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Foreword RN

The 7th Symposium on Computer Arithmetic (ARITH-7) was held at the University of lllinois in
Urbana, llilinois, on June 4-6, 1985. A total of 47 papers were accepted for presentation. These
papers covered theoretical foundations, arithmetic algorithms, processor architectures, hard-
ware and software implementations, error controls and advanced applications of high-speed
and high-accuracy arithmetic systems in modern digital computers. This year’s symposium is
divided into 11 technical sessions. The sessions include efficient adders and ALU designs, fast
multipliers and dividers, floating-point arithmetic, systolic arithmetic schemas, directions in
computer arithmetic, elementary function evaluation, rational and residue arithmetic, signal
and image processing, large-scale scientific computations, fault-tolerant arithmetic, and new
arithmetic systems.

Contributions to this Proceedings were made by 82 authors from almost all parts of the world.
However, the majority of the papers received were from North America. All the previous
symposia on computer arithmetic were held in the U.S.; however, ARITH-6 was held in
Aarhus, Denmark in 1983. The interval between successive meetings in the series has been
reduced from three years to two years in the last three meetings (1981, 1983, and 1985). This
prompts us to suggest that the future symposia will be held alternately between North America
and other continents every two-year period.

We would like to thank all the authors, referees, and program committee members for their
contributions and timely efforts in promoting the scientific quality of this Symposium. Listed
below are the referees and individuals whose efforts should be particularly acknowledged.

Agrawal, D.P. Hennessy, John L. Ramakrishnan, 1.V.
Aiso, Hideo Irwin, Mary Jane Rao, T.R.N.

Atkins, Daniel E. Jayakumar, R. Robertson, James
Avitienis, Algirdas Kong, Vivian Swartzlander Jr., Earl
Bohlender, Gerd Kornerup, Peter Tanimoto, Steven L.
Brent, R.P. Kulisch, Ulrich Taylor, Fred ).
Capello, Peter R. Kung, H.T. Torng, H.C.

De Mori, Renato Li, H.F. Tseng, Ping-Shing
Despain, Alvin Matula, David Tu, Paul

Ercegovac, Milos D. Milutinovic, Velkjo Uhr, Leonard
Farhanz, Massoud Ni, Lionel M. Uliman, Jeffrey D.
Fisher, P.D. Ong, Shauchi Wakerly, John F.
Flynn, Michael J. Osteeby, Ole Woo, Bob Y.
Garner, Harvey L. Piestrak, Stanislaw Xu, Zhiwei

Thanks are also due to the IEEE Computer Society, the Technical Committee on Computer
Architecture, and the University of Illlinois for sponsoring and hosting this symposium. With
the consent of the Program Committee, we dedicate the Proceedings of the 7th Symposium on
Computer Arithmetic to Professor James E. Robertson for his pioneering and continuing con-
tributions to this area. We believe that the various generations of his students and all par-
ticipants of this symposium will join us in wishing Professor Robertson good health and many
happy returns to join us in the future symposia on computer arithmetic.

Kai Hwang
University of Southern California

Daniel D. Gajski
Ahmed Sameh
University of lllinois
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SOME OPTIMAL SCHEMES FOR ALU IMPLEMENTATION
IN VLSI TECHNOLOGY

Vojin G. Oklobdzija and Eari R. Barmes

IBM T.J.Watson Research Center
P.O.Box 218
Yorktown Heights, NY 10598

ABSTRACT

An efficient scheme for carry propagation in an ALU implemented
in n-MOS technology is presented. An algorithm that determines
the optimum division of the carry chain of a paraliel adder for vari-
ous dats path sizes is developed. This yields an implementation of
a fast ALU which due to its regular structure occupies a modest
amount of siicon. The speed of the implementation described is
comparable to the carry look-ahead scheme. Owr method is based
on the optimization of the carry path implemented in n-MOS
technology but the results can be applied to other technologies.

1. INTRODUCTION

An efficient implementation of an ALU n VLSI technology de-
pends on many parameters. We consider an efficient implemen-
tation to be one which is fast, of a small and regular area, and low
power. In many VLSI designs achieving the uitimate speed is not
always important goal especially if this is achieved by consuming
excessive area and power. Therefore Carry-Lookahead (CLA)
scheme is not very attractive for VLSI implementations where
area, regularity of structure and power are important Also ihe
determining factor, in case of an ALU. is wheather it is part of a
critical path or not.

[n this paper we considered Carry-Skip (CSA) scheme
[1).{21§3].[4] because it met our objective of reasonable per-
formance achieved with a relatively small and regular area. This
adder is in essence a Carry Lookahead for which the carry-
generate portion which consumes 2 large amount of logic. has
been eliminated. As in a Carry Lookahead adder the bits to be
added are divided into groups. A circuit is provided for detecting
when a carry signal entering a group will rippie through the group.

When this condition is detected, the carry is allowed to skip over
the group. Carry-Skip Adder (CSA) does not require excessive
amount of logic (area) and the “skip'' portion of the logic can be
added to the existing carry chain of Rippie-Carry Adder (RCA),
therefore not disturbing the inherently regular bit-slice imple-
mentation of an RCA ( Fig.1 ).

The power requirements of a CSA are considerably lower than
that of a CLA-ALL In this paper we show how the carry chain
in a CSA can be optimized to yvield better speed which in the case
of a multi-level optimized CSA-ALU can even outperform the
speed of a CLA divided into the groups of constant size

Lehman and Burla [3] studied a design of a CSA and suggested
varying the size of the groups. By varying the sizes of the groups
one can influence the maximum delay a carry signal can experi-
ence in propagating through the adder. Lehman and Burla [3}
posed the problem of determining the optimal group sizes for
minimizing the maximum delay {9} They gave a heuristic method
for obtaining economical group sizes. However, they did not
solve the problem of determining optimal group sizes For ex-
ample, for a 48 bit adder they gave the group sizes4 678 8 7
6 S 4 yielding the maximum delay of 14 {3]. We show that, under
the same assumptions an optimal subdivision results in a delay of
12

They also discussed the problem of achieving even faster addition
by allowing carry signals to skip over blocks of groups. The
problem of optimizing the carry chain is now complicated by
having to choose both the optimal number of blocks and the op-
timal sizes of groups within blocks. Some rules for choosing
economical block and group sizes are given [3]). However, the
problem of determining the optimal sizes remains unsolved.

In this paper we consider the problem of designing a carry-skip
adder in FET technology and give some optimal solutions. Ac-
tually, our solutions are more general in that we generally assume
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that the time required for a carry signal to skip over a group of
bits is longer than the time required for the carry to ripple through
a single bit. This assumption is relevant for adders designed in
n-MOS technology. Lehman and Burla assumed their adder to
be designed using discrete components where these two times are
equal. Our analysis will inclnde their problem as a special case.

2. DIVIDING THE ADDER INTO
GROUPS

Let n denote the number of bits in a carry skip adder and let m
denote the number of groups into which the bits are divided. Let
Xy, ..., Xy, denote the sizes of the groups beginning with the most
significant bit. Let T denote the time required for a carry signal
to skip over a group of bits. To be precise we should write
T = T(x) to indicate that T depends on the size x of the group
over which the carry is skipped. However, T changes very slowly
with x over the range of group sizes that concern us. So we as-
sume that T is constant.

for a given n, the following three-step procedure gives an opti-
mal way of dividing an n bit adder into groups of bits.

Procedure 2.
2(i) Let m be the smallest positive integer such that

l 1 2 mT
ngm+4 2mT+ 4mT+(l-(-l) )8. n

- 2(ii) Let
ymeminfl +iT, 1+ (m+1-)T}, i=ml,.... m

and construct a histogram whose i-th column has height y,.
For example, for T = 3 and n = 48, we have m = 7 and the
following histogram

Xi 3l Yi
’ 12
(N
10—
9p—
]
7
6
5
q
3
2
| |

O I 2 3 4 5 6 7 8 i

Fig.2. Histogram of segments y, . x,

2(iii) Itis easily verified that the area of the histogram in (ii) is
1 t 2 m T
— —m - - e >
m+2mT+4mT+(| ( |))8-"

so these are at least n unit squares in the histogram.
Starting with the first row, shade in n of the squares, row
by row. Let x, denote the number of shaded squares in
column i of the histogram,i= 1, ..., m.

Then x,. ... , x,, is an optimal division of the adder. The maxi-
mum delay of a carry signal is mT.

Example 1. For a 48 bit adder we have, from Figure 2.
y=x=4 xyxmx, =7, xy=8andx; = x; = 9.

NN NN e

LTI ] X3 X4 Xg Xg Xy
n=48 AsmT=2|

Fig.3. Carry chain of a 48-bit adder: n=48, mT=21

The maximum delay is experienced by a signal generated in the
second bit position and terminating in the 47th bit position. The
delay is mT = 21.

Example 2. Consider a 54 bit adder. From 2(i) we see that again
m = 7. If we shade 54 squares in Figure 2, we see that
Xjmxy;md, x,mx,mT, xymxsm 10and x, = 12

yields an optimal division of the adder. Again the maximum delay
ismT = 21.

Example 3. Consider a 64 bit adder. From 2(i) we compute

m = 8. The corresponding histogram is shown in Figure 4 The
optimal group sizes are:

Xymxu =4 xymx; =T, xy3mx,m 10, x4 m x5 = {1

e

10

CLitrrat
| 2345678 i

Fig.4. Segment histogram for a 64-bit adder: m=8




X Xy Xy L Ry Xg X; Xg
n=64 A=mT=24

Fig.5. Carry chain of a 64-bit adder: m=8, mT=24

The delay of the longest signal is mT = 24.

Proof of Optimality We are going to prove optimality of the divi-
sion of the carry chain described in 2(i)-(iii). First we need a
lemma.

Lemma 1. When the bits of a carry skip adder are grouped accord-
ing to the scheme (i)-(iii), the maximum propagation time of a carry
signal is mT

Proof. The carry generated at the 2nd bit position and terminat-
ing at the (n-1) clearly has propagation time mT. We must show
that any other signal has propagation time smaller than or equal
to ml. Consider a signal originating in the ith group and termi-
nating in the jth, i < j. Denote its propagation time by P. Clearly

Pelx, =D+ U-1- DT+ (x,-1)

By construction, x, € min}1 + {7, 1 + (m + ) — )T} for each i
s0

P <minit+iT, 1 +(m+1-)T
+ min{l + ;7.1 +(m+ 1 - PN+ G—~i—~ DT - 2.

There are three cases to consider.
1. First assume
mindl1 + T, 1V +(m+ 1 - DT =1+iT
and
min{! + 7. 1 + im+ 1 - pTy =1 4+ 4T,

In this case | + ;T <t (m+ 1~ T2 T-T<mT It
follows that

4

iA

1+ T+ 1+ T+(G~-i- Dr-2
251 -- T < mT.

fl

2. Now assume that

minfl +17T, L+ (m+ 1~ )Tt =14 iT
and

mnfl + ;7. 1+ m+1~-)T=1+m+1-)T.
fn this case we have
P14+ T+ 14+ m+ 1 - NPT+ (-i=- DT ~2=mT.

3. Finally, assume that

mn{l +iT, l+m+1 - =1 +(m+1-NT
and

minfl 4+ 7. 1+ (m+ 1~ NPTt =14 (m+1-)T.
it foliows that

P<l+im+ 1 -DT+ 1 4+m+ 1 - NPT+ (G -i-NT-2
=2mT —~ (2iT~T) € 2mT — mT = mT.

This completes the proof of the lemma.

Lemma 2. Ler A denote the maximum delay of a carry signal in a
n bit carry skip adder with group sizes chosen optimally. Then

(m-NDT<A<mT

Proof. Since we have exhibited a division of the carry chain into
groups in such a way that the maximum delay of a carry signal is
mT we clearly have A € mT.

Let x;, x5, ..., x, denote the optimal group sizes corresponding
to A. For the moment assume that r, = 2k is even. By considering
carries originating in group i and terminating in group

r—i+ 1, i=1,..., k, we deduce the following system of ine-
qualities.
-1+ r=-2)T+ (x,-1) <A
-1+ =T + (x,_,~-1) < A
Ge=1) + (r=200T + (x,,~1) < &
rT < A

If we add these inequalities and use the fact that i X, = n, we

obtain the inequality ol
n—2k+(k+1)rT—ktk+ DTS (k+ DA

which simplifies to

n —~ 2k
PAMRI. . < A.
P +kT <A

The left hand side of this inequality assumes its minimum value
at

n+2
k41 = ——m
It foliows that
A> ~(T+2)+vanT + 8T (2)

Assume now that r = 2k + 1 is odd. We then have the system
of inequalities

-+ =T+ (x-1) < A
-1+ UC-DT + (x,_;-1) € A
=1 + (=207 + (4, -1 < A

=D + KT <A,

which implies that

n—~2k-1

PR + kT < A

By minimizing tbe left hand side of this inequality with respect to
k we find that

A > —(T+2)+vVanT +4T. (3

By comparing this with (2) we see that (3) holds in all cases.

We will now produce an upper bound on mT. Since m is the
smallest positive integer satisfying (1) we have
‘ T

n>(m- l)+%—(m— 1)T+~i—(m—- 1)2T+ (1 —( —l)m'i)~8—,



Since each size of this inequality is an integer, we can increase the
right hand side by | to obtain

n2 m-—%—T+ 'i—m:T+ -c=-n" ‘)-QT—.

Solving this inequality for mT gives

mT < —2+\/4nT+4+f~(1 PRI N

3 4

Combining this with (2) and (3) gives

T+-

(x, = 1) +sT + (x, —~ 1)
X+, =2+ (m =T

I AN

So that either x, > T+ 1 or x, > T + 1. This means that we can
subdivide one of the groups i.j without increasing A. Continuing
in this way, we can always increase the number 1 of group in an
optimal division of a carry chain by 1 without increasing A if
r < m. This means that we can arrive at an optimal division of the
carry chain into m groups. We must then have A > mT which,
together with Lemma 2, implies A = mT. This completes the
proof of the theorem.

TP -8T+4-(1 —(-1)"‘“‘)—7i
— 2 =, r-even
vV4nT + 8T +‘/4nT+4+T2--(l ~(-|)"‘“)—72:-
P2 (5
TP 4T+ 4-(1 - (-1
2 r -odd

T4+ ——

VanT « 4T + \/4nT+ 44T —(1-( —1)""")—7—:-

For n sufficiently large we have mT — A < T+ 1 and since
mT — A is an integer, mT - A < T. This completes the proof of
the lemma.

Theorem 1 The scheme 2(i)-2(iii) given above for dividing the bits
of a carry skip adder into groups is optimal for2 < 1'< 7.

Proof. Assume the scheme is not optimal and let A be the maxi-
mum delay corresponding to an optimal division of the bits into
groups. Assume there are r groups in the optimal division. Since
a carry in signal to the least significant bit group can skip over
each group we have rT< A <mT so r<m. If r=m then
A = mT and the theorem holds by Lemma 1. If r=m~1 m
and r have different parities and it follows from (5) that
mT—-A<Tfor 2<T<7 so that A>(m~ V)T =rT This
means that a signal which skips over each of the r groups has
delay less than the maximum A. Similarly._ if
r<m—1, A2 (m— 1T > rT so that a signal which skips over
each group has delay < A. It follows that a signal with delay A
must start in a group i, ripple to the end of this group, then skip
over s < r groups and either terminate, or ripple through the first
few bits of a group j > i. Let x, and x, denote the lengths of the ith
and jth groups respectively. Assume that i is chosen as small as
possible and j as large as possible. A signal originating in group
i, rippling to the end of this group and then skipping over the next
s group has delay

AS(x-—1D+sTS (x,=1)+(r-1T
S x=D+m-2T.

Since A > (m — 1)T this implies that x, > T + 1. Divide group i
into two groups such that the group containing the most signif-
icant bits has size T. Since the i-th group is the first group in
which a signal having maximum delay can originate, this subdivi-
sion does not increase the delay of any carry signal of maximum
delay. However, it increases the number of groups by 1.

Suppose now that a carry signal originates in a group i. ripples to
its end, skips over s < r — 2 groups and finally ripples through the
first few bits of a group j and terminates. We then have

3. DIVIDING GROUPS INTO BLOCKS

It is clear that the maximum delay of a carry signal in a carry skip
adder can be further reduced if signals are allowed to skip over

" hlocks of groups. We define a block to be an additional path al-

lowing carry signal to skip directly over groups In this section
we will describe an efficient scheme for dividing the carry chain
into blocks of groups. We assume that the time required for a
carry signal to skip over a block of groups is 7. Actually, the time
required for a carry to'skip over a block 7, is slightly longer than
the time T, required to skip over a group. But for the sake of
simplifying the analysis we will assume these two times to be
equal i.e. T, = T,. However, our technique extends to the case
where T, # T,.

Let M denote the number of blocks into which the groups of bits
are divided. Let A denote the maximum delay a carry signal can
have in an adder divided into M blocks. Clearly, A > MT. We
will show how to choose the blocks such that A = MT. We will
also show how to choose M for an adder of length n.

Our blocks are chosen in such a way that the maximum delay of
a signal originating and terminating in block 1 and M + 1 — /s
iT.

Consider a signal originating in the first of these blocks and ter-
minating in the second. Such a signal will skip over M — 2i blocks
and will accordingly have delay < (iT) + (M = 20T + iT = MT
as desired. [t follows from our work in Section 2 that in order for
a signal originating and terminating in block i to have delay less
or equal iT we must choose the length of the ith and
(M + 1 — )rh blocks to be less or equal the number of unit
squares in a histogram with base of width i. Thus the maximum
length of the ith and (M + 1 — i)th blocks must be

T M

1 1> .
i+ —i —i"T 1—(=~1))—, < [—1.
:+2:T+ s +( ( ”8‘ x-fz

(Here we use the symbol [ /i 10 denote the smallest integer > /.
) 1t follows rhat the maximun length of an adder divided inte M
blocks must be
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Thus for a given adder length n, we choose M to be the smallest
positive integer such that the expression (3.1) exceeds or equals
n. M is then the number of blocks into which our adder must be
divided. The formal statement of our algorithm is as follows.

3(i) Choose M to be the smallest positive integer such that
r¥=l
C . l o ‘ .2 i T}
2 ~—iT 4+ —i‘T - =1))—
ng ; {1+21 + T+ (- (=0

(1—(—1)”){ M 1M 1. M,
—— I =22 4 — T
+ ) f2 +2r2 T+4f2 T

+ (1= —nf”v’”)%-}.

(

3(ii)) Form M blocks labeled 1,2, ..., M, with blocks i and
M 4+ 1 — i each containing

b b T
a+2|T+4lT+(I ( l))"s‘

1
L M
bits,i < I 2 1. -
; This construction is analogous to the construction of the
(histogram in 2(ii). If necessary, delete bits from the largest
blocks in this chain until a total of exactly n bits remain in
the M blocks. :
3(iii) Treat each of the final blocks in 3(ii) as a complete carry
chain and divide it into groups optimally using the algo-
rithms 2(i)-2(iii).

Example 3.1. Consider a 32-bit adder. Fori=1,2,3, ..., and
T = 3 the numbers
A 1.2 T
i+ 2:T+ e T+(1-( l))8
take on the values 4, 8, 15, 22, 32.... respectively. Since
32<2{4 +8} + 15

we must have M = § blocks in step 3(ii). These blocks have sizes
4, 8, 15, 8, 4 respectively. If we delete 7 units from the middle
block we obtain block sizes 4, 8, 8, 8, 4 which add up to 32. Di-

y, v, ¥
‘ VA VAV
X) Xy Ry Ay Rg xé X, g

n=32 AsMT= 15

Fig.6. Carry chain of an 32-bit adder: MT=15

viding each block into groups by the procedure 2(i)-2(iii) we ob-
tain the following chain where each group has size 4.
The maximum delay of a carry signal is MT = 15.

Example 3.2. Consider a 48 bit adder. Again we assume 7 = 3.
Since

48 < 2{4 + 8 + 15}

we must take M = 6 corresponding to block sizes 4, 8, 15, 15, 8,
4. The total number of units is 54. So we reduce the size of the
two middle blocks by 3 each. This gives block sizes 4, 8, 12, 12,
8, 4 adding up to 48. If we divide each block into groups by the
procedure 2(i)-2(iii), each group has size 4. The maximum delay
of a carry signal is given by MT = 18.

Example 3.3. Consider a 64 bit adder and assume T = 3 Since

64 <2{4 +8 + 15} + 22

we take M = 7 and start with blocks of sizes 4, 8, 15, 22, 15, 8,
4 respectively. The lengths of these blocks total 76. So we reduce
the middie block by 12. The new block sizes are 4, 8, 15, 10, 15,
8, 4. The optimal division of these blocks into groups is given in
Figure 7. We could have just

3 Ye Ys

R %z X3 %4 Ry Ng XpXg Eg Xig Xy M2 X3 %4 Ns
ns64  AsMT=2|
Fig.7. Carry chain of a 64-bit adder: MT = 21

as well reduced the sizes of the three middle blocks obtaining final
blocks of sizes 4, 8, 13, 14, 13, 8, 4. The maximum delay of a
carry signal would still be MT = 21.

4. COMPARISON

In the literature comparison of schemes for ALU implementation
is done mainly on the basis of the number of gates, propagation
delay per gate and power consumed per gate [5]. However, if a
VLSI implementation of a high-speed ALU is considered, these
measures are not easily applied. For example, the propagation
delay in terms of number of gates is not an adequate measure
unless care is taken to implement the function exactly as specified
by its logic (gate) representation. This is often not the case since
the function is frequently merged into a group of transistors or
implemented by using pass-transistors, precharge or other tech-
niques applyed by the circuit designer in order to minimize delay
and power.

In general, if the function is implemented in two levels of logic,
the delay is not necessarily smaller than the implementation of the
same function in three or more logic levels. This is due to the fact
that in n-MOS technology the delay is heavily dependent on se-
veral factors:

1. Gate type : NOR gates are faster than NAND gates.

2. Fan-in : for a NAND gate, the delay is directly proportional
to the number of inputs, since inside the n-input NAND gate
the signal has to propagate through n-transistors. In case of



a NOR gate, delay is not strongly affected by the number of
inputs, and therefore the use of NOR gate is preferable.

3. Fan-ow - the speed of a gate will be different if the fan-out
is larger than in the case of small fan-outs.

4. Wiring . speed is also dependent on the length of the wires
i e. "wiring capacitance' and the resistance of the long wires.

4.1 Comparison with Carry-Lookahead
Scheme

For the purpose of om analysis we consider as a rough measure
of delay the number of FET transistors through which the signal
needs to propagate in order to reach the destination point. This
seems to be satisfactory for measuring delay through a VL.SI FET
network. In addition we modify the delay equations for the
points known to have either 2 substantial fan-out or considerable
capacitive loading due to the long wires carrying signal to the
distant points within the VLSI macro block. For example, we
assume that the time required f6r a carry signal to skip over a
block of groups is three times the time to ripple through one bit
position of the carry-chain. These assumptions were confirmed
by simulation performed on a 32-bit ALU which was actually
implemented in n-MOS technology.

The Case T = 1.

In order te compare the speed of our carry skip adder with that
of the Carry l ookahead Adder ( CLA ) we take T' = 1. This
modification is made in order to compare our results with the es-
timates for the CL.A adder which are hased on the gate delay
calculations im which case it is assumed that each gate level in-
troduces a delay 7; = t regardless of the gate fan-in or fan-out
{5). This assumption works favorably for CLA when calculating
its speed. Im practice we expect CLA to show worse performance
than estimated while the calculation for our CSA schemes should
be more accurate.

For our comparison we consider full-CL A with the groups of size
G, = 4 . CLA adder of size n=32 bits is shown in the Fig.8 with
the delays indicated at each signal input and output to or from the
block. Delay calculation for C1LA of the sizes n = 16, 32, 48, 64
shows delays for the critical path of the carry signal to be A = &,
8, 10, 10 respectively {S}.

A

First we consider our case where the adder is simply divided into
groups of bits. The procedure in Section 2 shows that the maxi-
mum delay of a carry signal in an n bit adder is m, where m is
the smallest integer satisfying =

1 1 3 m 1
n5m+—m2 +m + (1 (—1))8

The values of a delay m for our method compared with the CL.A
delays for several values of n are shown in the Table 1.

n A(CSA) ACLA)
16 6 6
32 9 8
48 12 10 :
s
64 14 10
. —_

\

\

\\
Table 1. Delay comparison with the CLA for the method bf

Section 2. :

\

Consider now the case where the adder is divided into blocks o
groups according to the procedure of Section 3. This algorithm
shows that the maximum delay of a carry signal in an n bit carry,
skip adder is M, the smallest positive integer satisfying
S My
) 1. 1.2 iy 1
<2 S W I T
ng 2 {t+21+4 + (1~ ( 1))8}

im} ,
(1-(—1)“)§u 1. M., 1, My
et A e 2 2

+ 2 T 1+5T3 1+ 713

+ (1~ __l)rwﬂ)_é_}.

Recail that I 71 is the smallest integer > r for any real number r.

Table 2. shows the values of delay M for CSA of Section 3 com-
pared to that of CLA adder corresponding to several values of
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Fig.8. Carry Signal Delay of a CL.A Adder of the size n=32 bits



n A(CSA) A(CLA)
16 5 6
32 7 8
48 9 10
64 10 10
L r

/

Table 2. Delay comparison between CSA of Section 3. and CLA

In the first case ( Table 1. ) we notice that CLA is faster than our
method of Section 1. resulting in equal delay for n=16 and ending
up with 40% advantage for n=64. However, in the second case
( Table 2. ) our method of Section 3. shows advantage in speed
over CLA of approximately 20% for n=16 and no advantage for
n=64.

Our scheme exhibits regularity in fan-in and fan-out throughout
the entire carry chain and therefore yields simpler and regular
implementation. The amount of logic required to implement our
scheme should therefore be smaller then that of CLA. Therefore
its implementation in VLSI technology should yield even better
results.

5. CONCLUSION

Our goal in implementing this scheme was to achieve a regular
structure without using an excessive chip area. Comparison of
various ALU implementation schemes for area and power as a
parameter show that after some point small improvement in speed
is achieved by a large investment in area or power [6],{7]. In our
approach we argue that this incremental improvement in speed is
diminished due to the overhead in the wiring capacitance and de-
vice size. Therefore our approach is to maximize the speed not
by increasing the power or adding a substantial amount of logic
but rather by optimizing on the path of the signal with the critical
timing (carry signal) by designing the ALU around the carry path.
The method described in Sections 2. and 3. is especially applicable
for the floating-point fraction ALU which is usually of large size
n.
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Abstract

For fast binary addition, & carry-
lookahead (CLA) design is the obvious choice
[OnAt83, BaJMB3]. However, the direct imple-
mentation of a CLA adder in VLSI faces some
undesirable limitations. Either the design
iacks regularity, thus increasing the design
and implementation costs, or the interconnec-
tion wires are too long, thus causing area-time
inefficiency and limits on the size of addition.
Brent and Kung solved the regularity problem
bg reformulating the carry chain computation
[BrKuB2]. They showed that an n-bit addition
can be performed in time O(logn), using area
O(n log n) with maximum interconnection wire
length 0(n). In this paper, we give an alterna-
tive log n stage des‘iﬁn which is nearly optimum
with respect to regularity, area-time efficiency,
and maximum interconnection wire length.

Introduction

Our design follows Mead and Conway's A
design rules [MeCoB0O]. We assume two layers
of interconnect (either metal, silicide or
polysilicon). The only circuits used in the
design are NMOS complex gates [MaJD83] and
transmission gates (pass transistors). All
interconnection wires are specified to be of
length less than L, which is assumed to be a
constant for a particular fabrication technol-
ogy. The time delay for driving a signal along a
wire is assumed to be proportional to the
length of the wire. Thus, constant propagation
delay can be achieved by having the channel
width of the driving transistor proportional to
the length of the wire [BiPP81, NgaiB4).
Finally, the computation is performed in a
planar region.

First we introduce our carry-lookahead
adder which is based upon traditional block
carry-lookahead techniques [WaF182]. Then we
derive the NMOS design using a negative logic
scheme. For the initial design, the external
inputs and cutputs are assumed to be avail-
able where they are required or generated.
Finally, we will lift this assumption and con-
(siideri’1 the practical input/output problem in

ept
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The Carry-lookahead Scheme
Let Gy 18y .2 " B¢ and b,._lb".g s bo be two
n-bit binary numbers with a sum of s,_, - so.
'ghe carry-lookahead scheme computes the s;'s
y

Ceer = i +PiCy

8¢ = ay®byc for 1=0,1,..n-1
where
gi=ady  (carry generate)
Pi=a(+b,  (carry propagate)

+ denotes logical or
zy denotes z and y
® denotes ezclusive or

It is easy to show that
-1
Ciemsr = Juem + ”2 Lﬁ Pu;]ﬂm + Lﬁptu}‘« .
(=m0 {fmi+] =0

For lar%e m, the above carry computation
is difficult to implement due to the practical
limitations on fan-in and fan-out. In order to
reduce the complexity, it is common gractice
to group carries into blocks [WaF182]. The
block carry scheme is

Ceer = G + P

tn =Yy

-1
Criemet = Friem + 't Lﬁ Pﬂo,]ﬂnu +
i=0 {Julel

Lﬂpm,]c" for 0sm<r -2
=0 .
where
r—2} r-
9% T Griser-1) 2 Pri+s Prist
120 {y=l+1
(block carry gensrate),
.
Py = ;Iip'uj (block carry propagate)
7 is the blocking factor

The same technique can be applied iteratively
to compute the block carries. This scheme is
illustrated in Figure 1 for a 27-bit CLA adder
using a blocking factor of three in three levels.



