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Foreword -

Asymptotical problems have always played an important role in probability
theory. In classical probability theory dealing mainly with sequences of
independent variables, theorems of the type of laws of large numbers,
theorems of the type of the central limit theorem, and theorems on large
deviations constitute a major part of all investigations. In recent years, when
random processes have become the main subject of study, asymptotic
investigations have continued to play a major role. We can say that in the
theory of random processes such investigations play an even greater role
than in classical probability theory, because it is apparently impossible to
obtain simple exact formulas in problems connected with large classes of
random processes.

Asymptotical investigations in the theory of random processes include
results of the types of both the laws of large numbers and the central limit
theorem and, in the past decade, theorems on large deviations. Of course,
all these problems have acquired new aspects and new interpretations in
the theory of random processes.

One of the important schemes leading to the study of various limit
theorems for random processes is dynamical systems subject to the effect
of random perturbations. Several theoretical and applied problems lead to
this scheme. It is often natural to assume that, in one sense or another, the
random perturbations are small compared to the deterministic constitu-
ents of the motion. The problem of studying small random perturbations
of dynamical systems has been posed in the paper by Pontrjagin, Andronov,
and Vitt [1]. The results obtained in this article relate to one-dimensional
and partly two-dimensional dynamical systems and perturbations leading
to diffusion processes. Other types of random perturbations may also be
considered; in particular, those arising in connection with the averaging
principle. Here the smallness of the effect of perturbations is ensured by the
fact that they oscillate quickly.

The contents of the book consists of various asymptotic problems arising
as the parameter characterizing the smallness of random perturbations
converges to zero. Of course, the authors could not consider all conceivable |
schemes of small random perturbations of dynamical systems. In particu-
lar, the book does not consider at all dynamical systems generated by random
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vi . Foreword
vector fields. Much attention is given to the study of the effect of pertur-
bations on large time intervals. On such-intervals small perturbations essen-
tially influence the behavior of the system in general. In order to take ac-
count of this influence, we have to be able to estimate the probabilities of
rare events, i.e., we need theorems on the asymptotics of probabilities of
large deviations for random processes. The book studies these asymptotics
and their applications to problems of the behavior of a random process on
large time intervals, such as the problem of the limit behavior of the in-
variant measure, the problem of exit of a random process from a domain,
and the problem of stability under random perturbations. Some of these
Jsoblems have been formulated for a long time and others are compara-
tively new.

The problems being studied can be considered as problems of the asymp-
totic study of integrals in a function space, and the fundamental method
used can be considered as an infinite-dimensional generalization of the well-
known method of Laplace. These constructions are linked to contemporary
research in asymptotic methods. In the cases where, as a result of the
effect of perturbations, diffusion processes are obtained, we arrive at prob-
lems closely connected with elliptic and parabolic differential equations
with a small parameter. Qur investigations imply some new results con-
cerning such equations. We are interésted in these connections and as a
rule include the corresponding formulations in terms of differential equa-
tions.

We would like to note that this book is being written when the theory
of large deviations for random processes is just being created. There have
been a series of achievements but there is still much to be done. Therefore,
the book treats some topics that have not yet taken their final form (part
of the material is presented in a survey form). At the same time, some new
research is not reflected at all in the book. The authors attempted to mini-
mize the deficiencies connected with this.

The book is written for mathematicians but can also be used by special-
ists of adjacent fields. The fact is that although the proofs use quite intricate
mathematical constructions, the results admit a simple formulation as
a rule.
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Introduction

Let b(x) be a continuous vector field in R". First we discuss nonrandom per-
turbations of a dynamical system

X, = b(x,). (1)
We may consider the perturbed system

X, =KX, ¥), )]

where b(x, y)is a function jointly continuous in its two argaments and turning
into b(x) for y = 0. We shall speak of small perturbations if the function
giving the perturbing effect is small in one sense or another.

We may speak of problems of the following kind: the convergence of the
solution X, of the perturbed system to the solution x, of the unperturbed
system as the effect of the perturbation decreases, approximate expressions of
various accuracies for the deviations X, — x, caused by the perturbations,
and the same problems for various functionals of a solution (for example, the
first exit time from a given domain D).

To solve the kind of problems related to a finite time interval we require
less of the function b(x, y) than in problems connected with an infinite
interval (or a finite interval growing unboundedly as the perturbing effect
decreases). The simplest result related to a finite interval is the following: if
the solution of the system (1) with initial condition x4 at t = 0 is unique, then
the solution X, of system (2) with initial condition X, converges to x,
uniformly in te [0, T] as X, = xo and [¥llor = SUPo<c< |¥:| = 0. If the
function b(x, y) is differentiable with respect to the pair of its arguments, then
we can linearize it near the point x = x,, y = 0 and obtain a linear approxi-
mation &, of X, — x, as the solution of the linear system

- . b _
61 = ;'a'; (xnz('))‘sf + ;é'y_k(xu 0) : 'pf’ (3)

under sufficiently weak conditions, the norm SUpo <, <1l X, — X, — J,| of the
remainder will be o({ X, — xo| + W¥lor) If b(x,y) is still smoother,
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then we have the decomposition
Xt=xt+5z+7r+0(lxo—x0|2+ ”'ﬁ"(z)T), (4)

in which y, depends quadratically on perturbations of the-initial conditions
and the right side (the function y, can be determined from a system of linear
differential equations with a quadratic function of ¥,, J, on the right side),
etc.

We may consider a scheme

X; = b(Xi, &) &)

depending on a small parameter ¢, where ¥, is a given function. In this case
for the solution X; with initial condition X§ = x, we can obtain a decom-
position

X, + e¥YV + 2Y® + . 4 Y™ (6)

in powers of ¢ with the remainder infinitely small compared with ¢", uniformly
on any finite interval [0, T].

Under more stringent restrictions on the function b(x, y), results of this
kind can be obtained for perturbations i, which are not small in the norm
of uniform convergence but rather, for example, in some L?-norm or another.

As far as results connected with an infinite time interval are concerned,
stability properties of the unperturbed system (1) as ¢ — co are essential.

Let x,, be an equilibrium position of system (1), i.e., let b(x,) = 0. Let this
equilibrium position be asymptotically stable, i.c., for any neighborhood
U» x, let there exist a small neighborhood ¥ of x,, such that for any x,e V
the trajectory x, starting at x, does not leave U for ¢t > 0 and converges to X,
as t — co0. Denote by G,, the set of initial points x, from which there start
solutions converging to x,, as t — oc. For any neighborhood U ofx,, and any
point x, € G, there exist § > 0and T > 0 such that for

'XO - xOI < 6’ SupOsrsz'I’ll < 5

the solution X, of system (2) with initial condition x, does not go out of
Ufort > T. This holds uniformly in x, within any compact subset of G, (e,
6 and T can be chosen the same for all points x, of this compactum). This
also implies the uniform convergence of X, to x, on the infinite interval
[0, o0) provided that X — Xo, SUPg < <o |¥:| = O.

On the other hand, if:the equilibrium position x, does not have the
indicated stability properties, then by means of arbitrarily small perturba-
tions, the solution X, of the perturbed system can be “carried away” from X
for sufficiently large ¢ even if the initial point X, equals x,. In particular,
there are cases where the solution x, of the unperturbed system cannot leave
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some domain D for ¢t > 0, but the solution X, of the system obtained from the
initial one by an arbitrarily small perturbation leaves the domain in finite
time.

Some of these results also hold for trajectories attracted not to a point x,,
but rather a compact set of limit points, for example, for trajectories winding
on a limit cycle.

There are situations where besides the fact that the perturbations are
small, we have sufficient information on their statistical character. In this case
it is appropriate to develop various mathematical models of small random
perturbations.

The consideration of random perturbations extends the notion of per- -
turbations considered in classical settings at least in two directions. Firstly,
the requirements of smallness become less stringent: instead of absolute
smallness for all ¢ (or in integral norm) it may be assumed that the perturba-
bations are small only in mean over the ensemble of all possible perturbations.
Small random perturbations may assume large values but the probability of
these large values is small. Secondly, the consideration of random processes
as perturbations extends the notion of the stationarity character of perturba-
tions. Instead of assuming that the perturbations themselves do not change.-
with time, we may assume that the factors which form the stafistical structure
of the perturbations are constant, i.e., the perturbations are stationary as
random processes.

Such an extension of the notion of a perturbation leads to effects not
characteristic of small deterministic perturbations. Especially important new
properties occur in considering a long lasting effect of small random per-
turbations.

We shall see what models of small random perturbations may be like and
what problems are natural to consider concerning them. We begin with per-
turbations of the form

Xi = b(X{, ey), )

where y, is a given random process, for example, a stationary Gaussian
process with known correlation function. (Nonparametric problems con-
nected with arbitrarily random processes which belong to certain classes and
are small in some sense are by far more complicated.) For the sake of sim-
plicity, let the initial point X, not depend on &: X3 = x,. If the solution of
system (7) is unique, then the random perturbatlon w(t) leads to a random
process X;.

The ﬁrst problem which arises is the following: Wlll X} converge to the
solution x, of the unperturbed system as ¢ - 0? We may consider various
" kinds of probabilistic convergence: convergence with probability 1, in
probability, and in mean. If sup, ., r|¥,| < 0 with probability 1, then,
ignoring the fact that the realization of , is random, we may apply the results
presented above to perturbations of the form ey, and obtain, under various
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conditions on b(x, y), that X{ — x, with probability 1, uniformly in ¢ € [0, -T]
and that

X =x, + YD 4 oe) (8)
or

X; =x +e¥{V + - + Y + 0e") ®

(o(e) and o(e") are understood as being satisfied with probability 1 uniformly
inte[0, T] as ¢ - 0).

Nevertheless, it is not convergence with probability 1 which represents
the main interest from the point of view of possible applications. In considering
small random perturbations, perhaps we shall not have to do with X? for
various ¢ simultaneously but only for one small ¢. We shall be interested in
questions such as: Can we guarantee with practical certainty that for a small
ethe value of X7 is close to x, ? What will the order of the deviation X{ — x, be?
What can be said about the distribution of the values of the random process
X? and functionals thereof? etc. Fortunately, convergence with probability 1
implies convergence in probability, so that X} will converge to x, in' proba-
bility, uniformly inre [0, T] as ¢ = O:

P{ sup |X| — x,| 26}—»0

0st<T (10)
forany 6 > 0.

For convergence in mean we have to impose still further restrictions on
b(x, y) and y,; we shall not discuss this.

From the sharper result (8) it follows that the random process

th= Xf — X
&

converges to a random process Y{! in the sense of distributions as ¢ — 0 (this
latter process is connected with the random perturbing effect y, through
linear differential equations). In particular, this implies that if , is a Gaussian
process, then in first approximation, the random process X will be Gaussian
with mean x, and correlation function proportional to ¢2. This implies
the following result: if f is a smooth scalar-valued function in R’ and
grad f(x,) # 0, then

p{&u_—f(__) s} - o) + o an
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as ¢ —» 0, where ®(y) = |7, (1//2n)e™ **/*dz is the Laplace function and ¢
is determined from grad f(x, ) and the value of the correlation function of YV
at the point (t,, t,). We may obtain sharper results from (9): an expansion of
the remainder o(1) in powers of &. We may also obtain results relative to
asymptotic distributions of functionals of Y, 0 < ¢ < T, and sharpenings of
them, connected with asymptotic expansions.

Hence for random perturbations of the form (7) we may pose and solve a
series of problems characteristic of the limit theorems of probability theory.
Results on the convergence in probability of a random solution of the per-
turbed system to a nonrandom function correspond to laws of large numbers
for sums of independent random variables. We can speak of the limit distri-
bution under a suitable normalization; this corresponds to results of the type
of the central limit theorem. Also asin sharpenings of the central limit theorem,
we may obtain asymptotic expansions in powers of the parameter.

In the limit theorems for sums of independent random variables there is
still another direction: the study of probabilities of large deviations (after
normalization) of a sum from the mean. Of course, all these probabilities con-
verge to zero. Nevertheless we may study the problem of finding simple
expressions equivalent to them or the problem of sharper (or rougher)
asymptotics of them. The first general results concerning large deviations for
sums of independent random variables have been obtained by Cramér [1].
These results have to do with asymptotics, up to equivalence, of probabilities
of the form

Gt oo+ by rm
P 12
{ = >} (12

as n— o0, x = oo and also asymptotic expansions for such probabilities
(under more stringent restrictions).

We may be interested in analogous problems for a family of random pro-
cesses X7 arising as a result of small random perturbations of a dynamical
system. For example, let 4 be a set in a function space on the interval [0, T],
which does not contain the unperturbed trajectory x, (and is at a positive
distance from it). Then the probability

P{X*e A} (13)

of the event that the perturbed trajectory X? bélongs to A, of course, con-
verges to 0 as & — 0, but what is the asymptotics of this infinitely small
probability ?

It may seem that such digging into extremely rare events contradicts the
general spirit of probability theory, which ignores events of small probability.
Nevertheless, it is exactly this determination of which almost unlikely events
related to the random process X¢ on a finite interval are “more improbable”
and which are “less improbable,” that, in several cases, serves as a key to the
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question of what the behavior, with probability close to 1, of the process X;
will be on an infinite time interval (or onan interval growing with decreasing €).

Indeed, for the sake of definiteness, we consider the particular case of
perturbations of the form (7): e

X = B(X2) + ey, 14

B
.

Furthermore, let , be a stationary Gaussian process. Assume that the trajec-
tories of the unperturbed system (1), beginning at points of a bounded
domain D, do not leave this domain for ¢ > 0 and are attracted to a stable
equilibrium position x, as t - co. Will the trajectories of the perturbed
system (14) also have this property with probability near 1? The results above
related to small nonrandom perturbations cannot help us answer this
question, since the supremum of |y, | for t € [0, o0) is infinite with probability
1 (if we do not consider the case of “ very degenerate” processes y,). We have
to approach this question differently. We divide the time axis [0, o) into a
countable number of intervals of length T. On each of these intervals, for
small ¢, the most likely behavior of X? is such that the supremum of | X% — x, |
over the interval is small. (For intervals with large indices, X will be snmply
close to x, with overwhelming probability.) All other ways of behavior, in
particular, the exit of X! from D on a given time interval, will have small
probabilities for small &. Nonetheless, these probabilities are positive for
any ¢ > 0. (Again, we exclude from our considerations the class of “very
degenerate” random processes ¥,.) For a given ¢ > 0 the probability

P{X; ¢ D for some te [kT, (k + 1)T]} (15)

will be almost the same for all intervals with large indices. If the events
involving the behavior of our random process on different time intervals were
independent, we would obtain from this that sooner or later, with proba-
bility 1, the process X; leaves D and the first exit time * has an approximately
exponential distribution with parameter T~ !'P{X? exits from D for some
te[kT, (k + 1)T]}. The same will happen if these events are not exactly
independent but the dependence between them decreases for distant intervals
in a certain manner. This can be ensured by some weak dependence prop-
erties of the perturbing random process y,.
Hence for problems connected with the exit of X¢ from a domain for small
&, it is essential to know the asymptotics of the probabilities of improbable
events (“large deviations™) involving the behavior of X: on finite time
intervals. In the case of small Gaussian perturbations it turns out that these
probabilities have asymptotics of the form exp{—Ce~2} as ¢ - 0 (rough-
asymptotics, i.e., not up to equivalence but logarithmic equivalence). It turns
. out that we can introduce a functional S(¢) defined on smooth functions
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(which are smoother than the trajectories of X7;), such that
P{p(X*, ¢) < &} = exp{—¢ 5(¢)} (16)

for small positive § and ¢, where p is the distance in a function space (say, in
the space of continuous functions on the interval from T, to T,; for the
precise meaning of formula (16), cf. Ch. 3). The value of the functional at a
given function characterizes the difficulty of the passage of X! near the
function. The probability of an unlikely event consists of the contributions
exp{ —¢&~2S(¢)} corresponding to neighborhoods of separate functions g; as
¢ — 0, only the summand with smallest S(¢) becomes essential. Therefore, it is
natural that the constant C providing the asymptotics is determined as the
infimum of S(@) over the corresponding set of functions ¢. Thus for the
probability in formula (15) the infimum has to be taken over smooth functions
¢, leaving D for t € [kT, (k + 1)T]. (Exact formulations and the form of the
functional S(¢) may be found in §5, Ch. 4; there we discuss its application to
finding the asymptotics of the exit time ¢ as ¢ — 0.)

Another problem related to the behavior of X¢ on an infinite time interval
is the problem of the limit behavior of the stationary distribution u® of X? as
& — 0. This limit behavior is connected with the limit sets of the dynamical
system (1). Indeed, the stationary distribution shows how much time the
process spends in one set or another. It is plausible to expect that for small ¢
the process X? will spend an overwhelming amount of time near limit sets of
the dynamical system and, most likely, near stable limit sets. If system (1) has
only one stable limit set K, then the measure u° converges weakly to a measure
concentrated on K as ¢ — 0(we do not formulate our assertions in so precise a
way that we take account of the possibility of the existence of distinct limits
p* for different sequences ¢; — 0). However, if there are several stable sets,
even if there are at least two, K, and K ,, then the situation becomes unclear;
it depends on the exact form of small perturbations.

The problem of what happens to the stationary distribution of a random
process arising as an effect of random perturbations of a dynamical system
when these perturbations decrease has been posed in the paper of Pontrjagin,
Andronov, and Vitt [ 1]. The approach applied in this article does not relate to
perturbations of the form (14) but rather perturbations under whose influence
there arise diffusion processes (given by formulas (19) and (20) below). This
approach is based on solving the Fokker-Planck differential equation; in the
one-dimensional case the problem of finding the asymptotics of the stationary
distribution has been solved completely (cf. also Bernstein’s article { 1] which
appeared in the same period). Some results involving the stationary distribu-
tion in the two-dimensional case have also been obtained.

Our approach is not based on equations for the probability density of the
stationary distribution but rather the study of probabilities of improbable
events. We outline the scheme of application of this approach to the problem
of asymptotics of the stationary distribution.
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The process X: spends most of the time in neighborhoods of the stable
limit sets K, and K ,, it occasionally moves to a significant distance from K,
or K, and returns to the same set, and it very seldom passes from K to K, or
conversely. If we establish that the probability of the passage of X? from K, to
K, over a long time T (not depending on &) converges to 0 with rate

exp{—V;,&" %}
as ¢ — 0, and the probability of passage from K, to K, has the order
exp{—V;;67 %}

and V;, < V,, then it becomes plausible that for small ¢ the process spends
most of the time in the neighborhood of K,. This is so since a successful
“attempt” at passage from K, to K, will fall on a smaller number of time
intervals [kT, (k + 1)T] spent by the process near K,, than a successful
- attempt at passage from K, to K, with respect to the number of time intervals
of length T spent near K,. Then y* will converge to a measure concentrated
on K,. The constants V;, and ¥,, can be determined as the infima of the
. functional 5(p) over the smooth functions ¢ passing from K, to K, and
conversely on an interval of length T (more precisely, they can be determined
as the limits of these infima as T — o).

The program of the study limit behavior which we have outlined here is
carried out not for random perturbations of the form (14) but rather per-
turbations leading to Markov processes; the exact formulations and results
are given in §4, Ch. 6. )

As we have already noted, random perturbations of the form (14) do not
represent the only scheme of random perturbations which we shall consider
(and not even the scheme to which we shall pay the greatest attention). An
immediate generalization of it may be considered, in which the random pro-
cess Y, is replaced by a generalized random process, a “white noise,” which
can be defined as the derivative (in the sense of distributions) of the Wiener
process w,:

Xt = KX + ew,. (17

Upon integrating equation (17), it takes the following form which does not
contain distributions: '

Xi=Xo+ [ "BXD) ds + o(w, — o). (18)
0

For perturbations of this form we can solve a larger number of interesting
problems than for perturbations of the form (14), since they lead to a Markov
process X;.
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A further generalization is perturbations which depend on the point of the
space and are of the form

X; = K(X}) + ea(XH)w,. (19)
where a(x) is a matrix-valued function. The precise meaning of equation (19)
can be formulated in the language of stochastic integrals in the following way:

t 13
X=X, + f b(X%)ds + ¢ f a(X%) dw,. (20)
] o N .

Every solution of equation (20) is also a Markov process (a diffusion process
with drift vector b(x) and diffusion matrix e2o(x)s*(x)). For-perturbations of
the white noise type, given by formulas (19), (20), we can also obtain results on
convergence to the trajectories of the unperturbed system, of the the type (10),
and results on expansions of the type (9) in powers of ¢, from which we can
~ obtain results. on asymptotic Gaussian character (for example, of the type
(11)). Of course, since the white noise is a generalized process whose realiza-
tions are not bounded functions in any sense, these results cannot be obtained
from the results concerning nonrandom perturbations mentioned at the
beginning of the introduction; they have to be obtained independently (cf. §2,
Ch. 2).

For perturbations of the white noise type we establish results concerning
probabilities of large deviations of the trajectory X? from the trajectory x, of .
the dynamical system (cf. §1, Ch. 4 and §3, Ch. 5). Moreover, because of the
Markovian character of the processes, they become even simpler ;in particular,
the functional S(¢) indicating the difficulty of passage of a trajectory near a
function takes the following simple form:

1 . ) . .
50) = 5 [T akoXs! - bloIxo! - bl ds

where (a;(x)) = (o(x)o*(x))~ .

What other schemes of small random perturbations of dynamical systems
shall we consider ? What families of random processes will arise in our study?
The generalizations may go in several directions and it is not clear which of
these directions are preferred to others. Nevertheless, the problem may be
posed in a different way: In what case may a given family of random processes .
be considered as a result of a random perturbation of the dynamical system
(1)?

First, in the same way as we may consider the trajectory of a dynamical
system, issued from any point, we have to be able to begin the random process
at any point x of the space at any time t,,. Further the random process under
consideration should depend on a parameter h characterizing the smallness of
perturbations. For the sake of simplicity, we shall assume 4 is a positive
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numerical parameter converging to zero (in §3, Ch. 5 families depending on a
two-dimensional parameter are considered). Hence for every real t,, xe R"
and h > 0, X!>**is a random process with values in R", such that X!>** = x.
We shall say that X! = is a result of small random perturbations of system
(1) if X! %% converges in probability to the solution x! * of the unperturbed
system (1) with the initial condition x;'* = xas h | 0.

This scheme incorporates many famlhes of random processes, arising in
various problems naturally but not necessarily as a result of the “distortion”
of some-lmual dynamical system.

»

-

EXAMPLE 1. Let {¢£,} be a sequence of lndependent identically distributed
r-dlmenslgnafrandom vectors. For to e R, x € R", h > 0 we put

) h-t)-1 .
Xosh=x4h Y & (1)

k=[h"110]

It is easy to see that X' ** converges in probability to x@* = x + (t — to)m,
uniformly on every finite time interval as h | O (provided that the mathe-
matical expectation m = M¢, exists), i.e., it converges to the trajectory of the
dynamical system (1) with b(x) = m.

ExaMpLE 2. For every h > 0 we construct a Markov process on the real line
in the following way. Let two nonnegative continuous functions I(x) and
r(x) on the real line be given. Our process, beginning at a point x, jumps to the
point x — h with probability &~ 'I(x) dt over time dt, to the point x + h with
probability h~'r(x) dt, and it remains at x with the complementary proba-
bility. An approximate calculation of the mathematical expectation and
variance of the increment of the process over a small time interval At shows
that as h | 0, the random process converges to the deterministic, nonrandom
process described by equation (1) with b(x) = r(x) — I(x) (the exact results
are in §2, Ch. 5).

Still another class of examples: ¢, is a stationary random process and
X! = X! s the solution of the system

X = MXAE ) 22)

with initial condition x at time ¢,. It can be proved under sufficiently weak
assumptions that X} converges to a solution of (1) with b(x) = Mb(r, &,) as
h {0 (Mb(x, &) does not depend on s; the exact results may be found in
§2, Ch. 7).

In the first example, the convergence in probability of X*>**ash | 0 is a
law of large numbers for the sequence {¢,}. Therefore, in general we shall
speak of results establishing the convergence in probability of random pro-
cesses of a given family to the trajectories of a dynamical system as of results



