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Translator’s Preface

The job of translating and adopting the von Weiss book for this Amer-
ican edition is pne that I tackled with considerable enthusiasm because
I believe that the book fills a real need for many electrical engineers
and engineering students. Matriz analysis and, more generally, linear
algebra play an increasingly important part in.engineering analysis and
therefore a concise book that treats the subject thoroughly, yet at a
mathematical level suited to the engineer’s background, can be of consid-
erable value. I believe that Dr. von Weiss has done an excellent job not
only of selecting material but also of presentation. He has succeeded in
merging real mathematics and practical application. The organization
of his book is methodical without being pedantic, the numerical examples
are worked in detail without inclusion of trivia, and the presentation is
generally lucid. Except for the addition of some footnotes, the omission
of German references, some minor modifications, and the shortening of
Chapter 8, I have tried to be faithful to the original in this translation.

I am happy to acknowledge with gratitude the invaluable assistance
rendered by Miss S. Silverstein in the preparation of the manuscript.

Econ BRENNER
New York, N.Y.



Author’s Preface

In electrical engineering one often deals with linear relationships be-
tween voltages and currents. Matrix analysis is a useful tool for the
solution of linear problems and can be used advantageously in electrical
engineering. Thus it is the basic aim of this book to acquaint the elec-
trical engineer with the basic concepts of matrix analysis and to convey
insight into several applications of matrix methods to linear problems
in engineering. The book is based on a series of lectures presented by
the author to the German Engineering Society (V.D.E.) in the district
North Bavaria. Intended to be an elementary introduction for electrical
engineers, this book is tailored to the needs and background of such
engineers.

Although the mathematical background required of the reader is ele-
mentary (as indicated by the level of the first few sections), the treat-
ment permits practical applications to electrical engineering problems
from the beginning. Where mathematical proofs would become burden-
some, they have been omitted; the reader can always refer to the litera-
ture. Thus the reader is free from that which has little or no relevance
to applications in electrical engineering, yet the presentation is mathe-
matically and logically complete. About one third of the contents con-
sists of numerical examples and exercises which are intended to acquaint
the reader with the carrying out of actual operations; Applications are
invariably chosen from electrical enginéering_; most problems involve
network relationships. The choice of examples is based on the assump-
tion that confidence in using a procedure is gained initially through the
simplest examples worked out in complete detail.

-It is of course understood that the potentialities of matrix analysis in
electrical engineering are limited; when solving a particular example .
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VI PREFACE

one must consider whether matrix techniques can be applied meaning-
fully. The solution of difficult problems naturally requires mathematical
sophistication and physical insight; matrix analysis does not obviate
these requirements,

The author hopes that this book will also serve to stimulate the reader
to undertake further study in the interesting field of matrix analysis
and linear algebra—may this book be a bridge leading to such study!

I owe special thanks to my colleague, Dr. Helmut Dietz, Nuremberg,
who has scrutinized the mapuscript with the eyes of a mathematician. I
also thank him most cordially for his interest in bringing this book into
being as well-as for his numerous suggestions for the improvement of
the presentation. Further I thank my colleague, Mr. Wilhelm Baumann,
Bavaria, for his help in reading proof and for some sound advice. Finally
I must thank the publishers for their constant willingness to accede to
my requests as well as for their efforts to produce this \bdok at-a reason-
able price.

A. voN WE1ss
Nuremberg
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Chapter 1

DETERMINANTS

In this chapter the concept of determinants is derived and explained.
In addition, certain rules and theorems dealing with determinants
are concisely reviewed,

1-1 Basic Concepts and Rules

1-1a Concept of determinants. To arrive at the concept of
determinants, consider a linear system consisting of two equations with
two unknowns, x.and y, and constant coefficients:

a11x+ alﬂ = '61

(1-1)
azzx +a23y = 02
Solving for 2 and y, one obtains
%(@y1B 20— G130 31) = €1033—a; 404 (1-1a)

Y(@11823—B1283;) = @1,63—C18q;

The expression in the parentheses on the left side of Eq. (I-1a) is an
entire, rational function of the coefficients' a,,. Following Leibnitz,
for this function one writes diagrammatically

@31 Gjq

@110 23— 012831 = = |a (1-2)

Q3 Qg

This square array corresponds to the array of the coefficients in
Eq. (1-1) and is termed determinant. In the foregoing example the
determinant consists of two rows (horizontal) and two columns (vertical).

tThe subscript of @11 should be read as one-one, not eleven; for ay3 read a-one-two not
a-twelve, etc. The notation used is the **double subscript notation, the first subsoript
indicating the row, and the second the column position of the element in the determinant
or matrix.

3



4 MATRIX ANALYSIS FOR ELECTRICAL ENGINEERS

The right side of each of the equations (1-1a) can also be written
as determinants. We denote these by A, and 4,

C; Gy A
C18gp — G130 = = Dy
;1 € A
@13C2—C1g = = Oy
Qg1 ©Ca

Consider now a system of three linear equations with constant
coefficients a,,, and three unknowns, z, y, and z,

011%+8010Y +y32 = €
AT+ Aoy +Bo32z = Co (1-3)
31 %+ A3y + 0332 = €3
and multiply in Eqgs. (1-3) '
.the first line by + (@25033 — Anaag)
the second line by —(a,,835 —%,303,)
the third line by + (@ 19053 — @13042)
If we add the three resulting equations, all terms involving y and z
vanish and the result is
[@11(@ 29055 — 230 35) — 019(@ 2,033 — B3303;) + 013(8.21 032 — B 3504,) ]2
= €1(@220 33 — A23@33) — C3(@ 13053 — @138 33) + C3(@ 12825 — T 130 20)

Defining the left side of the above equation as |a|x, one obtains by
comparison with Eq. (1-2)

Qa3 Qg3 Q21 Qa3 | A2y Qa3

a| = ay,

13
Q31 Ggg

@3z Qg3 Q31 Qg3
or ‘ ,
o] = ay,413+815413+813415 = 613813~ 01501 +G15015  (1-4)
The factors multiplying the two-row two-column determinants are the
coefficients of the first equation of the system (1-3). Therefore one
defines |a] as a three-row determinant
a1 ‘ G13 Q8
6] = @2 @2 ag - (1-4a)
@31 @3z Qgg
that is, |a] is the array of coefficients in the equation system (1-3).
One now finds that each of the three two-row determinants in the above -
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development result if one deletes the first row together with one of the
columns in the determinant (1-4a). Lines drawn to delete the appropri-
ate row and column intersect at that element of the first row which is
the multiplying factor (in Eq. 1-4) for the remaining two-row deter-
minant.

A corresponding development can be applied to two-row deter-
minants. It is in fact given in Eq. (1-2) if one sets A;; = ay; and
Ay = a,5 and if in addition a “one-row’’ determinant is one that is
formed by a single element. One recognizes further that a two-row
determinant consists of the sum of two one-row determinants; accord-
ing to Eq. (1-2) this sum has 1 - 2 = 2! product terms each .consisting
of two elements. Similarly, a three-row determinant consists of three
two-row determinants and has 1-2 -3 = 3! products, each consisting of
three elements.

Generalizing the scheme of Eq. (1-4a) to n-columns and n-rows; one
obtains an n-row determinant also termed a determinant of nth order:

Q11 @13 Q13...0;,

Agz ... 0q :
det (a) = a| = Q:zx @az Qg3 2n (1-5)

Qa1 Ang QApg.. «Qan

In this scheme,! @, is the element in the ith row, kth column, and
the sth row is:
Ajy, Qg -« ., Ay
the kth column is: _
A1k
Oy

Qs
The elements a,, form the principal diagonal (also referred to as
“diagonal” for brevity); the other diagonal is termed secondary or
conjugate diagonal of the determinant.
Expanding the nth order determinant in the manner indicated above,
one obtains

det (@) = @301 — @198 3+ @303+ — ... +(=1)1*"A,, (1-5a)

where the n determinants A, are obtained by deletmg row 1 and column
k in det (a), as indicated above, and are of order (n—1). Each of these
determinants can be expanded further into # — 1 determinants of order
n—2 and so on. Finally one obtains a sum of n! product terms each

t The notatjon det (a) in place of lal is generally more convenient because no confusion
with absolute)value signs is possible.
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consisting of n elements, that is a numerical value. From the foregoing
discussion one concludes as follows:

A determinant is a square array of numbers with n columns and
n rows (n? elements). The value of the determinant is determined
as a sum of n! terms and is formed by expansion of the elements
according to certain rules.

1-1b Expansion theorem, minors. The expansion of the deter-
minant in the example of Eq. (1-4) is the expansion ‘“‘about the first
row.” Expansions can be made about any other row or about any
column. One can easily verify that expansion about any row yields
the same result. For example, expansion about row 2 of the third-

order determinant, Eq. (1-4a), gives

, Q13 g3 a1 Q3 Q31 Qjq
det (@) = —ay, -
Q33 Q33 a3y Qa3 Q31 Qg
or
det (@) = ag A3 + @504 5 +ag34 05 = — 03183 +G32053— 33855
Using row 3, one obtains
Q12 Q3 a1y O3 a1 @9
det (a) = ay, —Qag 33
Qgz Qg3 Qay Qg3 Qg1 Qg

or
det (a) = a;,45; +az,d5,+ @33433 = a3,A3; — 35035+ B350 53

Correspondingly, the above determinant can also be expanded about a
column. Using, for example, the second column.

Q21 Qa3 Qy; Qi3 Q11 O3
det (2) = —ay, Qoo ~agy
Q33 Qg3 @3 Qa3 Qa1 Qg3
or
det (@) = @154 15+ 80405+ 035435 = — @154, +a550,, — 3084,

In general, an nth order determinant can be expanded about the ith
TOW !

n n

det (@) = 3 apdim = 3 am(—1)*"A, - (1-8)

m*=1 m=1

or about the kth column:

dot (@) = 3 Gdpe = 3 (<D™ *An  (17)

m=1 m=1
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The n determinants A, (or A,,) are of order (n—1) and are termed
minors or subdeterminants. »
Laplace’s Expansion Theorem. An nth order determinant can be
expanded about any row or column into » minors; each minor
will be of order (n—1).
From the above one recognizes:
The minor A, of the element a,; is found by deleting row s and
column k in the original determinant. The minor is taken with
positive sign when (¢ + k) is an even number, and with negative
sign when (¢ + k) is an odd number.
The element a,, is at the intersection of the lines deleting row ¢ and
column k; the signs assigned to the minors are distributed in a checker-
board pattern:

+ -+ - ..
-+ - + ...
+ - + =

The minor together with the correct sign [that is, multiplied by
(—1)**¥] is termed cofactor 4, of the element a,,.

For the third-order determinant of Eq. (1-4) the minor A, is obtained
by deleting the first row and the second column. Since 1+2 = 3
is odd,

) @31 Qg3
49 = ~Byp = -

Q31 Qg3
Similarly the minor A, is obtained by deleting the second row and the
second column, also 2+ 2 = 4, an even number, and

@31 @3 |

Aaz = Aaz =
Q31 Q33

1-1c Miscellaneous theorems and rules. Without proof we now
cite important rules and theorems for calculation with determinants.

RULE 1 The value of a determinant does not change when all rows are
interchanged with their corresponding columns. Thus rows and columns
play the same role in determinants.

RuLE 2 Exchanging two rows or two columns changes the sign of the
determinant. :

a by ¢ az by ¢ & b e
a by ¢ = —la; by ¢ |= —lc; b, agy

az by ¢ ag bz c; ¢z by ag
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From the expansion about a row orcolumn, we have rule 3:
RuiLe 3 Multiplication of a determinant by a scalar factor p is identical
to multiplying all elements of one row or of one column by p, for example :
a;, b ¢ pay pby pey| |ay pby ¢
pdet(a) =p-la; by ¢;|=[a; by ¢ |=|az pb c;
ag b3 ¢ ag by ¢ ag phs ¢
RuLE 4 ' If two rows are identical or if two columns are identical, then
the value of the determinant is zero.

a, b ¢ a, a, ¢ a, na; ¢ a a, ¢
aa ba pz = as (12 02 = 0, 'a, MQ 03 =_'n‘ a2 aa c, = 0
as by ¢ a3 agz C3 a; naz C3 dg agz ¢C3

RuULE 5 If all the elements in a row or column are zero, then the value
of the determinant is zero

a; 0 ¢ a; b ¢
a 2 0 62 = 0 O O = O
ag 0 ¢ as b3 ¢

RuLE 6 If the elements in one row or in one column are each .the
sum of the same number of terms, then the determinant can be evalu-
ated as the sum of the same number of determinants.
@1+P1+qs b 6| |ay by e [ b e @ b e
@Ga+Pet+qa by cy|=lag by ca|+[pg by cal+{g by ¢
az+p3t+qs b5 ¢, lag by c3i lps b3 cg % by ¢
Using rule 8 together with rule 4 yields rule 7:

RULE 7 The value of a determinant remains unchanged when one
adds to any column (row) another column (row) which has been multi-
plied by any scalar factor p.

a; b ¢ ay+pb; b ¢, @y b, - 121
az by c3| =|as+pby by 3| = |az+pa; by+pb, cy+pey
as by ¢ las+pby b3 c5 a3 . b, C3

In evaluation of determinants rule 7 together with the expansion about
& row or column is often used (see Sec. 1-2). '

1-1d Cramer’s rule. If in Eq. (1-1) the determinant of the co-
efficients is not zero, that is, if
a;; @3

det (a) = # 0

Qg; Qgg
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then, from Eq. (1-2)

1 él' a| A,
T det(@) leg agyl  det(a)
and
y
1 au (2% _ Ay
y= det (a) |ay ¢, "~ det (a)

Corresponding results are obtained for n equations with n unknowns.
Given the system of linear equations with constant coefficients

011%1 +Q19%a+A13T3+ . .. +81,%, = VY
Q21%1 + 8%y +Ao3%3+ . . . + 3%y = Y (1-8)

, Cp1%1+Apo®a+ApaZg+ ..o +8paZ, = Yy
for which the determinant of the coefficients is assumed not zero:

A1 Q12 @13 ... Gy

a a a ces @
det () = 21 %12 Qg3 L P

A1 Apg CQug e Qpy

then the values x,,x,, ..., z, are determined uniquely by Cramer’s

rule:
Ay

T, = 1-9

® 7 det (2) (1-9)

The determinant A, is obtained by replacing the column of co-

efficients a,,, . . ., a,, in the determinant of coefficients by the values

Y15 - - - Yn, respectively. Cramer’s rule, illustrated subsequently, per-

mits solution of a set of linear equations in elegant fashion when the
determinant of the coefficients does not vanish. The practical applica-
tion of this rule by hand is limited to cases where reasonably low-order
determinants occur since evaluation of fifth—or higher—order deter-
minants becomes unduly tedious and time consuming.

Ifin Eq. (1-8) all valuesy, = y3 = ... = y, = 0, then the system of
equations is homogeneous. In this case, according to rule 5 the numera-
tors in Eq. (1-9), A, all vanish. Hence if det (a) s 0, only the trivial
solutions z; = x, = ..., = Oresult. Nontrivial solutions are possible
only when det (a) = 0; as shown in Chap. 3, Sec. 3-2, this case results
in an infinite number of solutions.



