recognize that (1-9) is anal-
ogous to representing a vector (x, y) as a combination of the unit vectors
(1,0) and (0, ). In vector algebra, each unit vector is assigned a special
symbol. Similarly, the complex number (0, 1) is given the symbol i and is
called the imaginary unit.

0, 1) =i

No special symbol is necessary for (1, 0), since it is the real'number 1. Now
(1-9) Hecomes ' '

(5, ) =x 4 yi=x+ iy (1-10)
The nth power of the complex number z is written z» and is defined as the
product of n factors equal to z. By application of (1-7), we find that the
powers of the imaginary unit are

i*= (0,140, 1) = (—=1,0) = —1
P=01—-1,00=0, —-1)= —i
=04 e (= (1) = |
and 1t follows by induction that
i=(=1)" n=12,3,...
() = (=14, n=20,1,2,... (1-11)

“With this result at hand, addition, subtraction, multiplication, and division
are conveniently carried out using complex numbers in the form x - iy and
employing the rules of the algebra of real numbers. The symbol i is treated
as if it were a real constant, and powers of 7 are reduced in accordance with
(1-11). This procedure is justified by definitions (1-6) and (1-7).

Example 1-1: Find the third power of the complex number z = 1 - f.
Apply the binomial expansion to obtain

D=+ =1+3+3i2 4 i



'3 Introduction to Complex Variables Chap. !

Next, substitute 2 = —1,i3 = —i.
22=14+3%-3—1i
Finally, collect the real and imaginary terms,
2= -2+
The operations of subtraction and division are the inverses of addition and
multiplication.  Subtraction of =z == x -~ iy is equivalent to addition of
—z=—x — iy, Division by = % 0 is equivalent to multiplication by z7!=:1/z,
To determine the inverse of = we let =71 = u -~ {v. [t must hold that
b= (x s e vy = 1 =00
Carrying out the multiplication and equating both real and imaginary parts,
we obtain two simultaneous equations for v and ¢:
xu— vy =l yu -~ xv =0
The solution of these equations is

u __‘;}.__, v - ——‘y

X2y x% 4yt

and thus we find that the inverse of - 1s

[ 1 X .y
T X iy X+ yt 'y 4yt (1-12)

Note that the same result is obtained when both numerator and denominator
are multiplied by x — iy ‘
\ 1 x — iy

x iy {x +iyx —iy)
This multiplication has the effect of changing the complex denominator into
a real denominator, because

(x = )x — )= x? 4yt (1-13)
and the result (1-12} 1s thus at hand. The latter method is useful for carrying
out the division of complex numbers.

Example 1-2: Find the complex number

_ (L 4+ 00+ 20)
T 20

L]

First, perform the multiplication in the numerator.

L1221 43
G =TT

Next, multiply numerator and denominator by 2 -+ i to obtain

(-1 2302+ i) _ -5+ S

T+ n T o hE
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We now summarize the rules of algebraic operations with complex numbers.

Addition (xy - 0yy) (6 0y = Xy X 0 )
Subtraction () v iyy) —(xy i) —x; — X, 480 — yo)
Multiplication  (x, - iy, )(x, -+ 0y,y) = x,X; — ¥ ¥, - (X3 4 x,0)
. S SR TN XA, — i
Division Xy 0y, :x,.\zz Yy —'7"1'\“"12 .\’12_1_
Xy b, Xy )i Xy ¥z

From the definitions, the reader can easily prove that the algebraic opera-
tions obey the commutative, associative, and distributive laws governing the
operations with real numbers. These laws are:

Commutative Laws Iyt Iy Iy
; 15 25 _
Associative Laws Iy Za) oy -zt 1)
_ (z122)zy = 2y(231y)
Distributive Law 2(zy o zy) Dz I,

1-4 Complex Conjugates

The number x — iy is called the complex conjugate, or briefly the conjugare,
of the number = = v - iy and i3 denoted by the symbol =* (or sometimes 7).
Thus,

Re z* - Re z, Im:z* —Im:

The designation complex conjugates is also used to refer 1o both - and o*, as
a pair. Pairs of complex conjugate numbers arise naturally as the roots of
polynomial equations with real coefficients, as is seen in Eq. (1-2) for 62 <~ ¢.
If such an equation has a complex root, that root is always accompanied by
a complex conjugate root. The product of =z and ¥ is always a real number.
That property was employed in (1-13) to accomplish division of complex
numbers. The following properties of complex numbers and their conjugates
are easily deduced: '

o= z® i 2x o 2Re:
=% 2y Alm:

sz¥oox? -yt (Rez)r - (Im 2)?
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- We note especially that the sum of two complex conjugate numbers is a real
number and that the difference of two complex conjugate numbers is a pure
imaginary number. The conjugate of the conjugate is the original number.

1-5 Geometric Representation

We have already mentioned that the ordered pair (x, ») is also a two-dimen-
sional vector. It is therefore natural and very useful to give the complex
number z a geometrical interpretation. This is accomplished by letting z be
a point in the plane with coordinates x and y measured in a rectangular
cartesian coordinate system. Figure 1-1 shows the complex number (I, 2)
as a point in the xy plane. When the xy plane is used to represent complex
numbers, it is called the complex plane. Frequently, the complex plane is
labeled by the letter used to represent the complex variable; thus we find
the designations z plane, s plane, and others. In the complex plane, the
real numbers are located on the x axis, therefore called the real axis. The
pure imaginary numbers are located on the y axis, called the imaginary
axis.

y‘ r y l
- - - — — Z

2F —Qz 2 .
! ‘ i N
i ] N
| ! \

1k ; | AN - \
| ! \
|
1 1 8 \
i » 1 > . .
1 X 1 x roy

z as a point - Z as a vector z in polar coordinates

Figure 1-1. Representations in the complex plane
‘ - . . +

In another useful geomct;fcal interpretation, z is a vector from the origin
(0, 0) to the point (x, y). Vectors having the same length and the same direc-
tion are defined to be equal. Thus, by translation, z is also the vector from
an arbitrary point (a, b) to the point (a + x, b 4+ y). Figure 1-1 shows the
vector representation of the number (1, 2). The rules for addition and sub-
traction of complex numbers are the same as the rules for addition and
subtraction of vectors. Sums and differences therefore follow the paral-
lelogram law of vector combination, as shown in Fig. 1-2. In accordance
with the two interpretations, it is common to refer to the complex number z
freely as the point z or the vector z.
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22

(W]

Figure 1-2. Addition and subtraction of complex numbers

1-6 Polar Form

The point z in the complex plane has the polar coordinates (r, ). In these

coordinates, r >> O is the distance from the origin to the point z, or the length
of the vector z, and @ is the angle between the positive x axis and the vector.
z, measured in the positive (counterciockwise) direction (see Fiz. 1-1). The
relationship between the polar cobrdinates and the cartesian coordinates is

X = F COS 0, y==r sin 8 | (I'I4)

Substituting this in z = x + iy, we obtain the polar form of the complex
number z,

z = r(cos 8 + i sin )] (i-15)
The distance r is the absolute value, also called the modulus, of z, and is
denoted |z|. The angle @ is called the argument of z and is written arg z.
Note that this angle can be represented in infinitely many ways. This follows
from (1-15) and the periodicity of the sine and cosine functions:

cos (@ + 2km) = cos 0, k=20,1,2,...
sin (@ + 2k=n) = sin @, k=0,1,2,.

Thus, whenever the angle 8 in (1-15) is increased or decreased by an integral
multiple of 2z, the same number z is obtained. In order to avoid difficulties,
we decide beforehand upon some interval of length 2z from which @ is to be
taken say 0 < @ < 27 or —7 < § < x. That interval is called the principal
range of arg z, and values in that interval are the principal values of arg z,
written Arg z. To each vector z then corresponds a unique principal value
Arg z, and the relation between arg z and Arg z is g;ven byargz = Argz 4
2km, k=0,1,2,.
The polar coordma(es r and @ expressed in terms of x and y are

r=.|Z|=,\/x2'+‘y 1'16
and,ifr;(:O . (1-16)

§ = Arg z = arctan % (117



