Problem Solving with

A N S I Structured BAS I C |

Rina Yarmish and Joshua Yarmish




Problem Solving with

A N S I Structured BAS l C

Rina Yarmish Joshua Yarmish
Kingsborough Pace
Community College University

“

S/RAN

SCIENCE RESEARCH ASSOCIATES, INC.
Chicago, Henley-on-Thames, Sydney, Toronto

An IBM Company



To Lea Kobre, Max Kobre, Hannah Yarmish,
and the memory of Louis Yarmish

Acknowledgment

The corresponding software for this text was
prepared by NKR Research, Inc., San Jose,

California.

Acquisitions Editor
Michael Carrigg

Project Editor
Elizabeth Sugg

Production Administrator
Steve Leonardo

Compositor
Carlisle Publishers Services (A division
of Carlisie Communications, Ltd.)

Cover and Text Designer
David Corona Design Associates

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-
Publication Data

Yarmish, Rina.
Probiem solving with ANSI structured

BASIC.

Includes index.

1. BASIC (Computer program
language) 2. Structured programming.
I. Yarmish, Joshua. |l. Title.
QA76.73.B3Y37 1987 005.13'3 87-9815
ISBN 0-574-18680—-8

Copyright © 1988 Science Research
Associates, Inc. All rights reserved. No
part of this publication may be reproduced,
stored in a retrieval system, or transmitted,
in any form or by any means, electronic,
mechanical, photocopying, recording, or
otherwise, without the prior written
permission of Science Research
Associates, Inc.



Introduction

Problem Solving with ANSI Structured BASIC
introduces students to principles of program design
and to computer programming using the BASIC
language. No prior familiarity with computers or
knowledge of programming is required.

Approach
]

Problem Solving with ANSI Structured BASIC
presents a systematic, disciplined approach to
program development, beginning with an
understanding and analysis of the problem to be
solved and continuing throughout the design, coding,
testing, and documentation phases of problem
solving.

The BASIC language itself is also taught, along
with presentation of a series of applications that may
be processed using a computer. Moreover, since
educators and computer professionals today widely
accept the fact that structured design and structured
programming form a solid foundation for good
problem-solving methodology, this textbook is largely
devoted to methods for implementing principles of
good structured design and structured programming
in BASIC.

In the first seven chapters, we introduce BASIC
programming using an approach to problem solving
that closely simulates human thinking. This enables
the student to develop a “feel” for what programming
is in a problem-solving environment that is not totally
foreign. Beginning with chapter 8 and continuing
throughout the remainder of the text, concepts of
structured design and structured programming are
introduced and are, from that point on, continually
developed and practiced to enable structured
programming to become as natural as possible to the
reader. The goal is for the reader eventually to “think
structure.” It has been the authors’ experience that
this systematic introduction of structured concepts is
most effective. That is, in order to develop a good
understanding of what a well-structured program is, it
is best for the beginner first to see problem solution
in unstructured form, contrasted with structured
solution to the same problem. (For those not of this
opinion, we have suggested an alternate path
through the text [see the paragraph on “Modularity,”
below] which will enable one to avoid exposure to
unstructured programs.)

Intended Audience

Problem Solving with ANSI Structured BASIC
assumes no prior familiarity with computers. It begins
with explanation and discussion of what a computer
is, prior to the sections on problem solving and
BASIC programming. However, while the text begins
at a very elementary level, it enables the student to
reach a level of proficiency at which one may create
useful and interesting applications programs.

The text is written using clear, explanatory
prose. The reading level is geared to that of the
typical community college student or the senior
coliege student in his or her first years of study. The
textbook is intended for use in community or senior
colleges as a main text for a one-semester course in
BASIC programming or as an ancillary text for use in
an introductory computer science or data processing
course that includes BASIC programming as a major
subtopic. Since explanations are complete and
adequate examples and exercises are provided, the
text is also suitable for self-study.

Distinguishing Features
|

This book will distinguish itself from other BASIC
books on the market in several important ways. First,
the version of BASIC described is the latest ANSI
BASIC standard, which is outstanding in that it
provides instructions enabling one to write structured
programs with instructions that are truly suited for
that purpose. The ANSI BASIC instruction set allows
one to incorporate structured constructs into BASIC
programs so that the writing of BASIC programs may
be done in a natural way and need not be “forced”
through attempted simulation of those structures, as
must be done with many other versions of BASIC.
ANSI BASIC has brought together the simplicity of
the original BASIC and important elements of modern
programming languages. The resulting dialect is
most suitable for business applications and
educational environments.

Moreover, for the convenience of the instructor
and user, and to provide absolute compatibility
between text material and software, we have
provided
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e an ANSI BASIC interpreter that will enable users
to run programs using the new standard. It is an
implementation of the ANSI BASIC standard,
developed by NKR Research, Inc., in San Jose,
California. The interpreter includes elements of
the ANSI core standard and extensions beyond
the core standard, including relative (direct
access) files.

e an IBM PC diskette with all the sample programs
that have been assigned figure numbers in the
text.

Another important feature of this book is its
pedagogy, particularly its emphasis on the teaching
of problem solving and design methodology. These
ideas are introduced in chapter 2, while principles of
structured design, stepwise refinement, and control
structures are discussed comprehensively in
chapter 8. Moreover, implementation of these ideas
and methodologies continues throughout the text,
both in discussion and in the many program
examples that are provided. Discussion begins at an
elementary level, with new concepts gradually and
systematically appended.

Presentation of the BASIC language is clear,
complete, and concise; many examples are provided
to illustrate the uses of concepts discussed. The
average college student may learn to program in
BASIC using this text and a computer, without
additional help.

Other distinguishing features include the
following:

1. Realistic Problems and
Applications

Problem Solving with ANSI Structured BASIC uses a
variety of realistic problems that the student may
associate with the “real world.” These problems will
provide motivation for learning that contrived
examples simply do not.

2, Introduction and Learning
Objectives

Each chapter begins with a motivating introduction,
followed by a brief description of the main objectives
of the chapter.

xiv Introduction

3. Instruction Summaries

BASIC instructions described in the text are
summarized in concise form. Summaries include
general instruction formats, rules for usage, and
examples. Each summary is boxed to distinguish it
from the body of the text, to enable the reader to
locate it quickly for easy reference.

4. Self-evaluation

Questions for self-evaluation are provided after each
main topic within a chapter. These allow students to
test their understanding of current material before
proceeding further. There are almost three dozen
sets of self-evaluation exercises throughout the text.
Answers to odd-numbered self-evaluation exercises
are provided in appendix C.

5. “Common Errors”

Each chapter that presents new BASIC instructions is
accompanied by a section describing errors
commonly committed by individuals to whom the
instructions are “new.” These sections will help
students avoid the most common errors committed
by novice programmers. They will thus help students
to write their own programs and to correct program
errors that are relevant to the programming
techniques presented in the chapter. There are well
over 100 such potential errors described in these
sections.

6. “Interacting with the Computer”

Each chapter that presents new BASIC instructions is
accompanied by a section entitled “Interacting with
the Computer.” These sections use step-by-step
directives to provide actual “hands-on” practice in
applying the new statements and techniques in a
variety of ways. Once a student has followed the
steps prescribed in these sections, he or she will no
longer approach the first programming
implementation of these instructions “cold.” The
exercises are carefully designed to highlight both
standard usages and eccentricities of the language
features taught; they bring the instruction rules to life.
There are almost 200 such exercises.



7. Questions, Problems, and
Programming Exercises

Each chapter is followed by carefully designed
questions, problems, and—where appropriate—
programming exercises. The questions and problems
are designed to highlight important facts and
concepts presented in the chapters. Applications
chosen for programming exercises are generally of
two types: (1) variations or extensions of problems in
the main body of the chapter, and (2) problems that
anticipate program examples of later chapters. The
text contains more than 100 programming exercises
and more than 300 other questions and problems.

8. Acting as a “Human Computer”

Many chapter exercises request that the student
determine the output of sample programs by acting
as a “human computer”; that is, by “executing” the
instructions by hand in the order and manner in
which they would be executed by the computer itself.
After determining what the output should be,
students are asked to key in the programs and have
the computer validate their results. These exercises
force the student to visualize the progression of
program logic; they thus contribute to enhanced
understanding of that logic. There are about 130
such exercises throughout the text.

9. “Toward Deeper Understanding”

Sections entitled “Toward Deeper Understanding”
provide in-depth explanations of difficult concepts for
the better student. These sections may be omitted
without loss of continuity.

10. A Separate Introductory
Chapter on Problem Solving

Chapter 2 is fully devoted to a discussion of proper
techniques for step-by-step development of
algorithms. Solutions to two applications (a customer
billing application and a checkbook balancing
application) are then gradually developed through
increasingly complex phases using appropriate
methods. Students thus participate in the systematic
development of increasingly complex algorithms.

11. Continuity

Several programming applications are gradually
developed, extended, and modified throughout the
book as new techniques and methodologies are
introduced. Thus, for example, algorithms for three
versions of the checkbook balancing problem are
developed in chapter 2; the problem is later coded in
unstructured form. With the introduction of concepts
of structured design in a subsequent chapter, a
structured algorithm for the checkbook balancing
problem is developed, followed by the corresponding
structured programs in yet later chapters.
Presentation of the same or similar applications in
different contexts using different techniques enables
the reader to concentrate on the methodologies
without becoming overly involved with the details of a
particular application. This type of development—the
provision of unstructured algorithms, unstructured
program solutions, structured algorithms, and
structured program solutions to the same problem—
is used for a wide variety of applications. (As noted
above, there are those who are of the opinion that
avoiding exposure to unstructured programs is best;
those individuals may follow a somewhat modified
path through the text [see the paragraph on
“Modularity,” below] which will enable one to avoid
such exposure.)

12. Programming Aids

Proper design and documentation of computer
programs are enhanced by the use of traditional
program flowcharts, and—for structured
programming—structured flowcharts (also called
Nassi-Schneiderman charts), which are particularly
well suited for clear, concise illustration of control
structures. Flowcharting techniques are discussed
and proper flowchart form and usage are illustrated
throughout the text in program examples.
Pseudocode is also emphasized and used as a
program design tool. The book contains more than
140 solved programs, more than 100 flowcharts, and
some two dozen illustrations using pseudocode.

13. Up-to-Date

The latest American National Standard BASIC has
been adhered to throughout. This standard reflects
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the industry’s current emphasis on structured
programming.

14. Accuracy

All programs provided in the text have been tested
and debugged. Actual computer output is provided
for most numbered figures. Moreover, since diskettes
containing all programs that have been included in
numbered figures in the text are available to
instructors, it is a simple matter to run these
programs using the interpreter provided with the text
and to observe the output.

15. Emphasis on Programming Style

The text emphasizes an organized, disciplined
approach to both the planning and coding of problem
solutions. Proper indentation within programs has
been used for visual clarity.

16. Structured Programming

Particular attention has been paid to the design of
programs using the control structures of structured
programming. An entire chapter (chapter 8) is first
devoted to a “language-free” discussion of the
sequence, selection, and iteration structures and
their implementation in structured programming.
Chapters 9 and 10 present the BASIC statements to
implement those structures. Structured style is
standard in all subsequent chapters.

17. Coverage

The text includes comprehensive coverage of some
oft-neglected topics:

Character Strings. Basic material on character
strings and string manipulation is provided in earlier
chapters. However, chapter 14 is devoted to more
comprehensive coverage of character constants,
variables, and expressions; substrings; string
subprograms, including those using built-in string
functions and user-defined subprograms; and
comparison of character expressions. Seventeen
program examples in chapter 14 illustrate the uses of
character strings.

Matrices. ANSI BASIC provides MAT statements
for array handling, in addition to the treatment of
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arrays with subscripted variables covered in

chapter 13. Chapter 16 provides detailed coverage of
the MAT statements, including input/output
operations, built-in numeric array functions, and
numerous operations with both numeric and string
arrays.

External Files and File Processing. Working with
files is crucial to many applications in industry;
however, files and file processing are often difficult
topics for beginning programmers. We believe that
this difficulty is often related to weakness in
understanding underlying concepts. For this reason,
we have devoted an entire unit to the study of files.
A separate chapter (chapter 17) provides a
language-free presentation of file-related concepts:
data organization, auxiliary storage, file organization
and access mode, and file maintenance
methodologies, including sequential and relative
updating. This presentation is followed (in
chapter 18) by a discussion of file implementation in
ANSI BASIC, including comprehensive treatment of
file updating with sequential and relative files. More
than twenty program examples in chapter 18
illustrate various file-handling techniques.

Debugging. A separate appendix (appendix B) is
devoted to discussion of debugging, (finding and
correcting program errors). This appendix material
may be covered at any point within the course
sequence that the instructor feels is appropriate.
However, as all programmers realize, debugging is
an ongoing process, and the possibility of mishap
should be kept in mind from the very beginning of
the programming process. Therefore, each chapter
that presents new instructions includes a section
enumerating “common errors” to avoid; moreover,
exercises requesting the student to “act as a human
computer” are “trace” exercises that force
awareness of the logical flow of programs throughout
the learning process. '

18. Modularity

The instructor has great flexibility in choice and
arrangement of topics, after coverage of fundamental
“core” chapters. For those who wish to introduce
students to structured concepts after they have
obtained a “feel” for the language in the absence of
structure, unit 1 (“The Computer and Problem
Solving,” chapters 1 and 2) and unit 2 (“BASIC



Language Fundamentals,” chapters 3—7) should be
covered first, followed by the first three chapters
(chapters 8, 9, and 10) of unit 3 (“Structure and
Style: Moduiar Program Design and Structured
Programming”). Substantial flexibility is provided from
that point on, as indicated below:

{a) Chapters 1-10 are to be studied first.
(b) The following may be covered in any order
after chapter 10:

e Chapter 11 (“Subprograms—Part I: Functions”)
and chapter 12 (“Subprograms—Part i
Subroutines”).

e Chapter 13 (“Arrays and Subscripted Variables”).
Section G of this chapter should be deferred until
after chapters 11 and 12.

e Chapter 14 (“More on Character Strings”).
Section E of this chapter should be deferred until
after chapters 11 and 12.

e Chapter 15 (“More on Input/Output”).
e Chapter 16 (“Matrices: The MAT Statements”).

o Chapter 17 (“Introduction to Files: A General
Overview”) and chapter 18 (“File Implementation
in BASIC"). For students who are familiar with
concepts of external files from their study of other
languages, chapter 17 may be omitted without
loss of continuity.

In other words, following chapter 10, the instructor
may choose to cover any of the succeeding chapters
of the text in any order—no one chapter depending
on any other chapter—with the exception of
chapter 12 (which should follow chapter 11) and the
possible exception of chapter 18 (which should follow
chapter 17 for students with no prior exposure to file
concepts). This modularity affords great flexibility of
sequencing and of topical selection.

Instructors who wish to avoid unstructured
programs may choose the following path:

(a) Chapters 1-5

(b) In chapter 6, brief mention of material in
section A, full coverage of section B, cursory
treatment of section D, and full coverage of
section F. (Omit sections C, E, and G.)
Omit chapter 7.

(c) Chapters 8, 9, and 10.

(d) Any of chapters 11-12, 13, 14, 15, 16, or
17-18 may follow in any order, as described
above.

Within the limitations described above, the instructor
is free to determine the sequence of instruction and
to emphasize the topics he or she feels are
appropriate to the course. Similarly, the student is
free to move to topics of interest without having to be
concerned about missing prerequisite material. The
course, in other words, need not be textbook—
directed, but may be directed by the instructor or by
the independent reader.

19. Textbook Suppiements
This text is supplemented with

e the ANSI BASIC interpreter, discussed above.
(The provision of this software presents a unique
opportunity to teach the latest version of BASIC,
one that enables the writing of structured BASIC
programs in a dialect to which structure is
“natural.”)

e |BM PC diskettes with all programs that have
been included in numbered figures in the text.

e an instructor’s manual, inciuding answers to text
questions and exercises.

e transparency masters of illustrative text material,
flowcharts, structured flowcharts, and program
listings.

e computerized test bank.

We wish to express our sincere thanks and
appreciation to all those who have contributed to the
development of this book: to the reviewers (R. Ken
Walter, Weber State College; Brian A. Rudolph,
Bowling Green State University; Robert Norton, Mesa
College; George Novacky, University of Pittsburgh;
Ralph A. Szweda, Monroe Community College),
whose constructive criticisms were very helpful in
shaping and polishing the final manuscript; to our
students, from whom we have always learned a
great deal; and to the people at SRA who were so
enthusiastic and who contributed so much time,
energy, and talent to bringing this complex package
to completion. We are particularly indebted to our
editor, Michael Carrigg, who orchestrated this project
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with enthusiasm and with vision; and to our
developmental editor, Elizabeth Sugg, whose
masterful coordination of activities was invaluable to
the production of a superior work on a timely basis.

Comments and suggestions for improvement will
be much appreciated and will be given careful
consideration by the authors. Please direct all
communication to either author.

We sincerely hope that you enjoy reading, studying,
and learning from this text. If you do and you feel
that you have gained in knowledge and in expertise
through its use, the authors will be well rewarded.
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