COMPUTER
(RAPHICS

Donald Hearn / M. Pauline Baker

COMPUTER
CSRAPHICS

Donald Hearn
Department of Computer Science, University of HHlinois

Department of Computer Science, Western llinois University

PRENTICE-HALL, INC., Englewood Cliffs, New Jersey 07632

PREFACE

Computer graphics is one of the most exciting and rapidly growing fields in com-
puter science. Some of the most sophisticated computer systems in use today are
designed for the generation of graphics displays. We all know the value of a picture
as an effective means for communication, and the ability to converse pictorially with
a computer is revolutionizing the way computers are being used in all areas.

This book presents the basic principles for the design, use, and understanding of
graphics systems. We assume that the reader has no prior background in computer
graphics but is familiar with fundamental computer science concepts and methods.
The hardware and software components of graphics systems are examined, with a
major emphasis throughout on methods for the design of graphics packages. We
discuss the algorithms for creating and manipulating graphics displays, techniques
for implementing the algorithms, and their use in diverse applications. Program-
ming examples are given in Pascal to demonstrate the implementation and appli-
cation of graphics algorithms. We also introduce the reader to the Graphical Kernel
System (GKS), which is now both the United States and the international graphics-
programming language standard. GKS formats for graphics-routine calls are used
in the Pascal programs illustrating graphics applications.

The material presented in this text was developed from notes used in graduate and
undergraduate graphics courses over the past several years. All of this material
could be covered in a one-semester course, but this requires a very hasty treatment
of many topics. A better approach is to select a subset of topics, depending on the
level of the course. For the self-study reader, early chapters can be used to provide
an understanding of graphics concepts, with individual topics selected from the
later chapters according to the interests of the reader.

Chapter 1 is a survey of computer graphics, illustrating the diversity of applicatians -
areas. Following an introduction to the hardware and software components of
graphics systems in Chapter 2, fundamental algorithms for the generation of two-
dimensional graphics displays are presented in Chapters 3 and 4. These two chap-
ters examine methods for producing basic picture components and techniques for
handling color, shading, and other attributes. This introduces students to the pro-
gramming techniques necessary for implementing graphics routines. Chapters 5
and 6 treat transformations and viewing algorithms. Methods for organizing picture
components in segments and for interactive input are given in Chapters 7 and 8.

xv

xvi
Preface

Three-dimensional techniques are introduced in Chapter 9. We then discuss the
different ways that solid objects can be represented (Chapter 10) and manipulated
(Chapter 11). Methods for forming three-dimensional views on a graphics display
device are detailed in Chapter 12. The various algorithms for removing hidden
surfaces of objects are discussed in Chapter 13, and models for shading and color
are taken up in Chapter 14. These five chapters treat both the standard graphics
methods and newer techniques, such as fractals, octrees, and ray tracing.

In Chapter 15, we explore techniques for modeling different systems. Modeling
packages provide the structure for simulating systems, which is then passed to the
graphics routines for display. Finally, methods for interfacing a graphics package to
the user are examined in Chapter 16.

At the undergraduate level, an introductory course can be organized with a detailed
treatment of fundamental topics from Chapters 2 through 8 plus an introduction to
three-dimensional concepts and methods. Selected topics from the later chapters
can be used as supplemental material. For a graduate course, the material on two-
dimensional methods can be covered at a faster pace, with greater emphasis on the
later chapters. In particular, methods for three-dimensional representations, three-
dimensional viewing, hidden-surface removal, and shading and color models, can
be covered in greater depth.

A great many people have contributed to this project in a variety of ways. To the
many organizations and individuals who furnished photographs and other materials,
we again express our appreciation. We are also grateful to our graphics students for
their comments on the presentation of this material in the classroom. We thank the
many people who provided comments on the manuscript, and we are especially
indebted to Norman Badler, Brian Barsky, and Steve Cunningham for their helpful
suggestions for improving the presentation of material. And a very special thanks
goes to our editor, Jim Fegen, for his patience and encouragement during the
preparation of this book, and to our production editors, Tracey Orbine and Kathy
Marshak. Thanks also to our designer, Lee Cohen, and the Prenticc-Hall staff for
an outstanding production job.

Donald Hearn
M. Pauline Baker

CONTENTS

PREFACE xv

1 A survey oF compuTER GRAPHICS
1-1 Computer-Aided Design 2
1-2 Graphs, Charts, and Models 8
1-3 Computer Art 12
1-4 Computer Animation 16
1-5 Graphical User Interfaces 20
1-6 Graphics for Home Use 21
1-7 Image Processing 22

References 26

2 OVERVIEW OF GRAPHICS SYSTEMS 27
2-1 Display Devices 28
Refresh Cathode-Ray Tubes 29
Random-Scan and Raster-Scan Monitors 31
Color CRT Monitors 33
Direct-View Storage Tubes 35
Plasma-Panel Displays 36
LED and LCD Monitors 38
Laser Devices 38
Three-Dimensional Monitors 39
2-2 Hard-Copy Devices 40
Printers 41
Plotters 42
2-3 Interactive Input Devices 44
2-4 Display Processors 46
Random-Scan Systems 47

vi DVST Systems 48
Contents Raster-Scan Systems 48
2-5 Graphics Software 50
Coordinate Representations 50
Graphics Functions 51
Software Standards 51
References 52
Exercises 53

3 OUTPUT PRIMITIVES 55
3-1 Points and Lines 56
3-2 Line-Drawing Algorithms 56
DDA Algorithm 57
Bresenham’s Line Algorithm 58
Loading the Frame Buffer 61
3-3 Antialiasing Lines 62
3-4 Line Command 63
3-5 Fill Areas 65
3-6 Circle-Generating Algorithms 65
Circle Equations 65
Bresenham’s Circle Algorithm 67
Ellipses 69
3-7 Other Curves 70
3-8 Character Generation 70
3-9 Instruction Sets for Display Processors
Raster-Scan Systems 72
Random-Scan Systems 72
3-10 Summary 73
3-11 Applications 73
References 76
Exercises 76

4 ATTRIBUTES OF OUTPUT PRIMITIVES 78
4-7 Line Styles 79
Line Type 79
Line Width 80
Line Color 80

72

4-2 Color and Intensity 81 vii
Color Tables 81 Contents
Gray Scale 82

4-3 Area Filling 83
Scan-Line Algorithm 83
Antialiasing Area Boundaries 91
Boundary-Fill Algorithm 92
Flood-Fill Algorithm 94
Area-Filling Commands 94

4-4 Character Attributes 96
Text Attributes 96
Marker Attributes 98

4-5 Inquiry Functions 98

4-6 Bundled Attributes 99
Line Attributes 100
Color and Intensity Attributes 100
Area-Filling Attributes 100
Text Attributes 107
Marker Attributes 102

4-7 Summary 102

References 103
Exercises 103

5 TWO-DIMENSIONAL TRANSFORMATIONS 106
5-1 Basic Transformations 107
Translation 107
Scaling 107
Rotation 108
5-2 Matrix Representations and Homogeneous Coordinates 109
5-3 Composite Transformations 111
Translations 111
Scalings 111
Rotations 111
Scaling Relative to a Fixed Point 112
Rotation About a Pivot Point 112
Arbitrary Scaling Directions 113
Concatenation Properties 114
General Transformation Equations 114

viii
Contents

54

5-6

Other Transformations 116
Reflection 116
Shear 118
Transformation Commands 119
Raster Methods for Transformations
References 12171
Exercises 122

6 WINDOWING AND CLIPPING 123

6-1
6-2

6-3

Windowing Concepts 124
Clipping Algorithms 127

Line Clipping 128

Area Clipping 134

Text Clipping 139

Blanking 139
Window-to-Viewport Transformation
References 141

Exercises 141

7 SEGMENTS 143

7-1
7-2
7-3
7-4
7-5

Segment Concepts 144
Segment Files 145
Segment Attributes 148
Multiple Warkstations 150
Summary 152
References 153
Exercises 153

8 INTERACTIVE INPUT METHODS 154

8-1

Physical Input Devices 155
Keyboards 155

Touch Panels 157
Light Pens 158
Graphics Tablets 159
Joysticks 161
Trackball 162

Mouse 162

Voice Systems 163

121

140

8-2 Logical Classification of Input Devices 164
8-3 Locator Devices 164
8-4 Stroke Devices 166
8-5 String Devices 166
8-6 Valuator Devices 166
8-7 Choice Devices 167
8-8 Pick Devices 168
8-9 Interactive Picture-Construction Techniques 169
Basic Positioning Methods 169
Constraints 170
Grids 171
Gravity Field 171
Rubber-Band Methods 172
Sketching 173
Dragging 173
8-10 Input Functions 174
Input Modes 174
Request Mode 175
Sample Mode 176
Event Mode 176
Concurrent Use of Input Modes 178
8-11 Summary 178
References 179
Exercises 179

THREE-DIMENSIONAL CONCEPTS 181
9-1 Three-Dimensional Coordinate Systems 182
9-2 Three-Dimensional Display Techniques 183
Parallel Projection 184
Perspective Projection 184
Intensity Cuing 185
Hidden-Line Removal 185
Hidden-Surface Removal and Shading 185
Exploded and Cutaway Views 186
Three-Dimensional and Stereoscopic Views 187
9-3 Three-Dimensional Graphics Packages 187
References 188

ix
Contents

X 10 THREE-DIMENS/IONAL REPRESENTAT/IONS 189
Contents 10-1 Polygon Surfaces 190
Polygon Tables 190
Plane Equations 192
70-2 Curved Surfaces 193
Parametric Equations 194
Bézier Curves 195
Spline Curves 200
Bézier Surfaces 202
Spline Surfaces 204
Methods for Surface Generation 204
10-3 Fractal-Geometry Methods 205
10-4 Sweep Representations 213
10-5 Constructive Solid-Geometry Methods 213
10-6 Octrees 215
References 217
Exercises 217

11 7HREE-DIMENSIONAL TRANSFORMATIONS 220
11-1 Translation 221
17-2 Scaling 222
11-3 Rotation 223
11-4 Rotation About an Arbitrary Axis 224
Review of Vector Operations 225
Transformation Matrices 226
11-5 Other Transformations 229
Reflections 230
Shears 230
Transformation of Coordinate Systemns 230
11-6 Transformation Commands 231
References 233
Exercises 233

12 THREE-DIMENSIONAL VIEWING 235
12-1 Projections 236
Parallel Projections 237
Perspective Projections 240

12-2 Viewing Transformation 241 xi
Specifying the View Plane 242 Contents
View Volumes 246
Clipping 247
12-3 Implementation of Viewing Operations 248
Normalized View Volumes 248
Clipping Against a Normalized View Volume 251
12-4 Hardware Implementations 253
12-5 Programming Three-Dimensional Views 255
12-6 Extensions to the Viewing Pipeline 257
References 257
Exercises 257

13 HIDDEN-SURFACE AND HIDDEN-LINE REMOVAL 260

13-1 Classification of Algorithms 261

13-2 Back-Face Removal 261

13-3 Depth-Buffer Method 262

13-4 Scan-Line Method 264

13-5 Depth-Sorting Method 265

13-6 Area-Subdivision Method 268

13-7 Octree Methods 270

13-8 Comparison of Hidden-Surface Methods 272

13-9 Hidden-Line Elimination 273

13-10 Curved Surfaces 273

13-11 Hidden-Line and Hidden-Surface Command 274
References 274
Exercises 274

14 SHADING AND COLOR MODELS 276
14-1 Modeling Light Intensities 277

Light Sources 277
Diffuse Reflection 277
Specular Reflection 279
Refracted Light 281
Texture and Surface Patterns 283
Shadows 284

xii 14-2 Displaying Light Intensities 284
Contents Assigning Intensity Levels 285
Halftoning 286
14-3 Surface-Shading Methods 289
Constant Intensity 289
Gouraud Shading 289
Phong Shading 291
Ray-Tracing Algorithms 291
Octree Methods 293
Fractal Surfaces 294
Antialiasing Surface Boundaries 294
14-4 Color Models 295
Properties of Light 295
Standard Primaries and the Chromaticity Diagram 298
Intuitive Color Concepts 299
RGB Color Model 299
CMY Color Model 301
Conversion Between RGB and CMY Models 302
HSV Color Model 302
Conversion Between HSV and RGB Models 303
HLS Color Model 305
Color Selection 306
References 306
Exercises 307

15 mopeLivG metHops 309

15-1 Basic Modeling Concepts 310
Model Representations 310
Symbol Hierarchies 311
Modeling Packages 313

15-2 Master Coordinates and Modeling Transformations 314
Modeling Transformations 315
Modeling Symbol Hierarchies 318
Display Procedures 321

15-3 Structured Display Files 322

15-4 Symbol Operations 322

15-5 Combining Modeling and Viewing Transformations 324
Master Coordinate Clipping 324
Bounding Rectangles for Symbols 325

References 326 Xiii
Exercises 326 Contents

16 DESIGN OF THE USER INTERFACE 328
16-1 Components of a User Interface 329
16-2 User Model 329
16-3 Command Language 330

Minimizing Memorization 337
User Help Facilities 3371
Backup and Error Handling 331
Response Time 332
Command Language Styles 332
16-4 Menu Design 334
16-5 Feedback 336
16-6 Output Formats 337
lcon and Symbol Shapes 337
Screen Layout 337
References 338
Exercises 339

BIBLIOGRAPHY 340
SUBJECT INDEX 347

FUNCTION INDEX 352

%

Whashesbe wooF

A SURVEY
OF COMPUTER GRAPHICS

Computers have become a powerful tool for the rapid and economical production
of pictures. There is virtually no area in which graphical displays cannot be used to
some advantage, and so it is not surprising to find the use of computer graphics so
widespread. Although early applications in engineering and science had to rely on
expensive and cumbersome equipment, advances in computer technology have
made interactive computer graphics a practical tool. Today, we find computer
graphics used routinely in such diverse areas as business, industry, government,
art, entertainment, advertising, education, rescarch, training, and medicine. Fig-
ure 1-1 shows a few of the many ways that graphics is put to use. Our introduction
to the field of computer graphics begins with a tour through a gallery of graphics
applications.

The focusing system in a CRT is needed to force the electron beam to con-
verge into a small spot as it strikes the phosphor. Otherwise, the electrons would
repel each other, and the beam would spread out as it approaches the screen.
Focusing is accomplished with either electric or magnetic fields. For electrostatic
focusing, the electron beam passes through a metal cylinder with a positive voltage,
as shown in Fig. 2-5. The positive voltage forces the electrons to stay along the
éxis of the beam. Similar focusing forces can be applied to the electron beam with
electromagnetic fields set up by coils mounted around the outside of the CRT en-
velope.

Another type of focusing is used in high-precision systems to keep the beam
in focus at all screen points. The distance that the electron beam must travel to
different points on the screen varies because the radius of curvature for most CRTs
is greater than the distance from the focusing system to the screen center. There-
fore, the electron beam will be focused properly only at the center of the screen.
As the beam moves to the outer edges of the screen, displayed images become
blurred. To compensate for this, the system can adjust the focusing according to
the screen position of the beam.

The maximum number of points that can be displayed without overlap on a
CRT is referred to as the resolution. A more precise definition of resolution is the
number of points per centimeter that can be plotted horizontally and vertically,
although it is often simply stated as the total number of points in each direction.
Resolution of a CRT is dependent on the type of phosphor used and the focusing
and deflection systems. High-precision systems can display a maximum of about
4000 points in each direction, for a total of 16 million addressable screen points.
Since a CRT monitor can be attached to different computer systems, the number
of screen points that are utilized depends on the capabilities of the system to which
it is attached.

An important property of video monitors is their aspect ratio. This number
gives the ratio of vertical points to horizontal points necessary to produce equal-
length lines in both directions on the screen. (Sometimes aspect ratio is stated in
terms of the ratio of horizontal to vertical points.) An aspect ratio of 3/4 means that
a vertical line plotted with three points has the same length as a horizontal line
plotted with four points.

Random-Scan and Raster-Scan Monitors

Refresh CRTs can be operated either as random-scan or as raster-scan moni-
tors. When operated as a random-scan display unit, a CRT has the electron beam
directed only to the parts of the screen where a picture is to be drawn. Random-
scan monitors draw a picture one line at a time and, for this reason, are also re-
ferred to as vector displays (or stroke-writing or calligraphic displays). The com-
ponent lines of a picture can be drawn and refreshed by a random-scan system in
any order specified (Fig. 2-6). A pen plotter operates in a similar way and is an
example of a random-scan, hard-copy device.

Raster-scan video monitors shoot the electron beam over all parts of the
screen, turning the beam intensity on and off to coincide with the picture defini-
tion. The picture is created on the screen as a set of points (Fig. 2-7), starting from
the top of the screen. Definition for a picture is now stored as a set of intensity
values for all the screen points, and these stored values are “painted” on the screen
one row (scan line) at a time. The capability of a raster-scan system to store inten-
sity information for each screen point makes it well suited for displaying shading

31
Sec. 2-1

Display Devic :s

50
Chap. 2 Overview of Graphics
Systems

in storage space if a picture is to be constructed mostly with long runs of a single
color each. A similar approach can be taken when pixel intensities change linearly.
Another approach is to encode the raster as a set of rectangular areas (cell encod-
ing). The disadvantages of encoding runs are that intensity changes are difficult to
make and storage requirements actually increase as the length of the runs de-
creases. In addition, it is difficult for the display controller to process the raster
when many short runs are involved.

2-5 Graphics Software

Programming commands for displaying and manipulating graphics output are de-
signed as extensions to existing languages. An example of such a graphics package
is the PLOT 10 system developed by Tektronix, Inc., for use with FORTRAN on
their graphics terminals. Basic functions available in a package designed for the
graphics programmer include those for generating picture components (straight
lines, polygons, circles, and other figures), setting color and intensity values, se-
lecting views, and applying transformations. By contrast, application graphics pack-
ages designed for nonprogrammers are set up so that users can produce graphics
without worrying about how they do it. The interface to the graphics routines in
such packages allows users to communicate with the programs in their own terms.
Examples of such applications packages are the artist’s painting programs and var-
ious business, medical, and CAD systems.

Coordinate Representations

Most graphics packages are designed to use Cartesian coordinate systems.
More than one Cartesian system may be referenced by a package, since different
output devices can require different coordinate systems. In addition, packages usu-
ally allow picture definitions to be set up in any Cartesian reference system con-
venient to the application at hand. The coordinates referenced by a user are called
world coordinates, and the coordinates used by a particular output device are
called device coordinates, or screen coordinates in the case of a video monitor.
World coordinate definitions allow a user to set any convenient dimensions without
being hampered by the constraints of a particular output device. Architectural lay-
outs might be specified in fractions of a foot, while other applications might define
coordinate scales in terms of millimeters, kilometers, or light-years. Once the world
coordinate definitions are given, the graphics system converts these coordinates to
the appropriate device coordinates for display.

A typical procedure used in graphics packages is first to convert world coor-
dinate definitions to normalized device coordinates before final conversion to spe-
cific device coordinates. This makes the system flexible enough to accommodate a
number of output devices (Fig. 2-31). Normalized x and y coordinates are each
assigned values in the interval from 0 to 1. These normalized coordinates are then
transformed to device coordinates (integers) within the range (0, 0) to (Xmax, Yimax)
for a particular device. To accommodate differences in scales and aspect ratios,
normalized coordinates can be mapped into a square area of the output device so
that proper proportions are maintained. On a video monitor, the remaining area of
the screen is often used to display messages or list interactive program options.

52
Chap. 2 OQOverview of Graphics
Systems

plications. Without standards, programs designed for one hardware system often
cannot be transferred to another system without rewriting the software.

International and national standards-planning organizations in many countries
have cooperated in an effort to develop a generally accepted standard for computer
graphics. After considerable effort, this work on standards led to the development
of the Graphical Kernel System (GKS). This system has been adopted as the graph-
ics software standard by the International Standards Organization (ISO) and by var-
ious national standards organizations, such as the American National Standards In-
stitute (ANSI). Although GKS was originally designed as a two-dimensional
graphics package, a three-dimensional GKS extension was subsequently developed.

The final GKS functions, adopted as standards, were influenced by several
earlier proposed graphics standards. Particularly important among these earlier
proposals is the Core Graphics System (or simply Core), developed by the Graph-
ics Standards Planning Committee of SIGGRAPH, the Special Interest Group on
Computer Graphics of the Association for Computing Machinery (ACM).

Standard graphics functions are defined as a set of abstract specifications, in-
dependent of any programming language. To implement a graphics standard in a
particular programming language, a language binding must be defined. This bind-
ing defines the syntax for accessing the various graphics functions specified within
the standard. For example, GKS specifies a function to generate a sequence of
connected straight line segments with the descriptive title

polyline (n, %, ¥)

In FORTRAN 77, this procedure is implemented as a subroutine with the name
GPL. A graphics programmer, using FORTRAN, would invoke this procedure with
the subroutine call statement

CALL GPL (N, X, Y)

GKS language bindings have been defined for FORTRAN, Pascal, Ada, C, PL/I,
and COBOL. Each language binding is defined to make best use of the correspond-
ing language capabilities and to handle various syntax issues, such as data types,
parameter passing, and errors.

In the following chapters, we use the standard functions defined in GKS as a
framework for discussing basic graphics concepts and the design and application of
graphics packages. Example programs are presented in Pascal to illustrate the al-
gorithms for implementation of the graphics functions and to illustrate also some
applications of the functions. Descriptive names for functions, based on the GKS
definitions, are used whenever a graphics function is referenced in a program.

Although GKS presents a specification for basic graphics functions, it does not
provide a standard methodology for a graphics interface to output devices. Nor does
it specify methods for real-time modeling or for storing and transmitting pictures.
Separate standards have been developed for each of these three areas. Standardiza-
tion for device interface methods is given in the Computer Graphics Interface
(CGI) system. The Computer Graphics Metafile (CGM) system specifies standards
for archiving and transporting pictures. And the Programmer’s Hierarchical Inter-
active Graphics Standard (PHIGS) defines standard methods for real-time model-
ing and other higher-level programming capabilities not considered by GKS.

REFERENCES

A general treatment of display devices is available in Sherr (1979}. The conceptual
design of display devices is discussed in Haber and Wilkinson (1982) and in Myers
(1984). Storage tubes are surveyed in Preiss {1978), and flat panel devices are dis-

