London Mathematical Society Symposia

Mathematics
of Contemporary
Physics

edited by R. F. Streater




Mathematics of
Contemporary Physics

PROCEEDINGS OF AN INSTRUCTIONAL CONFERENCE
ORGANIZED BY THE LONDON MATHEMATICAL SOCIETY
(A NATO ADVANCED STUDY INSTITUTE)

Edited by

R. F. STREATER
Department of Mathematics, Bedford College,
London, England

1972

ACADEMIC PRESS
London and New York



ACADEMIC PRESS INC. (LONDON) LTD.
24/28 Oval Road,
London NW1

United States Edition published by
ACADEMIC PRESS INC.
111 Fifth Avenue
New York, New York 10003

Copyright © 1972 by
ACADEMIC PRESS INC. (LONDON) LTD.

All Rights Reserved
No part of this book may be reproduced in any form by photostat, microfilm, or any other
means, without written permission from the publishers

Library of Congress Catalog Card Number: 72-84357
ISBN: 0-12-673150-0

Printed in Great Britain by
ROYSTAN PRINTERS LIMITED
Spencer Court, 7 Chalcot Road
London NW1



Contributors

P. J. M. BONGAARTS Instituut-Lorentz, Nieuwsteeg 18, Leiden, The
Netherlands.

J. GLiIMM Courant Institute of Mathematical Sciences, New York University,
New York, USA.

R. Haac Institute for Theoretical Physics, University of Hamburg,
Germany.

K. Hepp Department of Physics, ETH Ziirich, Switzerland.

N. M. HuGENHOLTZ Institute for Theoretical Physics, The University,
Groningen, The Netherlands.

A. JAFFE Lyman Laboratory of Physics, Harvard University, Cambridge,
Massachusetts, USA.

A. KLEIN Department of Mathematics, University of California, Los
Angeles, California, USA.

J. T. LEwis Institute of Mathematics, University of Oxford, 24-29, St.
Giles, Oxford, England.

K. ScHMIDT Department of Mathematics, Bedford College, London,
England.

B. SiMON Department of Mathematics and Physics, Princeton University,
Princeton, New Jersey 08540, USA.



Preface

The London Mathematical Society held a teaching conference at Bedford
College in Regent’s Park, from 23rd August until 11th September 1971,
under the sponsorship of NATO. This book contains the lectures and some
of the seminars.

The purpose of the conference was to interest mathematicians in some
important problems in mathematical physics and to provide a coherent
introduction to the subject at post-graduate level, for mathematicians and
mathematical physicists.

Large areas of physics have been omitted: this was done deliberately.
Many exciting fields of physics, such as astrophysics, are not yet ripe for
axiomatization. Other fields, such as the application of group theory to
symmetry, already have an extensive mathematical literature.

Our thanks are due to the seminar speakers. There has been no space
to publish the talks given by J. Fabrey, J. G. Taylor, A. Jaffe, F. Constan-
tinescu, C. J. Isham, R. F. Streater, F. Brownell, K. Nakagami, A. Wehrl,
J. Combes, R. Hudson, R. Lavine, J. D. Roberts and B. Simon.

The students who helped behind the scenes, especially 1. F. Wilde, V.
Sakellariou and Mrs. D. Mathon, deserve mention. Above all, we must record
our gratitude to Dr. P. D. F. Ion, the Treasurer who, with the help of his
wife Heather, efficiently carried out the bulk of the work.

July 1972 R. F. STREATER
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Quantum Field Theory*

R. HaaG

Institute for Theoretical Physics
University of Hamburg, Germany

INTRODUCTION

The purpose of this chapter is to give an introductory survey of an area
which has been called “general (or ‘“axiomatic”) quantum field
theory”’. An exposition of pertinent ideas and concepts will be given and,
of course, some discussion of the motivation, aims and purpose of this
approach.

To get some perspective let us note that quantum field theory itself is
about as old as quantum mechanics. The essential formal structure and
its application to the quantum theory of the electromagnetic field was
developed in the years 1927-1929 and the most important applications to
the interaction processes between matter and electromagnetic radiation
were done by 1934 and recorded in the first edition of Heitler’s book (1936).

The development of general (axiomatic) quantum field theory started
about 20 years later. It is characterized by a much greater insistence on
precision in the conceptual and mathematical description than had been
customary. It may be argued that this emphasis on mathematical precision
has sometimes been excessive and counter-productive. Its origin as a
psychological necessity in the early fifties is easily understandable after
the success of renormalization prescriptions had restored faith in the
predictive power of quantum field theory without achieving a lucid
formulation of its basic equations, thus leaving as a question how the
field equations of quantum electrodynamics should be understood and
whether these equations had any solutions. The method used (which
led to the epiphet ‘““axiomatic’”) was to desist for the time being from the
consideration of a completely specified theory and to focus the attention
first on the ‘“‘general principles”, the “postulates”, the “framework”, the

* Notes by R. Haag and I, F. Wilde.



2 R. HAAG

“axioms” with the aim of testing their internal consistency or of finding
ways to work out consequences which could be tested experimentally.

Accordingly one objective of this line of investigation has been to
recognize the physical principles underlying a theory such as quantum
electrodynamics in their simplest and most essential form (purified from
the chance effects of historical development). The main concern here will
be a description of the development of our understanding of these
principles. They may be grouped into 4 main topics:

1. Mathematical structure of quantum physics.
2. Poincaré invariance.
3. Locality: Fields and local algebras.

4. States on interest: Energy-momentum spectrum and particle aspects.

1. MATHEMATICAL STRUCTURE OF QUANTUM PHYSICS

We shall make use here of two alternative and not entirely equivalent
formulations. The first, described by von Neumann (1932), uses as the
basic mathematical object a Hilbert space; the second, introduced by Segal
(1947), will be called the algebraic formulation. In it the basic mathematical
object is an abstract algebra (which, for technical reasons, is chosen to be
a C*-algebrat).

In both schemes the fundamental physical concepts may be taken to be
the notions of “state” and “observable” as defined by von Neumann
(1932), the states forming a convex set whose extremal points are called
‘“pure states™.

In the Hilbert space version an observable Q is mathematically
represented by a self-adjoint operator acting on a Hilbert space J#. In the
algebraic version it is, instead, a self-adjoint element of an abstract
C*-algebra. In both cases one has a definition of the spectral values of
Q and the functions of Q. The spectral values are interpreted as the possible
values which one may obtain in a measurement; a (real) function F(Q)
represents an observable measured by the same apparatus as Q, the
only difference being that the scale of measured values is relabelled
substituting the number F, for g. Note that in the C*-algebra approach
only the bounded observables are considered (observables with a bounded

t An abstract C*-algebra (also called B*-algebra) is a Banach *-algebra with a norm
satisfying the condition

' l4*Al| = [|4]|%.

It should be noted that the norm of Hilbert space operators satisfies this condition and that,
moreover, a norm with this property is often determined by the algebraic structure alone.
Compare with the theory of the “minimal regular norm”.



QUANTUM FIELD THEORY 3

spectrum). This involves no additional physical assumption or restriction
since, by a relabeling of the scale, we may always compress the spectrum
into a bounded interval.

Using the concepts of state and observablest as understood by von
Neumann (1932) the questions to be answered by the theory can be cast
in the form: what is the expectation value of the observable Q in the state w.}

One difference between the descriptions of von Neumann (1932) and
Segal (1947) is now the following. In the first, pure states are conventionally
represented by unit vectors (more precisely by rays) in the Hilbert space
and the expectation value of the observable Q in the state described by the
vector ¥ is given by

we(Q) = (¥, QY). (1.1)

Impure states are described by density matrices. A density matrix p is a
positive operator of trace class, with trace 1. The expectation value of Q
in such a state is given by

w,(Q) = Trace (p Q). 1.2)

The special case (1.1) results if p is a one-dimensional projection on the
vector . In the algebraic approach (Segal 1947) on the other hand, one
says that giving a state o is synonymous with giving the expectation values
of all observables in this state. This means that a ‘“state’ is considered
to be a normalized, positive, linear form over the algebra U. In other
words, a state w assigns to each Ae¥W a number w(4) (in general a
complex number) such that

D ol)=1 normalization
2) w(4*4) > 0 positivity (implying also w(4*) = w(4)) (1.3)
(3) w(A14; + A,4,) = 4, w(4,) + 4, w(4,) (linearity)

Conversely, any expectation functional over A, i.e. any assignment of
numbers w(A) satisfying the above three conditions, will be considered
as a possible state.

The relation between the schemes of von Neumann and Segal is seen
when one considers an irreducible representation n of 2 by operators on a

1 The elements of the algebra also appear in another role. Each element represents an
“operation” in the sense of Haag and Kastler (1964). This interpretation is actually
somewhat better suited to quantum field theory, but we shall not use it here.

1 The probability of finding a Q-value within some interval can also be obtained as the
expectation value of F(Q) where F is the characteristic function of the interval.
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Hilbert space ##. We restrict the discussion here to the most important Case
where U is simple so that every representation is faithful. Let n(4) denote
the representor of the element 4. The set n(A) is then a concrete
operator algebra isomorphic to the abstract algebra U and the operator
norm ||n(A4)}| equals ||4)l. If ¥ is any vector of unit length then the

functional
(1) = (¥, n(4) ¥) (1.4)

is a normalized, positive linear form over U i.e. a “state’’. The irreducibility
of the representation m implies that this state is pure and that wy = wg
only if ® = ¢¥. In other words, each ray in # determines a distinct
pure state over 2. We shall call the family of states of the form (1.4) as
¥ runs through J# the family of vector states of the representation =t.

The essential difference between the schemes of von Neumann and
Sega} is therefore the following. In general the algebra will allow many
inequivalent irreducible representations and will therefore possess many
distinct families of pure states, each family being the set of vector states
occurring in one equivalence class of irreducible representations.

It may be important or useful to considgr several of these families of
states side by side. In this case the von Neumann scheme is obviously too
narrow. Indeed the need for a generalization of this scheme has also been
suggested directly by physical arguments within the Hilbert space
formulation. In Wick er al. (1952) it was pointed out that no coherent
superposition of two state vectors describing states with respectively
integer and half-integer spin is possible and that, more generally, one has to
expect that the states should be grouped into sectors so that the matrix
elements of all observables between state vectors belonging to different
sectors vanish (“superselection rules”’). We may note that the algebraic
formulation leads in a very natural way to this possibility of superselection
rules, the above mentioned families of states corresponding to superselection
sectors.

The discussion of this point may be summarized in a very crude fashion
by saying that the algebraic version of the theory (of Segal, Haag and
Kastler) is the mathematical development of the original Heisenberg-Born—
Jordan approach whereas the Hilbert space version of von Neumann is the
development of Schrédinger’s approach. In quantum mechanics (with a
finite number of degrees of freedom) von Neumann’s uniqueness theorem
for irreducible representations of the canonical commutation relations means
that both approaches lead to identical schemes. In the case of quantum

+ If one has to consider also impure states, for instance in statistical mechanics, one is led
to the family of “normal states of the representation n”,i.e. those of the form we(4) =
Tr(pn(A)) where p runs through all density matrices.
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field theory (where we are dealing with infinitely many degrees of freedom)
the relevant algebras are such that they allow (uncountably) many
inequivalent irreducible representations. Hence the algebraic scheme
appears at first sight to be much less restrictive. One may, however, ask:
are all the (uncountably many) equivalence classes of irreducible
representations of U really needed? How can we understand then that in
elementary particle physics one believes that one has to deal with a
denumerable set of superselection sectors only?

The answer is somewhat tricky. On the one hand we can ask: Suppose a
state o is experimentally prepared and we want to find out by monitoring
experiments into which family this state belongs: i.e. we want to
“measure’’ its superselection quantum numbers. One must admit that this
is impossible because, first of all, any actual course of measurement will
determine only the expectation values of a finite number of observables
A;(i=1,... N) and these only with a finite accuracy. Thus, we obtain a
set of numbers g; and errors ¢; and the knowledge that the unknown state
w has the properties

lo(4) —aj <& i=1,...N. (1.5)

It is true that we may choose N as large as we like and, possibly, can
reduce the ¢; to smaller and smaller values. Still, in any given effort we can
only determine the information (1.5) for some N, and some ¢;. This infor-
mation characterizes, however, precisely what is called mathematically a
weak*-neighbourhood in state space. Thus we do not determine w but
only know that it lies in a certain weak*-neighbourhood. If this
consideration is combined with a theorem by Fell (1960) which, when
specialized to the case of pure states over a simple algebra, says: “the pure
states of one family are weakly*-dense in the set of all pure states” then
we realize that the distinction between different families (superselection
sectors) is too fine to be discernable in a realistic experiment. What then
about the physical significance of superselection rules? What one actually
does is to idealize the situation, adding for convenience information which
one does not have and does not need in principle. Thus in elementary
particle physics one uses the idealization that far away from the centre of
our laboratory there shall be no matter; all states considered shall look
like the vacuum state in far away observations. With this idealization we
single out a small subset of states as the ‘“‘states of interest” and the
remaining superselection rules within this subset become significant.

A typical example of such a superselection quantum number is the
total charge or the total baryon number. In principle this cannot be
measured because it would necessitate an infinitely extended apparatus.
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But we can measure the baryon number in the relevant part of the
laboratory and, if we pretend that there is no matter outside of this region,
then this number is identical with the total baryon number. This example
illustrates perhaps both Fell’s theorem (how to approximate weakly states
in one sector by states in another sector) and the reason for the
significance of certain superselection quantum numbers.

As examples of algebras and representations let us briefly consider the
case of canonical commutation relations (CCR). Formally, for one degree
of freedom, by this is meant a pair of hermitian operators p and ¢
representing momentum and position, respectively, which satisfy the
Heisenberg relation

[g.pl=qp—pg=i. (1.6)

Immediately we see that (1.6) implies that at least one of the pair p and ¢
is an unbounded operator. For, suppose p and ¢ are both bounded. Then

P'q—qp" = Z>o P'lp.glp™ = — inp" 1. (W)

ltm=n-1

But
Ip"q — gp"ll < 211" ligll

and so by (1.7),
nlp* M < 20" gl < 212" el gl (1.8)

This implies that
n<2|pl lql (1.9)

for all integers n, which is impossible if p and g are bounded.
A formulation formally equivalent to the Heisenberg relation is the

Weyl relation:
&IPS it — ist glat gips (1.10)

for real s and ¢.
This is technically more convenient since the operators in consideration

are now bounded. We take this as our definition.

Definition 1.1. A representation of the CCR for one degree of freedom,
in the Weyl form, is a pair of maps V and U from the real line, R, into
unitary operators on a Hilbert space #, such that

(i) V(-) and U(") are strongly continuous unitary representations of R,

(i) V()U(E) = €™ U@V (s). (1.11)
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The strong continuity allows us to recover p and g by Stone’s theorem:
V(s) = e*?, U(t) = e™. (1.12)

At first sight, one might expect there to be many such representations.
That this is not so is the content of the Stone-von Neumann uniqueness
theoremt, which says that if the representation is irreducible (i.e. if the
only operators commuting with the V(-) and U(-) are multiples of the
identity) then, up to unitary equivalence, ¥, U and # are unique.

So under the conditions above, we are always essentially in the
Schrodinger representation, which is given by

V(s) 1 f(x) = flx + 5)
U(t) :9(x) » € g(x)

fors,te R, and f,g € = I* (R, dx). Here, p and g are represented by —i(d/dx)
and multiplication by x, respectively.
Let us now relate the CCR to a C*-algebra! Consider the objects

W(s;t) =V(E)U@)

(1.13)

as abstract elements for which (corresponding to (1.11)) a multiplication
law and a *-operator are defined by

W(sy; t) W(sy3 1)) = e 2 W(sy + 5351, + 1) (1.14)
W(s; t)* = e " W(—s; —1). 1.15)

Considering now the set of finite linear combinations of such W(-; -) with
complex coefficients, i.e. objects of the form

A=ZCW(s;t)

we have a *-algebra. We may equip this algebra with a C*-norm by assigning
as ||A]| the operator norm of the representor of A in the Schrédinger
representation. Completing the set {4} in this norm topology we obtain
a C*-algebra U.

It is perhaps important to realize that a representation of this
C*-algebra is not necessarily a representation of the CCR in the sense of
the definition 1.1. The following amusing example gives an irreducible
representation of U in a non-separable Hilbert space and such that the
representors of W(s;t) are not strongly continuous in the parameter 7.

1 See the lectures of B. Simon.
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We let K be the Hilbert space obtained from the inner product

(9) = lim f(x)y(X)dx (1.13)
on functions on R. Clearly, any LZ(R, dx) functions has zero norm, here.
For any feK, and s,te R, we define V(s) and U(¢) exactly as in (1.12).
Evidently, the Weyl relations (1.10) hold. However, f(x) = ¢* is a unit
vector in K, and is orthogonal to U(t)f whenever ¢ is non-zero. Thus

u@es-fi=v2 (1.14)

for apy non-zero ¢. It is also clear that K is non-separable—for example,
{e'**, x € R} is an uncountable family of pairwise orthogonal (normalizable)
vectors.

Suppose now that we have a system with a countable number of degrees
of freedom. That is to say, we are concerned with a countable family of
independent p’s and ¢’s: {p;,qx; k = 1,2 ...}. To each degree of freedom, we
have the Schrédinger representation with the associated V,(+) and U,(*); i.e.
we have a collection of triples {V,, Uy, #;} and abstract C*-algebras ;.

Let S = {i; ... i,} be any finite set of integers. Then we define A(S) to
be the C*-algebra resulting from the tensor product of the C*-algebras U,
with ke S. That is to say, we consider first finite linear combinations of
products of the w, with k € S with the obvious definition of muitiplication and
*.operation. Then we assign a norm and complete it. The norm in question
is obtained again as the operator norm in a representation, namely the
tensor product of Schrédinger representations of the .

If S; = S,, we can consider A(S,) as a subalgebra of U(S,);

AS,) < AS,) if S; <5, (1.15)

For any S; and S, we can consider (S,) and A(S,) as subalgebras of
WA, usS,). If S;nS, =4, it is clear that A(S,) and A(S,) commute.
In fact, A(S, U S,) = A(S;) ® A(S,) in this case.

If I is an infinite subset of integer, we define A(I) to be the inductive
limit of the A(S), with Sel:

u(r) = [JUG). (1.16)

If I = Z, we write U instead of A(Z).
If w, and w, are states on A(S;) and A(S,) respectively, and Sin S2 =,
then we can define a state w on (S; U S,) by extension of

w(AB) = w,(4) w,(B) 117
for
AeU(Sy); BeU(Sy).
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o is called a product extension of w, and w,. Clearly

o AS) =w, i=1,2

Definition 1.2. Let @ and o be any two states on U, and let {S,} be a
sequence of finite subsets of integers such that S, = S,;, and U,S, = Z.
Let S, =7 —S,, and o, = o} UA(S,); s, = o | A(S,). Then we say that
o and ¢ have the same asymptotic tail if
lw,” — o,/ = 0.
n-w

We can exhibit now one reason for the occurance of many inequivalent
irreducible representations of the algebra of a system with infinitely many
degrees of freedom. It is not difficult to show that in an irreducible representa-
tion of U, all normal states have the same asymptotic tail. On the other hand,
let S, S,, ... be a partition of Z into disjoint finite subsets, and let {w,}
be a sequence of states on the {M(S,)}. As we vary the sequences {w,},
we obtain various product states on . Thus we can construct states with
very different asymptotic tails, i.e. states belonging to different families,
to different equivalent classes of representations.

2. POINCARE INVARIANCE
We recall that a Poincaré transformation {a, A) is given by

x, > x, = ;A’Wxv +a, .1)

where u,v=0,1,2,3 and A,, is a real 4 x4 matrix satisfying ATGA = G,
where G is diagonal with entries (I, — 1, — 1, — 1), and a, is real. Then
L= (a,A) does not change the Lorentz distance between any two

space-time points:
-y ==y 2.2)

In the Hilbert space version one assumes that the connected part of the
Poincaré group is represented by unitary operators, U(L). The action of
U(L) on a state vector W is interpreted as giving a state which is
specified by ther same physical set-up as ¥ but with the preparing

apparatus shifted by L.
An operator undergoes the transformation

Ao A = UL)AU (L). 2.3)

Then (W, A4'¥')=(¥,A%¥) and so the expectation values are unaltered
as we expect.



