Problem Solving with

A N S I Structured BAS I C |

Rina Yarmish and Joshua Yarmish

Problem Solving with

A N S I Structured BAS l C

Rina Yarmish Joshua Yarmish
Kingsborough Pace
Community College University

“

S/RAN

SCIENCE RESEARCH ASSOCIATES, INC.
Chicago, Henley-on-Thames, Sydney, Toronto

An IBM Company

To Lea Kobre, Max Kobre, Hannah Yarmish,
and the memory of Louis Yarmish

Acknowledgment

The corresponding software for this text was
prepared by NKR Research, Inc., San Jose,

California.

Acquisitions Editor
Michael Carrigg

Project Editor
Elizabeth Sugg

Production Administrator
Steve Leonardo

Compositor
Carlisle Publishers Services (A division
of Carlisie Communications, Ltd.)

Cover and Text Designer
David Corona Design Associates

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-
Publication Data

Yarmish, Rina.
Probiem solving with ANSI structured

BASIC.

Includes index.

1. BASIC (Computer program
language) 2. Structured programming.
I. Yarmish, Joshua. |l. Title.
QA76.73.B3Y37 1987 005.13'3 87-9815
ISBN 0-574-18680—-8

Copyright © 1988 Science Research
Associates, Inc. All rights reserved. No
part of this publication may be reproduced,
stored in a retrieval system, or transmitted,
in any form or by any means, electronic,
mechanical, photocopying, recording, or
otherwise, without the prior written
permission of Science Research
Associates, Inc.

Introduction

Problem Solving with ANSI Structured BASIC
introduces students to principles of program design
and to computer programming using the BASIC
language. No prior familiarity with computers or
knowledge of programming is required.

Approach
]

Problem Solving with ANSI Structured BASIC
presents a systematic, disciplined approach to
program development, beginning with an
understanding and analysis of the problem to be
solved and continuing throughout the design, coding,
testing, and documentation phases of problem
solving.

The BASIC language itself is also taught, along
with presentation of a series of applications that may
be processed using a computer. Moreover, since
educators and computer professionals today widely
accept the fact that structured design and structured
programming form a solid foundation for good
problem-solving methodology, this textbook is largely
devoted to methods for implementing principles of
good structured design and structured programming
in BASIC.

In the first seven chapters, we introduce BASIC
programming using an approach to problem solving
that closely simulates human thinking. This enables
the student to develop a “feel” for what programming
is in a problem-solving environment that is not totally
foreign. Beginning with chapter 8 and continuing
throughout the remainder of the text, concepts of
structured design and structured programming are
introduced and are, from that point on, continually
developed and practiced to enable structured
programming to become as natural as possible to the
reader. The goal is for the reader eventually to “think
structure.” It has been the authors’ experience that
this systematic introduction of structured concepts is
most effective. That is, in order to develop a good
understanding of what a well-structured program is, it
is best for the beginner first to see problem solution
in unstructured form, contrasted with structured
solution to the same problem. (For those not of this
opinion, we have suggested an alternate path
through the text [see the paragraph on “Modularity,”
below] which will enable one to avoid exposure to
unstructured programs.)

Intended Audience

Problem Solving with ANSI Structured BASIC
assumes no prior familiarity with computers. It begins
with explanation and discussion of what a computer
is, prior to the sections on problem solving and
BASIC programming. However, while the text begins
at a very elementary level, it enables the student to
reach a level of proficiency at which one may create
useful and interesting applications programs.

The text is written using clear, explanatory
prose. The reading level is geared to that of the
typical community college student or the senior
coliege student in his or her first years of study. The
textbook is intended for use in community or senior
colleges as a main text for a one-semester course in
BASIC programming or as an ancillary text for use in
an introductory computer science or data processing
course that includes BASIC programming as a major
subtopic. Since explanations are complete and
adequate examples and exercises are provided, the
text is also suitable for self-study.

Distinguishing Features
|

This book will distinguish itself from other BASIC
books on the market in several important ways. First,
the version of BASIC described is the latest ANSI
BASIC standard, which is outstanding in that it
provides instructions enabling one to write structured
programs with instructions that are truly suited for
that purpose. The ANSI BASIC instruction set allows
one to incorporate structured constructs into BASIC
programs so that the writing of BASIC programs may
be done in a natural way and need not be “forced”
through attempted simulation of those structures, as
must be done with many other versions of BASIC.
ANSI BASIC has brought together the simplicity of
the original BASIC and important elements of modern
programming languages. The resulting dialect is
most suitable for business applications and
educational environments.

Moreover, for the convenience of the instructor
and user, and to provide absolute compatibility
between text material and software, we have
provided

Introduction xiii

e an ANSI BASIC interpreter that will enable users
to run programs using the new standard. It is an
implementation of the ANSI BASIC standard,
developed by NKR Research, Inc., in San Jose,
California. The interpreter includes elements of
the ANSI core standard and extensions beyond
the core standard, including relative (direct
access) files.

e an IBM PC diskette with all the sample programs
that have been assigned figure numbers in the
text.

Another important feature of this book is its
pedagogy, particularly its emphasis on the teaching
of problem solving and design methodology. These
ideas are introduced in chapter 2, while principles of
structured design, stepwise refinement, and control
structures are discussed comprehensively in
chapter 8. Moreover, implementation of these ideas
and methodologies continues throughout the text,
both in discussion and in the many program
examples that are provided. Discussion begins at an
elementary level, with new concepts gradually and
systematically appended.

Presentation of the BASIC language is clear,
complete, and concise; many examples are provided
to illustrate the uses of concepts discussed. The
average college student may learn to program in
BASIC using this text and a computer, without
additional help.

Other distinguishing features include the
following:

1. Realistic Problems and
Applications

Problem Solving with ANSI Structured BASIC uses a
variety of realistic problems that the student may
associate with the “real world.” These problems will
provide motivation for learning that contrived
examples simply do not.

2, Introduction and Learning
Objectives

Each chapter begins with a motivating introduction,
followed by a brief description of the main objectives
of the chapter.

xiv Introduction

3. Instruction Summaries

BASIC instructions described in the text are
summarized in concise form. Summaries include
general instruction formats, rules for usage, and
examples. Each summary is boxed to distinguish it
from the body of the text, to enable the reader to
locate it quickly for easy reference.

4. Self-evaluation

Questions for self-evaluation are provided after each
main topic within a chapter. These allow students to
test their understanding of current material before
proceeding further. There are almost three dozen
sets of self-evaluation exercises throughout the text.
Answers to odd-numbered self-evaluation exercises
are provided in appendix C.

5. “Common Errors”

Each chapter that presents new BASIC instructions is
accompanied by a section describing errors
commonly committed by individuals to whom the
instructions are “new.” These sections will help
students avoid the most common errors committed
by novice programmers. They will thus help students
to write their own programs and to correct program
errors that are relevant to the programming
techniques presented in the chapter. There are well
over 100 such potential errors described in these
sections.

6. “Interacting with the Computer”

Each chapter that presents new BASIC instructions is
accompanied by a section entitled “Interacting with
the Computer.” These sections use step-by-step
directives to provide actual “hands-on” practice in
applying the new statements and techniques in a
variety of ways. Once a student has followed the
steps prescribed in these sections, he or she will no
longer approach the first programming
implementation of these instructions “cold.” The
exercises are carefully designed to highlight both
standard usages and eccentricities of the language
features taught; they bring the instruction rules to life.
There are almost 200 such exercises.

7. Questions, Problems, and
Programming Exercises

Each chapter is followed by carefully designed
questions, problems, and—where appropriate—
programming exercises. The questions and problems
are designed to highlight important facts and
concepts presented in the chapters. Applications
chosen for programming exercises are generally of
two types: (1) variations or extensions of problems in
the main body of the chapter, and (2) problems that
anticipate program examples of later chapters. The
text contains more than 100 programming exercises
and more than 300 other questions and problems.

8. Acting as a “Human Computer”

Many chapter exercises request that the student
determine the output of sample programs by acting
as a “human computer”; that is, by “executing” the
instructions by hand in the order and manner in
which they would be executed by the computer itself.
After determining what the output should be,
students are asked to key in the programs and have
the computer validate their results. These exercises
force the student to visualize the progression of
program logic; they thus contribute to enhanced
understanding of that logic. There are about 130
such exercises throughout the text.

9. “Toward Deeper Understanding”

Sections entitled “Toward Deeper Understanding”
provide in-depth explanations of difficult concepts for
the better student. These sections may be omitted
without loss of continuity.

10. A Separate Introductory
Chapter on Problem Solving

Chapter 2 is fully devoted to a discussion of proper
techniques for step-by-step development of
algorithms. Solutions to two applications (a customer
billing application and a checkbook balancing
application) are then gradually developed through
increasingly complex phases using appropriate
methods. Students thus participate in the systematic
development of increasingly complex algorithms.

11. Continuity

Several programming applications are gradually
developed, extended, and modified throughout the
book as new techniques and methodologies are
introduced. Thus, for example, algorithms for three
versions of the checkbook balancing problem are
developed in chapter 2; the problem is later coded in
unstructured form. With the introduction of concepts
of structured design in a subsequent chapter, a
structured algorithm for the checkbook balancing
problem is developed, followed by the corresponding
structured programs in yet later chapters.
Presentation of the same or similar applications in
different contexts using different techniques enables
the reader to concentrate on the methodologies
without becoming overly involved with the details of a
particular application. This type of development—the
provision of unstructured algorithms, unstructured
program solutions, structured algorithms, and
structured program solutions to the same problem—
is used for a wide variety of applications. (As noted
above, there are those who are of the opinion that
avoiding exposure to unstructured programs is best;
those individuals may follow a somewhat modified
path through the text [see the paragraph on
“Modularity,” below] which will enable one to avoid
such exposure.)

12. Programming Aids

Proper design and documentation of computer
programs are enhanced by the use of traditional
program flowcharts, and—for structured
programming—structured flowcharts (also called
Nassi-Schneiderman charts), which are particularly
well suited for clear, concise illustration of control
structures. Flowcharting techniques are discussed
and proper flowchart form and usage are illustrated
throughout the text in program examples.
Pseudocode is also emphasized and used as a
program design tool. The book contains more than
140 solved programs, more than 100 flowcharts, and
some two dozen illustrations using pseudocode.

13. Up-to-Date

The latest American National Standard BASIC has
been adhered to throughout. This standard reflects

Introduction XV

the industry’s current emphasis on structured
programming.

14. Accuracy

All programs provided in the text have been tested
and debugged. Actual computer output is provided
for most numbered figures. Moreover, since diskettes
containing all programs that have been included in
numbered figures in the text are available to
instructors, it is a simple matter to run these
programs using the interpreter provided with the text
and to observe the output.

15. Emphasis on Programming Style

The text emphasizes an organized, disciplined
approach to both the planning and coding of problem
solutions. Proper indentation within programs has
been used for visual clarity.

16. Structured Programming

Particular attention has been paid to the design of
programs using the control structures of structured
programming. An entire chapter (chapter 8) is first
devoted to a “language-free” discussion of the
sequence, selection, and iteration structures and
their implementation in structured programming.
Chapters 9 and 10 present the BASIC statements to
implement those structures. Structured style is
standard in all subsequent chapters.

17. Coverage

The text includes comprehensive coverage of some
oft-neglected topics:

Character Strings. Basic material on character
strings and string manipulation is provided in earlier
chapters. However, chapter 14 is devoted to more
comprehensive coverage of character constants,
variables, and expressions; substrings; string
subprograms, including those using built-in string
functions and user-defined subprograms; and
comparison of character expressions. Seventeen
program examples in chapter 14 illustrate the uses of
character strings.

Matrices. ANSI BASIC provides MAT statements
for array handling, in addition to the treatment of

xvi Introduction

arrays with subscripted variables covered in

chapter 13. Chapter 16 provides detailed coverage of
the MAT statements, including input/output
operations, built-in numeric array functions, and
numerous operations with both numeric and string
arrays.

External Files and File Processing. Working with
files is crucial to many applications in industry;
however, files and file processing are often difficult
topics for beginning programmers. We believe that
this difficulty is often related to weakness in
understanding underlying concepts. For this reason,
we have devoted an entire unit to the study of files.
A separate chapter (chapter 17) provides a
language-free presentation of file-related concepts:
data organization, auxiliary storage, file organization
and access mode, and file maintenance
methodologies, including sequential and relative
updating. This presentation is followed (in
chapter 18) by a discussion of file implementation in
ANSI BASIC, including comprehensive treatment of
file updating with sequential and relative files. More
than twenty program examples in chapter 18
illustrate various file-handling techniques.

Debugging. A separate appendix (appendix B) is
devoted to discussion of debugging, (finding and
correcting program errors). This appendix material
may be covered at any point within the course
sequence that the instructor feels is appropriate.
However, as all programmers realize, debugging is
an ongoing process, and the possibility of mishap
should be kept in mind from the very beginning of
the programming process. Therefore, each chapter
that presents new instructions includes a section
enumerating “common errors” to avoid; moreover,
exercises requesting the student to “act as a human
computer” are “trace” exercises that force
awareness of the logical flow of programs throughout
the learning process. '

18. Modularity

The instructor has great flexibility in choice and
arrangement of topics, after coverage of fundamental
“core” chapters. For those who wish to introduce
students to structured concepts after they have
obtained a “feel” for the language in the absence of
structure, unit 1 (“The Computer and Problem
Solving,” chapters 1 and 2) and unit 2 (“BASIC

Language Fundamentals,” chapters 3—7) should be
covered first, followed by the first three chapters
(chapters 8, 9, and 10) of unit 3 (“Structure and
Style: Moduiar Program Design and Structured
Programming”). Substantial flexibility is provided from
that point on, as indicated below:

{a) Chapters 1-10 are to be studied first.
(b) The following may be covered in any order
after chapter 10:

e Chapter 11 (“Subprograms—Part I: Functions”)
and chapter 12 (“Subprograms—Part i
Subroutines”).

e Chapter 13 (“Arrays and Subscripted Variables”).
Section G of this chapter should be deferred until
after chapters 11 and 12.

e Chapter 14 (“More on Character Strings”).
Section E of this chapter should be deferred until
after chapters 11 and 12.

e Chapter 15 (“More on Input/Output”).
e Chapter 16 (“Matrices: The MAT Statements”).

o Chapter 17 (“Introduction to Files: A General
Overview”) and chapter 18 (“File Implementation
in BASIC"). For students who are familiar with
concepts of external files from their study of other
languages, chapter 17 may be omitted without
loss of continuity.

In other words, following chapter 10, the instructor
may choose to cover any of the succeeding chapters
of the text in any order—no one chapter depending
on any other chapter—with the exception of
chapter 12 (which should follow chapter 11) and the
possible exception of chapter 18 (which should follow
chapter 17 for students with no prior exposure to file
concepts). This modularity affords great flexibility of
sequencing and of topical selection.

Instructors who wish to avoid unstructured
programs may choose the following path:

(a) Chapters 1-5

(b) In chapter 6, brief mention of material in
section A, full coverage of section B, cursory
treatment of section D, and full coverage of
section F. (Omit sections C, E, and G.)
Omit chapter 7.

(c) Chapters 8, 9, and 10.

(d) Any of chapters 11-12, 13, 14, 15, 16, or
17-18 may follow in any order, as described
above.

Within the limitations described above, the instructor
is free to determine the sequence of instruction and
to emphasize the topics he or she feels are
appropriate to the course. Similarly, the student is
free to move to topics of interest without having to be
concerned about missing prerequisite material. The
course, in other words, need not be textbook—
directed, but may be directed by the instructor or by
the independent reader.

19. Textbook Suppiements
This text is supplemented with

e the ANSI BASIC interpreter, discussed above.
(The provision of this software presents a unique
opportunity to teach the latest version of BASIC,
one that enables the writing of structured BASIC
programs in a dialect to which structure is
“natural.”)

e |BM PC diskettes with all programs that have
been included in numbered figures in the text.

e an instructor’s manual, inciuding answers to text
questions and exercises.

e transparency masters of illustrative text material,
flowcharts, structured flowcharts, and program
listings.

e computerized test bank.

We wish to express our sincere thanks and
appreciation to all those who have contributed to the
development of this book: to the reviewers (R. Ken
Walter, Weber State College; Brian A. Rudolph,
Bowling Green State University; Robert Norton, Mesa
College; George Novacky, University of Pittsburgh;
Ralph A. Szweda, Monroe Community College),
whose constructive criticisms were very helpful in
shaping and polishing the final manuscript; to our
students, from whom we have always learned a
great deal; and to the people at SRA who were so
enthusiastic and who contributed so much time,
energy, and talent to bringing this complex package
to completion. We are particularly indebted to our
editor, Michael Carrigg, who orchestrated this project

Introduction xvii

with enthusiasm and with vision; and to our
developmental editor, Elizabeth Sugg, whose
masterful coordination of activities was invaluable to
the production of a superior work on a timely basis.

Comments and suggestions for improvement will
be much appreciated and will be given careful
consideration by the authors. Please direct all
communication to either author.

We sincerely hope that you enjoy reading, studying,
and learning from this text. If you do and you feel
that you have gained in knowledge and in expertise
through its use, the authors will be well rewarded.

xviii Introduction

Dr. Joshua Yarmish

Pace University

Pace Plaza

New York, New York 10038

Dr. Rina Yarmish

Kingsborough Community College
2001 Oriental Boulevard
Brooklyn, New York 11235

Unit 1

Contents

Introduction xiii

The Computer and Problem Solving 1

Chapter 1

Computers and Programming:

An Overview 3

A Preliminary Note to the Reader 3

Introduction and Learning
Objectives 4

A. What Is a Computer? 5

1. Basic Components of a
Computer 6

2. The Central Processing Unit
(CPUL) 9

3. Communicating with the
Computer 9

4. Peripheral Equipment 9

5. How the Computer Executes a
Program 10

6. The Computer System 12
B. What Is Programming? 13

C. What Is a Programming
Language? 14

1. Machine Language 14
2. Symbolic Language 15

3. Programming Language
Instructions 16

Questions 17

Chapter 2
Problem Solving 19

introduction and Learning
Objectives 19

A

B.

D.

What Is a “Problem” and What Is
“Problem Solution”? 20

Problem Solving: A Stepwise

Approach 20

1. Understanding the Problem:
Describing the Problem
Verbally 21

2. Analyzing the Problem: Establishing
the General Approach 21

3. Developing Algorithms: Stepwise
Procedures for Problem
Solution 22

4. Implementing the Algorithm 26

. Techniques and Tools for Describing

Algorithms 26
1. Fiowcharts 27
2. Examples 28

3. Some Facts about
Flowcharting 35

Coding: Implementing the Algorithm
Using the Computer 35

Questions and Exercises 37

Unit 2

BASIC Language Fundamentals 41

Chapter 3
introduction to BASIC 43

Introduction and Learning
Objectives 43

A. The BASIC Language 44
B. Our First BASIC Program 45

C. Statement Number and Statement
Length 46

Self-evaluation 1 47

Contents

. General Format of a BASIC

Statement 47

. The END Statement 48

1. Summary of Rules: The END
Statement 48

Documentation within the Program: The
REM Statement and Tail

Comments 48

1. Summary of Rules: The REM
Statement 49

Self-evaluation 2 49

G. Entering and Executing a BASIC
Program 50

1. Getting Started 50

2. Creating and Editing Program
Files 52

3. Useful DOS Commands 56

Questions and Exercises 58
Interacting with the Computer 59

Chapter 4
Constants, Variables, and
Arithmetic Expressions 61

Introduction and Learning
Objectives 61

A. Constants and Variables 62

1. Numeric Constants and
Variables 62

2. Character Constants and
Variables 64
Self-evaluation 1 65

B. Arithmetic Expressions 66
1. Arithmetic Operators 66

2. Hierarchy of Arithmetic
Operators 67

3. Parentheses in Arithmetic
Expressions 68

Self-evaluation 2 68
C. The Assignment Statement: The LET
Statement 69

1. Simultaneous Assignment of a
Value to a List of Variables 70

2. Summary of Rules: The LET
Statement 71

Self-evaluation 3 71
Common Errors 72

Questions and Exercises 72
Interacting with the Computer 73

Chapter 5

input/Output: Reading Data into
the Computer and Writing
Iinformation Out 75

Introduction and Learning
Objectives 75

A. The READ and DATA
Statements 76

Contents

1. Summary of Rules: The DATA and
READ Statements 79

Self-evaluation 1 80

B. The PRINT Statement 80
1. Printed Line Format 82

2. Using the Semicolon to Pack Print
Zones 83

3. Using the Comma and Semicolon
as Continuation Characters 84

4. Summary of Rules: The PRINT
Statement 85

C. Program Examples 86
Self-evaluation 2 87

D. The INPUT Statement 88

1. Summary of Rules: The INPUT
Statement 90

2. Prompting Program Input 90
Self-evaluation 3 91

Common Errors 92

Questions and Exercises 92
Interacting with the Computer 93
Programming Exercises 94

Chapter 6

Branching and Looping:
Controlling Program Logic
Flow 97

Introduction and Learning
Objectives 97

A. The GOTO Statement 98

1. Summary of Rules: The GOTO
Statement 100

Self-evaluation 1 100
B. Relational and Logical
Expressions 101
1. Relational Expressions 101
2. Logical Expressions 101
C. The IF-THEN Statement 103
1. Summary of Rules: The IF-THEN
Statement 105

Self-evaluation 2 106

D. Looping 107
1. Counters and Accumulators 107

2. Testing for the “Trailer
Value” 108

3. Loop Structure 110

Unit 3

E. Program Examples 111
F. Testing for End of Data Using a READ
Statement 116
Self-evaluation 3 117

G. The Computed GOTO
Statement 117
1. Summary of Rules: The Computed
GOTO Statement 119
2. Program Example 119

Self-evaluation 4 121

H. The STOP Statement 122

1. Summary of Rules: The STOP
Statement 122

Common Errors 122

Chapter 7
BASIC Program
Examples 127

Introduction and Learning
Objectives 127

Problem 1: Letter-Grade
Assignment 127

Probiem 2: Compound Interest
Problem 3: Payroll Computation

128
130

Problem 4: Customer Billing 132

Problem 5: Balancing Checking
Accounts 135

Problem 6: Tax Computation 137

. . Problem 7: An Interactive Game 139
Questions and Exercises 123 Problem 8: Menu-driven Program 140
Interacting with the Computer 124
Programming Exercises 126 Programming Exercises 143
Structure and Style: Modular Program
Design and Structured Programming 149
Chapter 8 Chapter 9
The Structured Approach to Structured Programming
Problem Solving 151 Mechanisms—Part I:

)) Mechanisms for Looping 177

Introduction and Learning
Objectives 151 Introduction and Learning
A. Incentives for the Structured Objectives 177

Approach 152 A. FOR Loops 178
B. Top-down Design 152 1. The EXIT FOR Statement 180-.
C. Structured Programming 153 2. Nested FOR Loops 182

1. Control Structures 154 3. Summary of Rules: FOR

2. One Entry and One Exit 161 Loops 183

3. Combining Control 4. Program Examples 184

Structures 161 .

4. Structured Programming and Self-evaluation 1 185

GOTO-less Programming 161 B. DO Loops 186
D. Structured Flowcharts 161 1. Pretest DO Loops 187
E. Pseudocode 163 2. Posttest DO Loops 189
F. Examples 166 3. Other Variations of DO
G. Toward Deeper Understanding: Loops 191

Avoiding Exiting from the Middle of a 4. The EXIT DO Statement 192
Loop 170 5. Nested DO Loops 192
Questions and Exercises 173 6. Summary of Rules: DO
Loops 194
7. Program Examples 195
Self-evaluation 2 195
Contents vii

C. Toward Deeper Understanding:
Expressing the FOR Loop in Terms of
a DO Loop 199

Common Errors 199

Questions and Exercises 200
Interacting with the Computer 202
Programming Exercises 203

Chapter 10

Structured Programming
Mechanisms—Part ll:
Mechanisms for Decision
Making 205

Introduction and Learning
Objectives 205

A. IF Blocks 205

1. Nested Combinations of Loop and
Decision Structures 208

2. The ELSEIF Statement 209

3. Summary of Rules: IF
Blocks 212

4. Program Examples 213
Self-evaluation 1 213

B. SELECT Bilocks 216

1. Summary of Rules: SELECT
Blocks 219

2. Program Examples 221
Self-evaluation 2 224

Common Errors 224

Questions and Exercises 225
Interacting with the Computer 227
Programming Exercises 228

Chapter 11
Subprograms—Part I:
Functions 229

Introduction and Learning
Objectives 229

A. Built-in Functions 231

1. Some Common Built-in
Functions 231

2. Random Numbers: The RND
Function 234

Contents

3. The RANDOMIZE
Statement 236

Self-evaluation 1 238

B. User-defined Functions 239
1. One-Line Functions: The DEF
Statement 239
Self-evaluation 2 242

2. Multiline Functions: The FUNCTION
and END FUNCTION
Statements 242

Self-evaluation 3 254

Common Errors 255

Questions and Exercises 256
Interacting with the Computer 259
Programming Exercises 260

Chapter 12
Subprograms—Part N:
Subroutines 263

Introduction and Learning
Objectives 263

A. Defining and Using Subroutines: The
SUB, END SUB, and CALL
Statements 264

1. The EXIT SUB Statement 266

2. Arguments and Parameters in
Subroutines 266

3. External Subroutines, Program
Units, and Data 268

4. Recursive Subroutines 269

5. Summary of Rules:
Subroutines 270

6. Program Examples 271

Self-evaluation 1 272

B. Modular Programming 275
1. Modular Independence 275
2. Program Example 276

Common Errors 277

Questions and Exercises 278
Interacting with the Computer 279
Programming Exercises 280

unit &

Additional Elements of ANSI BASIC 283

Chapter 13 . The BASIC Character Set 328

Arrays and Subscripted . Character Constants and
Variables 285 Variables 328

mW >

C. Character Expressions 328
Introduction and Learning D. Substrings 329
Objectives 285 1. Program Example 331
A. Subscripted Variables 286 Self-evaluation 1 332
B 1C A:l:ay Eames ™ ZSI?M E. String Subprograms 332
. Creating Arrays: The g A .
Statement 288 1. Built-in ?tnng Functions 332
1. Subscript Bounds 288 2. User-defined Subprograms 336
2. Summary of Rules: The DIM Self-evaluation 2 337
Statement 290 F. Comparing Character
C. Using Arrays 290 Expressions 337
1. Programming for One-dimensional G. Program Examples 339
Arrays 292
2. Programmng for Two-dimensional Common Errors 348
Arrays 292 Questions and Exercises 349
Self-evaluation 1 296 Interacting with the Computer 351

Programming Exercises 352

D. Program Examples 297
E. Sorting Algorithms 304
1. Bubble Sort 304
2. Selection-with-Exchange Chap ter 15
Sort 306 More on Input/Output 355
3. Efficiency of Bubble Sort v. Introduction and Learning
Selection-with-Exchange Objectives 355
Sort 308
F. Searching Algorithms 310 A. The RESTORE Statement 356
1. Linear or Sequential Search 310 1. Summary of Rules: The RESTORE
2. Binary Search 310 Statement 357
3. Efficiency of Linear Search v. Binary B. The LINE INPUT Statement 358
Search 313 1. Summary of Rules: The LINE
G. Arrays in Subprograms 315 INPUT Statement 359
1. Built-in Array Functions 315 C. Prompting Input within the INPUT and

LINE INPUT Statements 359

1. Summary of Rules: The INPUT and
LINE INPUT Statements with the
Optional Prompt Message 360

2. Program Examples 316

Common Errors 318
Questions and Exercises 318
Interacting with the Computer 323 Self-evaluation 1 360
Programming Exercises 324 D. The TAB Function 361

1. Summary of Rules: The TAB
Function 362

Chapter 14 E. The PRINT USING Statement 363
More on Character 1. Printing Formatted Numbers 364
Strings 327 2. Printing Formatted Strings 369
3. Summary of Rules: The PRINT
Introduction and Learning USING Statement 370

Objectives 327

Contents)

Unit 5

Self-evaluation 2 372

Common Errors 373

Questions and Exercises 374
Interacting with the Computer 375
Programming Exercises 378

Chapter 16
Matrices: The MAT
Statements 379

Introduction and Learning
Objectives 379

A. Inputting Arrays 380

1. The Array Read Statement: The
MAT READ Statement 380

2. Array Input Statements: The MAT
INPUT and MAT INPUT PROMPT
Statements 381

3. Array Line Input Statements: The
MAT LINE INPUT and MAT LINE
INPUT PROMPT
Statements 382

4. Redimensioning Arrays 383

5. Input of Variable-Length, One-
dimensional Arrays 384

6. Summary of Rules: Inputting
Arrays ~ 385

Files and File Processing

B. Printing Arrays 386

1. The Array Print Statement: The MAT
PRINT Statement 386

2. The Array Formatted Print
Statement: The MAT PRINT USING
Statement 387

3. Summary of Rules: Printing
Arrays 388

Self-evaluation 1 389

C. Numeric Array Operations 390
1. Numeric Array Assignment 390
2. Numeric Array Operators 391

3. Built-in Numeric Array
Functions 394

4. Other Numeric Array MAT
Statements 397

D. String Array Operations 398
1. String Array Assignment 398
2. The String Array Operator 399
3. The Null String Assignment
Statement 400

Self-evaluation 2 400
E. Program Exampiles 401

Common Errors 406

Questions and Exercises 408
Interacting with the Computer 410
Programming Exercises 412

415

Chapter 17
introduction to Files: A General
Overview 417

Introduction and Learning
Objectives 417

A. Data Organization: Characters, Fields,
Records, Files 418

B. Representation of Data 418
1. Characters and Numbers 420
C. Auxiliary Storage 421

1. Characteristics of Auxiliary
Storage 421

2. Magnetic Tape 422
3. Magnetic Disk 422

D. File Organization and Modes of
Access 423

Contents

1. Sequential File Organization 423

2. Direct or Relative File
Organization 423

E. File Maintenance 424
1. Sequential Updating 425
2. Random Updating 425

F. Batch Processing v. Real-Time
Processing 426

Questions 426

Chapter 18
File implementation in
BASIC 429

Introduction and Learning
Objectives 429

Unit 6

Overview 430

A

Opening and Closing Files: The OPEN
and CLOSE Statements 432

1. The OPEN Statement 432
2. The CLOSE Statement 436

. Erasing Files: The ERASE

Statement 436

. Inquiring abow a File: The ASK

Statement 437
Self-evaluation 1 438

. Sequential Display Files 439

1. Output and Input 439
2. Program Examples 443

3. Controlling the File Pointer: The
SET POINTER Statement 447

4. Program Example: Sequential File
Updating 449

Self-evaluation 2 452

Sequential Internal and Stream Internal
Files 452

Appendixes

1. Output and Input: The WRITE and
READ Statements 453

2. Program Examples 456
Self-evaluation 3 459

F. Relative Internal Files 460

1. The SET RECORD
Statement 460

2. Qutput and Input 461

3. Changing and Deleting a Record:
The REWRITE and DELETE
Statements 462

4. Program Examples: Relative File
Updating 464

Self-evaluation 4 467

Common Errors 470

Questions and Exercises 471
Interacting with the Computer 472
Programming Exercises 474

477

Appendix A: The BASIC Character
Set 479

Appendix B: Debugging Programs 481
Appendix C: Solutions to Odd Numbered

Self-evaluation Exercises 486

Index 495

