SECOND EDITION

; Linear Algebra
‘ and Its Applications

m Gilbert Strang




LINEAR ALGEBRA
AND ITS
APPLICATIONS

SECOND EDITION

GILBERT STRANG
Massachusetts Institute of Technology

ACADEMIC PRESS, INC.

{Harcourt Brace Jovanovich, Publishers)

Orlando San Diego  San Francisco New York fLondon
Toronto Montreal Sydney Tokyo Séo Paulo

e



CoPYRIGHT (© 1976, 1980, BY ACADEMIC PRESs, INC.
ALL RIGHTS RESERVED.

NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR
TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC

OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY
INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT
PERMISSION IN WRITING FROM THE PUBLISHER

-

Academic Press. Inc
Orlando. Florida 32887

United Kingdom Editton Published by
Academic Press, Inc (London) Ltd
24/28 Oval Road. London NW1 7DX

ISBN: 0-12-673660-X
Library of Congress Catalog Card Number: 79-53993

PRINTED IN THE UNITED STATES OF AMERICA

P T

%
{

e S L

R

ﬁ
t

P




PREFACE

I believe that the teaching of linear algebra has become too abstract. This is a
sweeping judgment, and perhaps it is too sweeping to be true. But I feel certain that a
text can explain the essentials of linear algebra, and develop the ability to reason
mathematically, without ignoring the fact that this subject is as useful and central and
applicable as calculus. It has a simplicity which is too valuable to be sacrificed.

Of course there are good reasons for the present state of courses in linear algebra:
The subject is an excellent introduction to the precision of a mathematical argument,
and to the construction of proofs. These virtues I recognize and accept (and hope to
preserve); 1 enjoyed teaching in exactly this way. Nevertheless, once I began to
experiment with alternatives at M.L.T., another virtue became equally important:
Linear algebra allows and even encourages a very satisfying combination of both
elements of mathematics —abstraction and application.

As it is, too many students struggle with the abstraction and never get to see the
application. And too many others, especially those who are outside mathematics de-
partments, never take the course. Even our most successful students tend to become
adept at abstraction, but inept at any calculation— solving linear equations by Cramer’s
rule, for example, or understanding eigenvalues only as roots of the characteristic
equation. There is a growing desire to make our teaching more useful than that, and
more open.

I hope to treat linear algebra in a way which makes sense to a wide variety of
students at all levels. This does not imply that the real mathematics is absent; the
subject deserves better than that. It does imply less concentration on rigor for its own
sake, and more on understanding— we try fo explain rather than to deduce. Some
definitions are formal, but others are allowed to come to the surface in the middle of a
discussion. In the same way, some proofs are intended to be orderly and precise, but
not all. In every case the underlying theory has to be there; it is the core of the subject,
but it can be motivated and reinforced by examples.
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One specific difficulty in constructing the course is always present, and is hard to
postpone: How should it start? Most students come to the first class already knowing
something about linear equations. Nevertheless, I am convinced that linear algebra
must begin with the fundamental problem of n equations in n unknowns, and that it
must teach the simplest and most useful method of solution— Gaussian elimination (not
determinants!). Fortunately, even though this method is simple, there are a number of
insights that are central to its understanding and new to almost every student. The most
important is the equivalence between elimination and matrix factorization; the
coefficient matrix is transformed into a product of triangular matrices. This provides a
perfect introduction to matrix notation and matrix multiplication.

The other difficulty is to find the right speed. If matrix calculations are already
familiar, then Chapter 1 must not be too slow; the next chapter is the one which
demands hard work. Its goal is a genuine understanding, deeper than elimination can
give, of the equation Ax = b. I believe that the introduction of four fundamental
subspaces—the column space of A4; the row space; and their orthogonal complements,
the two nullspaces —is an effective way to generate examples of linear dependence and
independence, and to illustrate the ideas of basis and dimension and rank. The ortho-
gonality is also a natural extension to n dimensions of the familiar geometry of
three-dimensional space. And of course those four subspaces are the keytoAx = b.

Chapters 1-5 are really the heart of a course in linear algebra. They contain a large
number of applications to physics, engineering, probability and statistics, economics,
and biology. (There is also the geometry of a methane molecule, and even an outline of
factor analysis in psychology, which is the one application that my colleagues at
M.LT. refuse to teach!) At the same time, you will recognize that this text can certainly
not explain every possible application of matrices. It is simply a first course in linear
algebra. Our goal is not to develop all the applications, but to prepare for them—and
that preparation can only come by understanding the theory.

This theory is well established. After the vector spaces of Chapter 2, we study
projections and inner products in Chapter 3, determinants in Chapter 4, and eigen-
values in Chapter 5. I hope that engineers and others will look especially at Chapter 5,
where we concentrate on the uses of diagonalization (including the spectral theorem)
and save the Jordan form for an appendix. Each of these chapters is followed by an
extra set of review exercises. In my own teaching I have regarded the following
sections as optional: 3.4—3.5, 6.4~6.5, 7.1—7.4, and most of 1.6 and 2.6. I use the
section on linear transformations in a flexible way, as a source of examples that go
outside R” and of a complementary approach to the theory; it illuminates in a new way
what has been concretely understood. And I believe that even a brief look at Chapter 8
allows a worthwhile but relaxed introduction to linear programming and game
theory —maybe my class is happier because it comes at the very end, without examina-
tion.

With this edition there is also a new Manual which I hope instructors will request
from the publisher. It is a collection of ideas about the teaching of applied linear
algebra, arranged section by section, and I very much hope it will grow; all suggestions
and problems will be gratefully received (and promptly included). It also gives
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Preface xi

solutions to the review exercises, which now range from direct questions on the text to
my favorite about the connectedness of the matrices with positive determinant.

I should like to ask one favor of the mathematician who simply wants to teach basic
linear algebra. That is the true purpose of the book, and I hope he will not be put off by
the ‘‘operation counts,”’ and the other remarks about numerical computation, which
arise especially in Chapter 1. From a practical viewpoint these comments are obviously
important. Also from a theoretical viewpoint they have a serious purpose —to reinforce
a detailed grasp of the elimination sequence, by actually counting the steps. In this
edition there is also a new appendix on computer subroutines, including a full code for
solving Ax = b. I hope that students will have a chance to experiment with it. But there
is no need to discuss this or any other computer-oriented topic in class; any text ought
to supplement as well as summarize the lectures.

In short, a book is needed that will permit the applications to be taught success-
fully, in combination with the underlying mathematics. That is the book I have tried
to write.

Many readers have sent ideas and encouragement for this second edition, and I am
tremendously grateful. The result is a better introduction to vector spaces, a large
number of new exercises, and hundreds of changes and improvements and corrections.
Nevertheless, the spirit of the book remains the same. My hope is to help construct a
course with a real purpose. That is intangible but it underlies the whole book, and so
does the support I have been given by my family; they are more precious than I can say.
Beyond this there is an earlier debt, which I can never fully repay. It is to my parents,
and I now dedicate the book to them, hoping that they will understand how much they
gave to it: Thank you both.

GILBERT STRANG

Note to 5th Printing, September 1984. There is another manuscript in progress,
An Introduction to Applied Mathematics, which will continue in the spirit of this
one. Its goal is to understand the basic problems of science, engineering, and
economics in the language of linear algebra (which is developed here) and of cal-
culus. For information on An Introduction to Applied Mathematics you may con-
tact me at 617-253-4383.
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GAUSSIAN
ELIMINATION

INTRODUCTION = 1.1

The central problem of linear algebra is the solution of simultaneous linear equations.
The most important case, and the simplest, is when the number of unknowns equals the
number of equations. Therefore we begin with this problem: n equations in n un-
knowns.

Two ways of solving simultaneous equations are proposed, almost in a sort of
competition, from high school texts on. The first is the method of elimination: Multi-
ples of the first equation in the system are subtracted from the other equations, in such a
way as to remove the first unknown from those equations. This leaves a smaller
system, of n — 1 equations inn — 1 unknowns. The process is repeated over and over
until there remains only one equation and one unknown, which can be solved im-
mediately. Then it is not hard to go backward, and find all the other unknowns in
reverse order; we shall work out an example in a moment. A second and more sophisti-
cated way introduces the idea of determinants. There is an exact formula, called
Cramer’s rule, which gives the solution (the correct values of the unknowns) as a ratio
of two n by n determinants. It is not always obvious from the examples that are worked
in a textbook (n = 3 or n = 4 is about the upper limit on the patience of a reasonable
human being) which way is better.

In fact, the more sophisticated formula involving determinants is a disaster, and
elimination is the algorithm that is constantly used to solve large systems of simultane-
ous equations. Our first goal is to understand this algorithm. It is generally called
Gaussian elimination.

The algorithm is deceptively simple, and in some form it may already be familiar to




2 1 Gaussian Elimination

the reader. But there are four aspects that lie deeper than the simple mechanics of
elimination, and which —together with the algorithm itself —we want to explain in this
chapter. They are:

(1) The interpretation of the elimination method as a factorization of the coefficient
matrix. We shall introduce matrix notation for the system of simultaneous equations,
writing the n unknowns as a vector x and the n equations in the matrix shorthand Ax =
b. Then elimination amounts to factoring A into a product LU of a lower triangular
matrix L and an upper triangular matrix U. This is a basic and very useful observation.

Of course, we have to introduce matrices and vectors in a systematic way, as well as
the rules for their multiplication. We also define the transpose AT and the inverse A ! of
a matrix A.

(2) In most cases the elimination method works without any difficuities or mod-
ifications. In some exceptional cases it breaks down —either because the equations
were originally written in the wrong order, which is easily fixed by exchanging them,
or else because the equations Ax = b fail to have a unique solution. In the latter case
there may be no solution, or infinitely many. We want to understand how, at the time
of breakdown, the elimination process identifies each of these possibilities.

(3) It is essential to have a rough count of the number of arithmetic operations
required to solve a system by elimination. In many practical problems the decision of
how many unknowns to introduce —balancing extra accuracy in a mathematical model
against extra expense in computing —is governed by this operation count.

(4) We also want to see, intuitively, how sensitive to roundoff error the solution x
might be. Some problems are sensitive; others are not. Once the source of difficulty
becomes clear, it is easy to guess how to try to control it. Without control, a computer
could carry out millions of operations, rounding each result to a fixed number of digits,
and produce a totally useless *‘solution.”’

The final result of this chapter will be an elimination algorithm which is about as
efficient as possible. It is essentially the algorithm that is in constant use in a tremen-
dous variety of applications. And at the same time, understanding it in terms of
matrices —the coefficient matrix, the matrices that carry out an elimination step or an
exchange of rows, and the final triangular factors L and U —is an essential foundation
for the theory.

1.2 B AN EXAMPLE OF GAUSSIAN ELIMINATION

The way to understand this subject is by example. We begin in three dimensions with
the system

2u+ v+w= 1
u+ v = -2 (H
2u+2v+w= 7.

The problem is to find the unknown values of «, v, and w, and we shall apply Gaussian
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1.2 An Example of Gaussian Elimination 3

elimination. (Gauss is recognized as the greatest of all mathematicians, but certainly
not because of this invention, which probably took him ten minutes. Ironically, how-
ever, it is the most frequently used of all the ideas that bear his name.) The method
starts by subtracting multiples of the first equation from the others, so as to eliminate u
from the last two equations. This requires that we

(a) subtract 2 times the first equation from the second;
(b) subtract —1 times the first equation from the third.

The result is an equivalent system of equations

2u+ v+ w= 1
—1lv-2w = —4 2)
3v+2w = 8.

The coefficient 2, which multiplied the first unknown u in the first equation, is known
as the pivot in this first elimination step.

At the second stage of elimination, we ignore the first equation. The other two
equations involve only the two unknowns v and w, and the same elimination procedure
can be applied to them. The pivort for this stage is —1, and a multiple of this second
equation will be subtracted from the remaining equations (in this case there is only the
third one remaining) so as to eliminate v. We add 3 times the second equation to
the third or, in other words, we

(c) subtract —3 times the second equation from the third.

The elimination process is now complete, at least in the ‘‘forward”’ direction, and
leaves the simplified system

2u+ v+ w= 1
—lv-2w=—4 3)
— 4w = —4,

There is an obvious order in which to solve this system. The last equation givesw = 1;
substituting into the second equation, we find v = 2; then the first equation gives
u = —1. This simple process is called back-substitution .

It is easy to understand how the elimination idea can be extended to n equations in n
unknowns, no matter how large the system may be. At the first stage, we use multiples
of the first equation to annihilate all coefficients below the first pivot. Next, the second
column is cleared out below the second pivot; and so on. Finally, the last equation
contains only the last unknown. Back-substitution yields the answer in the opposite
order, beginning with the last unknown, then solving for the next to last, and eventu-
ally for the first.




4 1 Gaussian Eiimination

EXERCISE 1.2.1 Apply elimination and back-substitution to solve
2u — 3v =3
4u—-5v+ w=7
2u— v~3w=35.

What are the pivots? List the three operations in which a multiple of one row is subtracted from
another.

EXERCISE 1.2.2 Solve the system
2u— v =
—ut+2v — w =
- v+ 2w—- z =
- w+2z =

m o o o

We want to ask two questions. They may seem a little premature — after all, we have
barely got the algorithm working —but their answers will shed more light on the
method itself. The first question is whether this elimination procedure always leads to
the solution. Under what circumstances could the process break down? The answer
is: If none of the pivots are zero, there is only one solution to the problem and it is
found by forward elimination and back-substitution. But if any of the pivots happens to
be zero, the elimination technique has to stop, either temporarily or permanently.

If the first pivot were zero, for example, the elimination of u from the other equa-
tions would be impossible. The same is true at every intermediate stage. Notice that an
intermediate pivot may become zero during the elimination process (as in Exercise
1.2.3 below) even though in the original system the coefficient in that place was not
zero. Roughly speaking, we do not know whether the Dpivots are nonzero until we try,
by actually going through the elimination process.

In most cases this problem of a zero pivot can be cured, and elimination can proceed
to find the unique solution to the problem. In other cases, a breakdown is unavoidable
since the equations have either no solution or infinitely many.

For the present, we trust all the pivots to be nonzero.

The second question is very practical, in fact it is financial. How many separate
arithmetical operations does elimination require for a system of n equations in n
unknowns? If n is large, a computer is going to take our place in carrying out the
elimination (you may have such a program available, or you could use the Fortran
codes in Appendix C). Since all the steps are known, we should be able to predict the
number of operations a computer will take. For the moment, we ignore the right-hand
sides of the equations, and count only the operations on the left. These operations are
of two kinds. One is a division by the pivot in order to find out what multiple (say /) of
the pivotal equation is to be subtracted from an equation below it. Then when we
actually do this subtraction of one equation from another, we continually meet a
‘‘multiply-subtract’> combination; the terms in the pivotal equation are multiplied by /,
and then subtracted from the equation beneath it.

Suppose we agree to call each division, and each multiplication-subtraction, a single
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operation. At the beginning, when the first equation has length n, it takes n operations
for every zero we achieve in the first column —one to find the multiple {, and the others
to find the new entries along the row. There are n — 1 rows undemeath the first one, so
the first stage of elimination needs n(r — 1) = n® — n operations. (Another approach to
n? — n is this: All n? entries need to be changed, except the n in the first row.) Now
notice that later stages are faster because the equations are becoming progressively
shorter; when the elimination is down to k equations, only k2 — k operations are needed
to clear out the column below the pivot —by the same reasoning that applied to the first
stage, when k equaled n. Altogether, the total number of operations on the left side of
the equations is

_nn+1HQ2n+1) nn+1) _ n®-n

- 6 2 3

P=(12+ - +n%)—-(1+--+n)

If n is at all large, a good estimate for the number of operations is P = n®/3.

Back-substitution is considerably faster. The last unknown is found in one operation
(a division by the last pivot), the second to last unknown requires two, and so on. The
total for back-substitution is

_ _nn+t1) _ n*

A few years ago, almost every mathematician would have guessed that these num-
bers were essentially optimal, in other words that a general system of order n could not
be solved with much fewer than #3/3 multiplications. (There were even theorems to
demonstrate it, but they did not allow for all possible methods.) Astonishingly, that
guess has been proved wrong, and there now exists a method that requires only Cnlogz 7
operations! Fortunately for elimination, the constant C is by comparison so large, and
so many more additions are required, and the computer programming is so awkward,
that the new method is largely of theoretical interest. It seems to be completely
unknown whether the exponent can be made any smaller.}

EXERCISE 1.2.3 Apply elimination to the system

U+ v+w= -2
3u+3v—w= 6
- v+w=—].

When a zero pivot arises, exchange that equation for the one below it, and proceed. What
coeflicient of v in the third equation, in place of the present —1, would make it impossible to
proceed —and force the elimination method to break down?

EXERCISE 1.2.4 Solve by elimination the system of two equations
x—y=0
3x + 6y = 18.

T Added in the second edition: The exponent is still coming down, thanks to a group at IBM.
It just went below 2.5.

{
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6 1 Gaussian Elimination

O e o g

Draw a graph representing each equation as a straight line in the x-y plane; the lines intersect at
the solution. Also, add one more line—the graph of the new second equation which arises after %

elimination. !

EXERCISE 1.2.5 With reasonable assumptions on computer speed and cost, how large a sys-
tem can be solved for $1, and for $1000? Use n?/3 as the operation count, and you might pay
$1000 an hour for a computer that could average a million operations a second.

EXERCISE 1.2.6 (very optional) Normally the multiplication of two complex numbers :
(a +ib) (¢ +id) = (ac — bd) + i(bc + ad)

involves the four separate multiplications ac, bd, bc, ad. Ignoring i, can you compute the
quantities ac — bd and bc + ad with only three multiplications? (You may do additions, such as
forming @ + b before multiplying, without any penalty.)

EXERCISE 1.2.7 Use elimination to solve ‘r
u+ v+ w= 6 :
u+2v+2w=11

2u+3v —4w = 3.

To get some experience in serting up linear equations, suppose that

(a) of those who start a year in California, 80 percent stay in and 20 percent move out;
(b) of those who start a year outside California, 90 percent stay out and 10 percent move in.

If we know the situation at the beginning, say 200 million outside and 30 million in, then it is
easy to find the numbers « and v that are outside and inside at the end:

-9(200,000,000) + .2 (30,000,000) = u
.1(200,000,000) + .8(30,000,000) = v

The real problem is to go backwards, and compute the start from the finish.

EXERCISE 1.2.8 If «u = 200 million and v = 30 million at the end, set up (without solving) the
equations to find « and v at the beginning.

EXERCISE 1.2.9 Ifu and v at the end are the same as « and v at the beginning, what equations
do you get? What is the ratio of u to v in this ““steady state’’?

1.3 @ MATRIX NOTATION AND MATRIX MULTIPLICATION

So far, with our 3 by 3 example, we have been able to write out all the equations in full.
We could even list in detail each of the elimination steps, subtracting a multiple of one
row from another, which puts the system of equations into a simpler form. For a large
system, however, this way of keeping track of the elimination would be hopeless; a
much more concise record is needed. We shall now introduce matrix notation to
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describe the original system of equations, and matrix multiplication to describe the
operations that make it simpler.
Notice that in our example

2u+ v+w= |
4y + v = =2
—2u+2v+w

fi
-

three different types of quantities appear. There are the unknowns u, v, w; there are the
right sides 1, —2, 7; and finally, there is a set of nine numerical coefficients on the left
side (one of which happens to be zero). For the column of numbers on the right
side —the inhomogeneous terms in the equations — we introduce the vector notation

This is a three-dimensional column vector . It is represented geometrically in Fig. 1.1,
where the three components 1, —2, and 7 are the coordinates of a point in three-
dimensional space. Any vector b can be identified in this way with a point in space;
there is a perfect match between points and vectors.

Fig. 1.1. A vector in three-dimensional space.

The basic operations are the addition of two such vectors and the multiplication of a
vector by a scalar. Geometrically, 2b is a vector in the same direction as b but twice as

+ Some authors prefer to say that the arrow is really the vector, but I think it doesn’t matter;
you can choose the arrow, the point, or the three numbers. (Note that the arrow starts at the
origin.) In six dimensions it is probably easiest to choose the six numbers.
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long, and —2& goes in the opposite direction:

2 -2
2= -4 |, —2b=| 4
14 ~14

Addition of vectors is also carried out on each component separately; in Fig. 1.1 we
have

1 0 0 1
of+[-2+l0f={-2
0 0 7 7

This example seems special (the vectors are in the coordinate directions), so we give a
more typical addition in Fig. 1.2. Once again, the addition is done a component at a
time,

1 0 1
b+c=|-2 |+]|a|=]{2],
7 1 8

and geometrically this produces the famous parallelogram.

Fg. 1.2. Vector addition and scalar multiplication.

Two vectors can be added only if they have the same dimension, that is, the same
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