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Préface a I’édition anglaise

Je tiens a remercier trés sincérement tous ceux qui ont rendu possible cette
traduction de mon livre: d’abord Beno Eckmann, c’est grace a Iui que le projet
a été reéalisé; Shiing-Shen Chern qui a eu la grande amabilité d’écrire uné
Introduction; Springer-Verlag pour tous ses efforts et sa coopération; et le
traducteur pour son travail consciencieux.

Voici quelques compléments historiques de nature personelle.

Attiré vers les Mathématiques dés 1924, c’est en 1928 et 1929 que j’ai fait
ma thése. En 1930, H. Lebesgue, a qui j’apportais mon manuscrit, m’a dirigé
vers Elie Cartan, qui a bien voulu ’examiner et faire un rapport favorable. Ma
thése a paru en juin 1931, précédée de deux Notes aux Comptes Rendus en
1928 et 1929.

Peu aprés, S. Lefschetz écrit @ H. Lebesgue “... vous nous rendriez grand-
service en suggérant 4 M. de Rham de nous envoyer quelques exemplaires de sa
these. M. Hodge nous en a exposé la partie analytique...”.

Ce fut, semble-t-il, 'origine des travaux de Hodge publiés vers 1934-1936.
L’énoncé de son théoréme frappe par sa beauté et sa simplicité. Mais ses
démonstrations m’ont paru trés pénibles et trop difficiles. Ce qui m’a amené
i reprendre le probléme dans les travaux publiés en 1946. Pendant la guerre, les
“Annals of Mathematics” ne parvenaient pas dans nos bibliothéques et j’ai
ignoré le travail de H. Weyl auquel S. S. Chern fait heureusement allusion dans
son Introduction. Je n’en ai eu connaissance que plus tard.

En 1950, a P'Institute for Advanced Study de Princeton, 4 la demande
precnscment de H. Weyl a qui je dois beaucoup pour lintérét qu’il m’'a
témoigné, j’ai fait une série d’exposes “Harmonic Integrals .De la, grice &
I'intérét et 'amitié d’André Weil, est issu mon livre.

Lausanne, en mai 1984 Georges de Rham



Introduction to the English Edition

Wilfiam Hodge’s theory of harmonic integrals was both bold and imaginative.
In one step he found the key to the n-dimensional generalization of geometric
function theory. His proof of the fundamental theorem contained a serious gap.
This was filled in a masterful way by Hermann Weyl, using his earlier results on
potential theory.

Professor de Rham’s book is an introduction to differentiable manifolds. Its
main objective seems to be the first detailed proof, different from Hodge-Weyl,
of Hodge's fundamental theorem. It must have given him great pleasure in
writing the book, for Hodge theory is a natural culmination.of the de Rham
theory.

In n-dimensional geometry a fundamental notion is the “duality” between
chains and cochains, or domains of integration and the integrands. While the
boundary operator is a global operator, the coboundary operator, i.c. exterior
differentiation, is lo€al. This makes cohomology theory a more convenient tool
for analytical treatment and for applications. Poincaré recognized the
importance of the multiple integrals and stated the main “theorems”, while Elie
Cartan developed the foundations of the exterior differential algebra and
applied it to mechanics, differential systems, and differential geometry. The
global theory was completed by de Rham’s famous thesis in 1931. The thesis
was long, because at that time topology was homology theory and the notion of
cohomology did not exist. '

A notion which includes both chains and cochains is that of a “current”.
This was introduced by de Rham and used effectively throughout the book. A
zero-dimensional current is a distribution (in the sense of Laurent Schwartz),
now a fundamental concept in mathematics.

There are now other proofs of Hodge’s theorem. Perhaps the most natural
approach is through pseudo-differential operators; cf. [5], [6]. The Milgram-
Rosenbloom proof using the heat equation method is an idea with broad
repercussions [3] Morrey, Eells, and Friedrichs gave a proof using a
variational method [4].

Hodge’s theorem admits various extensions. The most important one is to
cohomology theory with a coefficient sheaf, which was introduced by J. Leray
and developed for the complex structure with great success by Henri Cartan
and J-P. Serre [1], [6]. Its harmonic theory was first worked out by K. Kodaira
[2]. When geometrical information is available, the harmonic theory allows the
proof of “vanishing theorems” on cohomology groups, using an idea originated
from S. Bochner. Such vanishing theorems are of great importance.



VI ' Introduction to the English Edition

Modern developments in the general area of “elliptic operators on
manifolds”, such as the index theory and the spectral theory, have raced way
beyvond the content of this book. I believe, however, that in his enthusiasm for
new results a mathematician will be well-advised to stop at this landmark,
where he will have a lot to learn both on the mathematics and on the
,mathematical style.

Berkeley, February 1984 S. S. Chern
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Introduction

In this work, I have attempted to give a coherent exposiiion of the theory of
differential forms on a manifold and harmonic forms on a Riemannian space.

The concept of a current, a notion so general that it includes as special cases
both differential forms and chains, is the key to unlerstanding how the
homology properties of a manifold are immediately evident in the study-of
differential forms and of chains. The notion of distribution, introduced by L.
Schwartz, motivated the precise definition adopted here. In our terminology,
distributions are currents of degree zero, and a current can be considered as a
differential form for which the coefficients are distributions,

The works of L. Schwartz, in particulat his beautiful book on the Theory of
Distributions, have been a very great assét.in the elaboration of this work, The
reader however will not need to be familiar with these. Leaving aside the
applications of the theory, I have restricted myself to considering theorems
which to me seem essential and I have tried to presem simple and complete
proofs of these, accessible to each reader having a minimum of mathematical
background. Outside of topics contained in all degree programs, the knowledge
of the most elementary notions of general ;opology and tensor calculus and also,
for the final chapter; that of the Ftétﬁolm theorem, would in principle be
adequate.

After the definition of dxfferennablc mamfolds Chapter I establishes some
results necessary for the sequel. In partigular, the existence of partitions of unity
and the theorem of Whltney concemmg the?roblem of embeddmg amanifold in
a Euclidean space are given.

Chapter II describes the elements of tﬁe theory of differential forms and
differential chains together with the exterior differential calculus of E. Cartan
and the generalised Stokes’ formula. I have introduced and systematically used
the notions of forms and chains of even type and odd type. These concepts allow
the theory to be applied as well to non-orienitable manifolds. Finally, the notion
of double form prepares the way for the introduction of some other gesme-
ralisations.

Chapter I11 is devoted to ﬁie definition and to the study of the general
properties of currents. Certain properties of topological vector spaces which we
require here are recalled along the way together with their proofs. 1 have
introduced double currents, which generalise the kernel distributions of L.
Schwartz, and the regularising operators which show in a precise way that a
current can always be considered as the limit of a sequence of' forms.

In Chapter 1V, currents are used to define and study the homology groups of
a manifold. We will find there complete proofs of theorems which provide a
relationship between differential forms and chains from the homological
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viewpoint in a wajanalogous to the Poincafe duality theorem in a differentiable
manifold.

Chapter V deals with the principles of the theory of harmonic differential
forms in a Riemann*space. First, the Hodge theorem is established using the
integral equations method which in the case of compact spaces leads to the most
complete results. The lemmas upon which this method rests are proved in detail.
So too are all the properties of the geodesic distance which occur there. The
methdd of drthogonal projection in a Hilbert space which allows us to proceed
further in the non-compact case is considered next, and the decomposition
theorem of Kodaira is generalised by the introduction of currents. We deduce
from these formulas providing us with an integral representation of the
Kronecker index of two chains. Next, by the method of E. E. Levi, we prove that

_the harmonic differential forms are analytic in an analytic Riemannian space. In
particular, it follows that such a form cannot have a zero of infinite order unless it
-is identically zero. We make note that by virtue of a theorem of N. Aronsjan, A.
Krzywicki and J. Szarski, this is moreover-valid for harmonic forms in a C®
Riemannian space. Finally we conclude with an interesting theorem of A.
Andreotti and E. Vesentini which concerns square summable harmonic forms on
complete, non-compact Riemannian spaces.



Chapter 1. Notions About Manifolds

§1. The Notion of a Manifold and a Differentiable Structure -

An n dimensional manifold is 4 separable topological space, each point of which
has a neighbourhood homeomorphic to an open n dimensional ball. Moreover
we shall always suppose that this space admits a countable base of open sets, that
is, there exist a countable sequence of open sets such that any open set may be
expressed as a union of sets of the sequence. ‘

On an nn dimensional manifold ¥ a differentiable structure of infinite order, or,
more briefly, a C* structure, is defined by prescribing at each point x of ¥ a class
of real valued functions which are said to be C* at x such that the following
axiom is satisfied.

Axiom for C* Structures. For each point u of V there exists an open
neighbourhood U of u and n real valued functions deﬁned on U, x;(x),...,x,(x),
such that :

(a) Themap x—(x,(x),. . x,.(x)) of U into R”" is a homeomorphism of U onto a
connected open subset of R" such that each funcuon fdefined on U or on a subset of
U can be expressed with the aid of x,, . . ., x,,

F)=f(x1(x),. .., xu(x));

(b) The function f(x) is C* at a point of U if and only if there exists an open
neighbourhood W of this point, contained in U, such that f (x) is defined on W and
such that f(x,,. .., x,) has continuous derivatives of all orders for values of the
variables x,,. . ., x, corresponding to points of W.

A function is said to be C* if it is C* at each point of ¥ and C® on a subset A
of Vifitis C* at each pomt of A. It follows from (b) that the set of all points
where a function is C* is an open set.

Every system of n functions x,,. . ., x, defined in an open set U and havmg
the properties (a) and (b) is called @ sys.zm of local coordinates in U. Our axiom
ensures the existence of such a system in an open nelghbourhood of point.

From (b), these coordinates are C* functions in U. If f; ,. . ﬁ, is another
system of local coordinates in ¥, the functions f, e sy are C°° funcsions for
which the Jacoblan with respect te x,,. . ., x, is non-zero in U. On the other .

-hand, by virtug¢ of the classigal implicit funcuon theorem iffy,.... [, are C*
functions on U for which-the Jacobian with respect tox,,. .., Xx,is +4 at a point
¥’ of U, there exists a nelghbotfrhood U of v in which f;,.. ., , are local
coordinates.
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In practice, a C* structure is most often defined by an open covering {U,} of
" with a system of local coordinates in each U;. On the intersection U;~ U, the
coordinates of one system must be infinitely differentiable functions of the
coordinates of the other, in accordance with (b)..

In the space R”, there exists a canonical C* struqngc, given by the system of
coordinates x, ,. . ., x, defining R”; the C*® functlons are mﬁmtely differentiable
functions of xq,. .., x,.

A function defined on a mamfold witha C* structure is said to be C”, r being
an integer =0, if, when expressed in terms of the local coordinates, it has
continuous derivatives up to and including ordcr r. A C0 function is simply a
continuous function. :

A C* manifoldis a manifold with a C® structure. As only C® mamfolds areto
be considered in the following, we shall call them simply manifolds'.

We may define analogously the notions of differentiable structure of order r
and of real analytic structure: it is sufficient to modify condition (b) of the above
axtom by demanding only that f(x,,. . .,x,) has continuous derivatives up to
order r or that it is real analytic. Thus we obtam the notions of C" manifold and
of real analytic manifold.

§2. Partition of Unity. Functions on Product Spaces>

Let f(x) be a function ¢qual to exp (;—~x"2) for x>0 and to 0 for x<0, and let

f SOfA —=tdt

glx)=
IﬂMUﬂW

kS
The function A(x)=g(x+1) g(r) 1s C*, 20 and zero outside of the interval
(—1,1), and we have

. S h(x—p=1, N
j=-= N
SR N
as is easily verified. By successnvely replacing x wnh — aﬂd rﬁultlplymg

together the relations obtained, it follows that , g

X . [xs N L xa
Xk (—j —.h) h (f-*k)ﬁv--' h (';'—.1..>=1-
Jtseees Jno 4 R AT .

L This definition of differentiable mdmfold is equwaicnt to that of Whitney, and, in this
form, very near to that given by Chevalley (Whitney [1], Chevalley [1]., Chapter 111).
2 For this §, c.f., Dieudonné [1] and Schwartz 2], p. 23.

i
\



§2. Partition of Unity. Functions on Product Spaces -5

Denoting the system of n integer indices j,.....J, by the positive integers
J=j(1-- - - -Jju) the point (x;,....x,) of R" by x and putting

¢j(x)=h (% -,i1)~ .. h (i—n *jn>»

this relation may be written as
(3] Y di(0)=1.
i

The function ¢;(x) is C*, =0 and vanishes outside the cube of side length 2¢
and centre at the point (jig,. . ., jx), i.€., outside of the cube defined by the
relations |x;, —jie| Se (i=1,...,n).

The support of a continuous function is deﬁned t8 be the smallest closed set
outside of which the function vanishes. The support of ¢;(x) is the cube described
above.

Let 4 be acompact setin R"and B an open set containing 4. If ¢is sufficiently
small, the length of the diagonal of the cube of side length 2¢ is less than the
distance of A to the frontier of B, and therefore, if such a cube meets A, it is
contained in B. Let us consider then the functions ¢;(x) with support meeting A4.
There is a finite number of them and their sum is a C* function with compact
support in B, its values lying entirely between 0 and 1 (the endpoints are not
excluded) and equal to 1 on 4. Thus, we have proved the following proposition.

Lemma. If 4 is a compact set in R" and B is an open set containing A, there
exists a C* function with compact support in B, with values lying between ) and 1
and equal to 1 on A.

This lemma will be used to prove the following theorem.

Theorem 1. For any open covering {U;} of a manifold V. where i runs through
any set of indices, it is possible to find a collection of functions ¢, where j runs
through a finite or countably infinite set of indices, satisfying the following
conditions

7
2) &;is C™ and has compact support contained in one of the U;;
3) Each point of V has a neighbourhood which meets only a finite number of the
supports of the ¢;.

If condition 1) is satisfied, the expression ) ¢; is called a partition of unity.

We express condition 2) by saying that thisj partition is subordinate to the
covering U; and condition 3) by saying that it is locally finite. By virtue of the
Borel-Lebesgue theorem, this condition 3) is equivalent to the following:

3') Every compact set meets the supports of only a finite number of the ¢;.
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The collection of the ¢; will be finite depending on whether V is compact
or not.

In-order to prove this theorem, let us first show that there exists an open
covering {G;} of V having the following properties:
(a) It is subordinate to the covermg {U}, that is, the closure G; of each Gy is
contained in one of the U;.
(b) It is locally finite, that is, a compact set can meet only a ﬁmte number of
the G;;
(c) The closure G; of each G; is contained in the domain of a coordinate system.

Since it is supposed that the manifold has a countable open basis, we know
that from every open covering, a finite or countable covering is able to be
extracted. For each point of V, we can find an open set U’ which contains it and
which has compact closure contained in one of the U; and in the domain of a
coordinate system ; consequently, there exists a finite or countable covering {U}
formed by such sets and this covering possesses properties (a) and (c). If it is not
locally finite, such a one can be constructed by shrinking the U in the following
way.

Consider the sequence of compact sets K;, K,,... and the sequence of
integers jy, j,,. .. defined recurrently by putting

K=Ui, ji=1;

Jm=the smallest integer >, such that K,,_, C U Ui, K= O Ui. Kp-, is
contained in the interior of X,, and any compact set 1s contamed in K whenever
m is sufficiently large. We then define the G by putting

Gl = U: if i éiz s
G,'= U{n%Km—l ]f jm<i§jm+1 With m> 1,
where the symbol € denotes the complement in V.

In order to ensure that the G; form a covermg of V, it suffices to verify the
relation

JUI Gi:JUx U
i=1 i=1

This relation is exact form=1,as G;=U"if i<, . Proceeding inductively, let
us suppose that

0 o-0u-s

The required relation then follows lmmedlatcly from the fact that,as K,,_; C 4
we have G;UA=U;U A4 for j,<iSju+;.
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This covering {G;} has properties (a) and (c) because G; C U;, and it also has
property (b), that is, it is locally finite, since each compact set is contained in K,,
for m sufficiently large and G; does not meet K, if i> jipi1.

We can also find another open covering { /;} such that &; C G;, and, from the
lemma,; there is a C* function y; with values lying between 0 and 1, with support
in G; and which is equal to 1 on H;. The sum ¢ =)_ ¢; is 2 1 everywhere and the

function ¢,=%— is C®, its support is contained in G; and we have’
¢jg 0, Z ¢j =1,
i

so that all the conditions of Theorem 1 are verified. 0

This theorem implies the following proposition, which in the case where
V=IR" reduces to the lemma proved above.

Corollary 1. If 4 is a compact sét in V and B is an open set containing A, there
exists a C® function which has compact support in B and which has its range of
values lying between 0 and 1 and is equal to 1 on A.

In fact, if 1=Y"9; is a partition of unity subordinate to the covering formed
by B and the complement of A and satisfying the conditions of Theorem 1, the
sum of the ¢; which have support meetmg A is a function which has all the
required properties. ]

Corollary 2.> Let {U.} be an open covering of V. There exists a collection of
Junctions ¢;, where i runs through the same index set, such that

1) $:20, Z¢i=1;

2) ¢;is C* and its support is contained in U;;
3) Each point of V has a neighbourhood which meets only a finite number of the
supports of the ¢,.

We note that Corollary 2, which easily follows from Theorem 1, contains
Corollary 1 as a particular case: in fact, it is sufficient to consider the covermg
formed by the two sets U, =€ 4 and U, =B. Also, it implies Theorem 1 in the
case where the U, are assumed to be relatively compact. Condition 1) of
Corollary 2 implies of course that the number of the ¢; which are not identically
zero is finite or countable.

Theorem 2. Let U and W be open bounded intervals in lR' and R™and let y, z
and x=(y,z) be variable points in R', R™ and R"=R'x R"(n=m+1), re-
spectively. "Each C® function, of x, ¢(x), with support in Ux W, can b¢
approximated by a sequence of functions o, (x) (k=1,2,3,. . .), each of which is the
sum of a finite mumber of products ¢, (¥)$,(z) of a C® funcnan of v, $1(»), with

* This resuit was communicated to me by L. Schwartz.
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support in Uby a C* function of z, ¢,(z), with supportin W, so thatask— %, o, (x)
tends uniformly to ¢(x) and each derivative of a,,(x) tends uniformly to the
corresponding derwatwe of ¢(x).

This theorem wxll be used to prove another more general theorem
(Theorem 6, §7) of which this is a particular case. For the proof, since the

coordinates of x are xi,. .., x,, with x;,. .., x, being the coordinates of y and
x,ﬂ,...,x,, those of z, we can suppose lhat Ux W is the cube 0<,\ <1,
i=1,.

Let f (x) be the function obtained by differentiating ¢ (x) p times with respect
to each variable,
o

SO =gz )

We use the partition of unity in R" given by formula (1), noting that cach
function ¢;(x) is the product of a function of y by a function of z. As the support
of f(x) is contained in that of ¢(x), which is a compact set in U x W, we can
choose ¢ sufficiently small so that each cube of side length 2¢ which meets this
support will be contained in U x W, and so that the oscillation of ¥(x) on such a
cube will be less than a predetermined positive number 7.

Let ¢; be the centre of the cubic support of ¢;. Put

P(x)=} flcp¢;(x).

This sum reduces to a finite number of terms, since f(c;) = 0 whenever c;is outside
of U x W. Furthermore, since |f(c;) —f(x)| < n when x belongs to the support of
¢;(x), we have

lf(cj) _f(x)ld’j(x)§ ’T(bj(-\’)-

and the results follows, since P(x) —f(x)=Y (f(c)) —f(x))¢ i(x),
j

@ 1P —f ()| 1.

Note that P(x) is the sum of a finite number of products of a C* function of y
with support in U by a C* function of z with support in W,

Let Q(x) be the function obtained by integrating P(x) p times consecuuvely
with respect to each variable stamng from the origin,

orQ
4 (x)=P(x).

Q(O):O, oxP... oxk

The inequality (2) implies, for each derivative operator'D whose order with
respect to each variable does not exceed p,

%) TDQ(x) - Dd(x)| <7 for xeUx W.
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The function Q(x) is, like P(x), a sum of a finite number of products of a C”
function of x by a C* function of y, but in general its support is-not compact and
the inequality above does not hold everywhere outside of U x W.

We can find two compact sets 4 and B, contained in U and W respectively,
such that 4 x B contains the support of $(x), and, by, the lemma, there exists a
C* function, L, (y), with support in U, with values between 0 and 1 and equal to
1on 4, and a C® function, L, (x), with support in W, with values between 0 and 1
and equal to 1 on B. Let L(x)=L,(x)L,(x) and

(x)=L(x) Q).

The function o(x) is the sum of a finite number of products of a C* function
of y with supportin U by a C* function of z with support in W. As L(x) =1 on the
support of ¢(x), we have ¢(x)= L(x)$(x) and

a(x) = ¢(x) = L(x}(Q(x) — $(x)).

Denote by M the maximum of the modulus of the derivatives DL(x) of L(x)
with the orders of differentiation with respect to each variable not exceeding p
(here L(x) is understood as the zero order derivative). By the differentiation rule,
each of the derivatives D(o(x) —¢(x)) is the sum of at most 2" products of a
derivative of L(x) by a derivative of Q(x) —¢(x), the orders of the derivatives
with respect to each variable never exceeding p. Thus it follows from (3) that we
have : e o

"|Do(x) ~ D (x)| s 2" My

at each point xe U x W. But since a(x) — ¢ (x) vanishes at each point outside of
U x W, these inequalities are valid for all x.

Denote by oy(x) the function o(x) obtained by choosing p=k and
n={(k2"M)!. The above inequality shows that the difference g (x) — ¢ (x) has

absolute value less than ,1? for each of its derivatives of order k. Thus, as

k— a0, 0,(x) tends to ¢(x) in the required manner and this completes the proof.
(=]

§3. Maps and Imbeddings of Manifolds

Let V and W be two manifolds. A map u of Winto V, uyy=x, ye W, xeV, is said
to be C” if the local coordinates of x = yuy are C” functions of the local coordinates
ofy. . ‘ .
InR” a setis said to be of measure zero (in the sense of Lebesgue) if there is a
finite ar countably infinite covering by balls for which the sum of the volumes is
arbitrarily small. The finite or countable union of sets of measure zero is again of
measure zero, and the complement of a set of measure zero is everywhere dense.
Ifuisa C! map from R" to itself, the image uA4 of each set 4 C R" of measure
zero is of measure zero. In fact, given a bounded domain D, as p satisfies a

.
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Lipschitz condition, there exists a positive number a such that | ux — py| < alx ~ y|
for all points x and y in D, where |x —y| denotes the distance between the points x
and y. Thus, the image of a ball of radius r, contained in D, is contained in a ball
of radius <ar, and so, we deduce that the image of each bounded set of measure
zero is a set of measure zero. This is also true even for each unbounded set of
measure zero because such a set is the countable union of bounded sets of
measure zero. ‘
~ Itfollows from this that the sets of measure zero in R"form an invariant class
under C' homeomorphisms. Thus we say that a set 4 contained in an n
dimensional manifold V is of measure zero if it is the finite or countable union of
sets A;, each of which is contained in a domain for which there exists a C!
_ .~ homeomerphism into R" mapping 4; to a set of measure zero in R".

Recalling some properties of sets of measure zero'in IR”, we thus obtain the
following theorem.

Theorem 3. Let y be a C' map of an m dimensional manifold W into an n
dimensional manifold V. If m=n, and if A is of measure zero in W, uA is of measure
zero in V. If m<n, uW is of measure zero in V, and its complement is therefore
everywhere dense in V.

We remark that the proof for the case m < n follows from the case m =n, since
the map p may be extended to a C* map of W x R" ™ into ¥, u,(y, z) = uy, and
then, uW is the image under g, of the set formed by all the pairs ( y, ze, for some
fixed zoelR" ™™, and this set has measure zero in W x R* ™. B33

Let us suppose again that the dimensions of W and of ¥ are equ;":l_;:;% point of
W is called a critical point of the map u of W into V if the Jacobian of the local
coordinates of x = uy with respect to the local coordinates of y vanishes at this
point. -

Theorem 4 (A. Sard)*. Let V and W be two manifolds of the same dimension
andlet pbea C* map of W into V. The image pE of the set E aféritical points of p is
a set of measutre zero in V. * i .

This theorem is an immediate consequence of the followiné proposition
which we shall prove® if u is a C* map of R” to R" and if £ is the set of critical
pointsof ulying in the cube C: (0<x;<1,i=1,2,...,n), uEis of measure zero.

There is a Lipschitz constant a, which we can fix whenever an upper bound of
the modulus of the first derivatives of the coordinates of px with respect to the
coordinates of x in C is known, such that |ux — uy| <a|x —y| for all points x and y
of C. Further, as these derivatives are continuous functions, there exists a
function b(r), defined and > 0 for r > 0 and tending to zero with r, such that, if we
denote the linear map tangent to y at x by M,, |uy —M,y|<|y—x|b(|y —x|).

If xe E, M, has zero determinant and, when we vary y only, M, y remains in
an (n —1) dimensional plane I1. If, in addition | y — x| S ¢, we have |ux — wy|Sae,
and the distance of uy to IT remains <eb(e). Thus, the point uy stays in the

4 Sard [1].



