
Biology The Network of Life

Michael C. Mix

Paul Farber

Keith I. King

Michael C. Mix

Paul Farber

Keith I. King

Oregon State University

Sponsoring Editor: Glyn Davies

Development Editor: Rebecca Strehlow

Project Editor: Nora Helfgott

Design Supervision and Cover Design: Lucy Krikorian

Text Design: Edward Smith Design, Inc.

Cover Photos: Jim Trotter/SUPERSTOCK (front); Kim Taylor/Bruce Coleman, Inc. (back)

Photo Researcher: Karen Koblik

Director of Production: Kewal K. Sharma

Production Assistant: Jeffrey Taub Compositor: Black Dot Graphics

Printer and Binder: Arcata Graphics/Kingsport

Cover Printer: The Lehigh Press, Inc.

For permission to use copyrighted material, grateful acknowledgment is made to the copyright holders on pp. C1–C9, which are hereby made part of this copyright page.

BIOLOGY: THE NETWORK OF LIFE

Copyright © 1992 by Michael C. Mix, Paul Farber, and Keith I. King.

All rights reserved. Printed in the United States of America. No part of this book may be used or reproduced in any manner whatsoever without written permission, except in the case of brief quotations embodied in critical articles and reviews. For information address HarperCollins Publishers Inc., 10 East 53rd Street, New York, NY 10022.

Library of Congress Cataloging-in-Publication Data

Mix. Michael C.

Biology: the network of life / Michael C. Mix, Paul Farber, Keith

I. King.

p. cm.

Includes index.

ISBN 0-673-39869-2 (student edition)

ISBN 0-673-52200-8 (teacher edition)

1. Biology. I. Farber, Paul Lawrence, 1944- . II. King, Keith

I. III. Title.

[DNLM: 1. Biology. QH 308.2 M685b]

QH308.2.M58 1992

574—dc20

DNLM/DLC

for Library of Congress

91-20850

CIP

Preface

Biology and the teaching of biology are undergoing profound changes as we approach the twenty-first century. Recent reports from the largest and most prestigious scientific societies in the United States have provided guidance for transforming both textbooks and college courses. For years, too many biology textbooks and courses have emphasized facts, vocabulary, and memorization, and there has been little effort to expose students to scientific process and science as a way of thinking or knowing. Consequently, many students have not developed a sense of the importance of science, scientific thinking, or the excitement that characterizes studies of the living world.

Biology: The Network of Life concentrates on knowledge that an educated person requires for understanding the living world and making informed decisions related to that world. Scientific inquiry and scientific process are the conceptual foundations of our book. Scientific inquiry refers to the ways in which scientists investigate problems. Scientific process is a broader concept. Historically, science has been presented as a body of knowledge concerning the natural world. Using an elegantly simple but wholly imaginary "scientific method," scientists allegedly added bits of information to an ever-enlarging picture of nature. Several factors ultimately led to a fundamental alteration of this static view. These included the scientific revolutions of the early twentieth century, research done in the history and philosophy of science in response to those revolutions, and recent investigations into the sociology of science. What has emerged is a view of science as a process: a dynamic activity based on scientific inquiry—making careful observations, collecting relevant information, conducting experiments, and constructing hypotheses and broad explanations (theories).

The scientific process allows us to acquire a deep understanding of the natural world. Since the process of science is dynamic, a historical perspective is important for understanding current concepts, hypotheses and theories, and future biological research. Far from being based on a simple, "cookbook" scientific method, the scientific enterprise is stunningly creative, yet rigorously exact. Our study of biology goes far beyond the catalog of facts, which is merely an outer shell. By emphasizing the *process* of science, it becomes possible to understand science as a way of thinking that all citizens can use in problem solving.

Consistent with the new goals for teaching biology, Unit I begins with the origin and maturation of Earth (Chapter 2). After setting the stage, we describe the characters—the organisms that inhabit Earth—examine the different habitats of Earth, and learn how the physical world preconditions the biological world (Chapters 3–6). How do these organisms interact? How do humans affect those interactions? How do long-term physical changes influence those interactions? These questions are addressed in Chapters 7–11.

In Units II and III, we focus on this question: What explains the appearances, functions, and survival capacities of organisms? In the short term, organisms look and function as they do because they resemble their parents. The study of genetics explains why and how this occurs (Chapters 12–21). In the long term, organisms have characteristic traits because they are members of species populations that have evolved through time (Chapters 22–28). The theory of evolution explains how living organisms change in response to their environments and to each other.

Unit IV is concerned with how organisms function. It begins with the basic process of energy capture and use (Chapter 29). In three chapters on the world of plants (Chapters 30–32), the forms and functions of plants are related to their evolution and the environments in which they survive. Chapters 33–40 emphasize human biology. The enormous strides made in human biological research will

become evident from reading these chapters. We describe what is now known about human organ systems that control our every activity, how the human immune system works, and where research is heading in medicine with special emphasis on infectious diseases, cancer, cardiovascular diseases, and AIDS. Chapter 41 looks to the future to underscore the reality that biology, like all exciting science, is constantly changing.

TO THE STUDENT

This textbook does not attempt to give you biology "once and forever." Rather, it will prepare you to understand the ever-widening scope of knowledge about the living world. Every week brings some interesting and potentially significant development in biology that may affect your life. As an educated citizen, you will probably be called on to discuss and even vote on issues that have a biological dimension, and to make intelligent choices you will need to stay informed. For example, you might be asked to take a position on the release of genetically engineered organisms in your state or on the teaching of evolution in your schools. We hope that our text will provide you with the background necessary to become scientifically curious and literate on biological issues. Yet it will not replace the excitement of a hands-on experience you will receive in a laboratory or the thrill of being out in the field on a gorgeous spring day. The photographs in the text are beautiful, but they cannot substitute for the experience of actually observing tide pools or birds in the wild or flowers poking up through snow or a cell dividing under a microscope. Perhaps, in the final analysis, this text can be a guide for identifying and understanding interesting and important areas of biology that will affect you throughout your life and help you develop a continuing appreciation for science.

LEARNING AND TEACHING TOOLS

Each chapter opens with an outline and a set of reading questions to establish a conceptual framework for the student. Within chapters, key terms are printed in boldface where they are defined. Four types of enrichment essays provide deeper insights into the nature of science: "Focus on Scientific Inquiry," "Focus on Scientific Explanation," "Focus on Science and Society," and "Focus on Science and Technology." At the end of each main section, a brief in-text summary highlights key ideas. Chapters conclude with a concise summary, review questions, essay and discussion questions, and a list of references and recommended readings. Numerous illustrations and tables complement the narrative. The book also includes an appendix on the classification system used, an extensive glossary, and a thorough index.

ANCILLARIES

Instructor's Manual by the authors. The manual is available free to adopters. It provides an index to appropriate images on the laser disk, plus suggested lecture outlines, lists of key concepts, and lecture demonstrations. The *Instructor's Manual* also includes 150 transparency masters.

Study Guide by Elizabeth Godrick of Boston University. The guide contains chapter overviews, learning objectives, concepts in review, key terms (with page numbers from the text for reference), and self-tests featuring matching, true/false, multiple-choice, and short-answer questions.

Laboratory Manual by Bill Tietjen of Bellarmine College. All lab experiments have been carefully chosen and class tested. Art is included for each exercise, helping to clarify the experiment.

Test Bank by Ken Saladin of Georgia College. The test bank consists of 2,500 multiple-choice, true/false, matching, and sentence completion questions.

Testmaster. The test bank is available to adopters in a computerized form for your IBM or Macintosh.

Acetate Transparencies. A comprehensive set of 125 four-color acetates of art and photomicrographs from the text is available free to adopters.

The HarperCollins Biology Encyclopedia Laser Disk. The Biology Encyclopedia Laser Disk, produced in conjunction with Nebraska Interactive Video, Inc., offers the latest in visual technology. It contains transparencies, micrographs, slides, and film and video footage. Over 1,500 images were provided by Carolina Biological Supply. The laser disk allows instant access to any image or footage, frame-by-frame or moving, simply by pushing a few buttons on a hand-held remote. The disk enhances the principles of biology covered in the text much more effectively than transparencies or videos.

Student Environmental Action Guide. The Earthworks Group and HarperCollins have joined with the Student Environmental Action Coalition to bring your students a handbook of the environmental movement on campuses around the country. It contains a series of strategies through real campus examples for approaching the administration, the community, political leaders, student leaders, and one's own personal habits to achieve positive change. Examples include population control, transportation, water conservation, and newsletter publication.

Two Minutes a Day For a Greener Planet by Marjorie Lamb, a veteran reporter on environmental affairs. This book provides easy, practical answers to what all of us can do to save the Earth. It gives suggestions for individual action, on a small scale, that can make a big impact on our planet's future.

Harper Dictionary of Biology by W. G. Hale and J. P. Margham, both of the Liverpool Polytechnic Institute. The dictionary contains 5,600 entries, which go far beyond basic definitions to provide in-depth explanations and examples. Diagrams illustrate such concepts as genetic organization, plant structure, and human physiology. The dictionary covers all major subjects (anatomy, biochemistry, ecology, etc.) and also includes biographies of important biologists.

The Biology Coloring Book, Anatomy Coloring Book, Physiology Coloring Book, Botany Coloring Book, Zoology Coloring Book. An exciting new approach to learning biology. Coloring provides an enjoyable and effective means of learning the fundamentals of biology. Participation by the reader, through creative coloring, provides significant learning reinforcement. The text accompanying each coloring plate provides supportive explanatory material and leads the reader through the plate in a step-by-step manner. Furthermore, when finished, the colored plates provide an excellent review that the reader has helped create.

Writing About Biology by Jan A. Pechenik, professor of biology at Tufts University. This brief but straightforward guide includes sections on writing lab reports, essays, term papers, research proposals, critiques and summaries, and in-class essay examinations. It also includes special sections on effective note taking, how to give oral presentations, and how to prepare applications for summer and permanent jobs in biology. Appendices listing commonly used abbreviations for lengths, weights, volumes, and concentrations are also featured.

REFERENCES

The following articles and reports are important to everyone interested in improving biology education.

American Association for the Advancement of Science. 1989. *Biological and Health Sciences: Report of the Project 2061 Phase I. Biological and Health Sciences Panel.* Washington, D.C.: AAAS Publications.

-----. 1989. Science for All Americans: A Project 2061 Report on Literacy Goals in Science, Mathematics, and Technology. Washington, D.C.: AAAS Publications.

American Society of Zoologists. 1984–1990. *Science as a Way of Knowing*. Cosponsored by the American Society of Naturalists, the Society for the Study of Evolution, the Biological Sciences Curriculum Study, the American Institute of Biological Sciences, the American Association for the Advancement of Science, the Association for Biology Laboratory Education, the National Association of Biology Teachers, the Society for College Science Teachers, the Ecological Society of America, and the Genetic Society of America. All related materials were published in a special issue of *American Zoologist*, once each year from 1984 to 1990.

National Academy of Sciences. 1989. *On Being a Scientist*. Washington, D.C.: National Academy Press.

National Research Council. 1990. Fulfilling the Promise: Biology Education in the Nation's Schools. Washington, D.C.: National Academy Press.

ACKNOWLEDGMENTS

This book grew out of our 20 years of teaching university biology and history of science courses. Along the way we have been aided by many people from numerous institutions. A comprehensive list of acknowledgments would be unreasonably long and unavoidably incomplete. However, this project could not have been initiated or completed without help from the following individuals.

Bonnie Roesch was the first to recognize the novel dimensions of our project, and she has been a tireless supporter. Her continuous encouragement was inspiring, and we will always feel indebted to her. Rebecca Strehlow tactfully but rigorously used her editor's pencil on several chapter drafts; the end product was immeasurably improved by her efforts. Likewise, Marilyn Henderson edited all of the first drafts, sparing us considerable embarrassment once they fell into editors' and reviewers' hands. Glyn Davies skillfully guided the entire project, and we appreciated his hard questions and open mind. Karen Koblik was indefatigable in pursuing the beautiful photographs that grace this book. Bill Davis offered early, enthusiastic support for our ideas. We also thank Jim Winton and the many reviewers listed below who offered constructive criticism and shared their ideas for improving the book. They, too, deserve great credit for bringing this book to its final state.

John Adler, Michigan Technological University

Bonnie Amos, Angelo State University

Kay Antunes de Mayalo, American River College

Al Avenoso, University of Houston

Amy Bakken, University of Washington

Cecilio R. Barrera, New Mexico State University

Barry Batzing, State University of New York at Cortland

Robert A. Bell, Loyola University

Kristen Bender, California State University at Long Beach

Linda Berg, University of Maryland

- Charles J. Biggers, Memphis State University
- Richard G. Bjorklund, Bradley University
- Richard Blazier, Parkland College Antonie Blockler, Cornell University James Botsford, New Mexico State University
- William R. Bowen, University of Arkansas at Little Rock
- Clyde Brashier, Dakota State College J. N. U. Brown, University of Houston Gloria Cadell, University of North Carolina at Chapel Hill
- S. Dan Caldwell, Georgia College John Campbell, Northwest College Nina Caris-Underwood, Texas A&M University
- Galen E. Clothier, Sonoma State University
- David Davis, University of Alabama Thomas Davis, University of New Hampshire
- Linda Dion, University of Delaware Lee C. Drickamer, Southern Illinois University
- Marvin Druger, Syracuse University Dorothy C. Dunning, West Virginia University
- Andres Durstenfeld, University of California at Los Angeles
- Thomas C. Emmel, University of Florida
- Stanley H. Faeth, Arizona State University
- Michael Fine, Virginia Commonwealth University
- Herman S. Forest, State University of New York at Geneseo
- Sally Frost, University of Kansas Rita Ghosh, Indiana State University
- David C. Glenn-Lewin, Iowa State University
- Judith Goodenough, University of Massachusetts at Amherst
- Kenneth Goodhue-McWilliams, California State University at Fullerton
- Thomas Gorham, California Lutheran University
- Nels H. Granholm, South Dakota State University
- Thomas Griffiths, Illinois Wesleyan University
- Gilbert F. Gwilliam, Reed College James Habeck, University of Montana Marcia Harrison, Marshall University

- Thomas Herbert, University of Miami David Hicks, Manchester College Linda Margaret Hunt, Notre Dame University
- David T. Jenkins, University of Alabama at Birmingham
- C. Weldon Jones, Bethel College
 Leonard Kass, University of Maine
 Elizabeth Keith, University of
 Mississippi
- Kenneth Klemow, Wilkes University Bob Kosinski, Clemson University John Krenetsky, Metropolitan State College
- Karen Kurvink, Moravian College John M. Lammert, Gustavus Adolphus College
- Howard Lenhoff, University of California at Irvine
- Ronald Lindahl, University of Alabama Michael Lockhart, Northeast Missouri State University
- Ruth Logan, Santa Monica College Raymond Lynn, Utah State University David Mark, St. Cloud State University James Marker, University of Wisconsin at Platteville
- Gayton C. Marks, Valparaiso University Samuel Maroney, University of Virginia
- Joyce Maxwell, California State University at Northridge
- Helen C. Miller, Oklahoma State University
- Neil Miller, Memphis State University Charles Mims, University of Georgia Herbert L. Monoson, Bradley University
- Walter A. Morin, Bridgewater State College
- Keith Morrill, South Dakota State University
- Alexander Motten, Duke University Tom Nye, Washington and Lee University
- Clifford Night, East Carolina University Robert W. O'Donnell, State University of New York at Geneseo
- Lowell P. Orr, Kent State University Elizabeth Painter, Colorado State University
- Robert A. Paoletti, King's College Patricia Pearson, Western Kentucky University
- Richard Peifer, University of Minnesota

Herbert B. Posner, State University of New York at Binghamton Greg Rose, West Valley College Monica Rudzik, Westminster College William Rumbach, Central Florida University Douglas Sampson, Emory University

Douglas Sampson, Emory University Lawrence C. Scharmann, Kansas State University

Joan Schuetz, Towson State University Richard Search, Thomas College David Senseman, University of Texas at San Antonio

Linda Simpson, University of North Carolina at Charlotte

Daryl Smith, University of Northern Iowa

Kingsley Stern, California State

University at Chico

Charles L. Stevens, University of Pittsburgh

Lewis Stratton, Furman University Gerald Summers, University of Missouri

Marshall Sundberg, Louisiana State University

Daryl Sweeney, University of Illinois at Urbana

Linda C. Twining, Northeast Missouri State University

Patrick K. Williams, University of Dayton

William Wissinger, St. Bonaventure University

John L. Zimmerman, Kansas State University

Many people have provided valuable aid on parts of this book. Foremost among these is Bill Winner, who wrote the initial drafts of Chapters 30–32 and supervised the creation and development of the accompanying art. He was also a valued source of information and ideas used in Unit I. Past and present colleagues in the Department of General Science at Oregon State University helped shape the general biology course over the past two decades. Some of our ideas originated in work done in the course by Jack Lyford, Henry Van Dyke, Dennis McDonald, Larry Forslund, Bruce McCune, and Patricia Muir. The teaching assistants in our course gave us excellent feedback on our ideas for teaching biology. Susie Bratsch helped us translate ideas into images and provided many sketches that led to finished illustrations in this book. Barbara Moritsch gave us advice on several art pieces. Administrators at Oregon State supported our ideas for developing a contemporary nonmajors general biology course. Fred Horne, dean of the College of Science, was especially helpful.

Jerry Kling, of Oregon State, provided assistance related to computer literacy and served as a consultant on material cycling in soils. Darrell L. King, of Michigan State University, provided photographs and ideas about deciduous forests and sand dune succession. La Verne D. Kulm, of Oregon State, supplied photographs and also reviewed sections of Chapter 9.

Several distinguished scientists and scholars graciously answered our questions about how they would like to see biology develop in the coming decades. We thank Ernst Mayr, Ledyard Stebbins, David Hull, E. O. Wilson, Marvin Druger, and Linus Pauling for their time and thoughts.

The production of this book also involved considerable assistance from others. Karla Russell, of the General Science Department, typed and edited drafts, balanced deadlines, and was otherwise helpful in ways too numerous to list but that are easily understood by anyone who has the good fortune to work where there is a superior office staff. Laura Mix Kohut, now of Morrison & Foerster, provided the legal assistance necessary in such a large project and even succeeded at making us understand what some of it meant. Leslie Mix typed drafts of some of the early material. Many remarkably talented and patient individuals at Harper-Collins brought this book to completion; they include Nora Helfgott, project editor, and Teresa Delgado, art director. Bruce Emmer assisted as copyeditor, and David Fox provided input during art production.

Finally, we recognize our wives, Marilyn Henderson, Vreneli Farber, and Roberta King. They suffered longest and most, yet were unfailing in their encouragement and support.

The students we have had the good fortune to have in classes during the past 20 years were, in a real sense, the source of inspiration for this project. To all biology students—past, present, and future—we dedicate this book.

MICHAEL C. MIX
PAUL FARBER
KEITH I. KING

Preface xv

UNIT I

THE SPHERE OF LIFE 1

Chapter 1 Introduction: Studying the Living World 2 Biology 3 The Origin of Biology 4 Biology Today 6 Biology: The Network of Life 8

Chapter 2 Origins: Setting the Stage 10
Understanding Origins 11
Origin of the Universe 13
A Key Observation 13
The Big Bang Theory 14
The First Second of the Universe 14
Galaxy Formation 14
Origin of Our Solar System 14
Origin of the Sun 14
Planetary Genesis 15

Development of the Planet Earth 16 Early Earth 16 The Planet Matures 17

Origin of Living Systems 19 The Chemical Evolution Hypothesis and the First Prebiont 20 Origin of Cells 21 Origin of Eukaryotic Cells 25

Focus on Scientific Inquiry: The Chemical Evolution Hypothesis 26

Origin of Multicellular Organisms 28 The Five Kingdoms of Life 28

Chapter 3 The Diversity and Classification of Life: Kingdoms Prokaryotae, Protoctista, and Fungi 31 Systematic Organization of the Diversity of Life 32 The Binomial System 32 The Kingdoms of Life 33 Kingdom Prokaryotae 35 Subkingdom Archaebacteria 35

Subkingdom Eubacteria 36

Kingdom Protoctista 37
The Giant Amoeba 38
Protozoans 38
Unicellular Algae 40
Multicellular Algae 40

Focus on Scientific Explanations: Classification 42
Other Protoctists 44

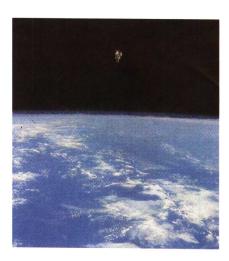
Kingdom Fungi 44 Zygomycotes 44 Ascomycotes 44 Basidiomycotes 45 Deuteromycotes 45 Lichens 45

Chapter 4 The Diversity and Classification of Life: Kingdoms Plantae and Animalia 47

Kingdom Plantae 48 Bryophytes 48 Tracheophytes 49

Kingdom Animalia 52
Primitive Animal Phyla 53
Radially Symmetrical Phyla 54
Acoelomate Phyla 54
Pseudocoelomate Phyla 54
Coelomate Protostomes 55
Coelomate Deuterostome Phyla 56

Taxonomy 61
A Functional Classification
System 62
Producers 62
Decomposers 62
Consumers 62


Chapter 5 The Biosphere 65

Conceptual Beginnings 66 Energy Sources 66 Sculpting Forces 66 March of the Seasons 68

Focus on Scientific Inquiry: Glacial Lake Missoula and the Spokane Flood 70

World Climate 72 Atmospheric Cells 73 Ocean Circulation 73

Climates of North America 74 Western Maritime Climates 74 Mountain Climates 75 Central and Eastern Climates 75

Focus on Scientific Explanations: The Properties of Water 76

World Biome Development 78 Biome Formation 78 Altitudinal Zonation 79 Distribution of Biome Vegetation: A Predictive Model 80

Chapter 6 World Biomes 84
Forests of the Torrid Zone 85
Tropical Forests 85
Subtropical Forests 85
Torrid Zone Forest Nutrients 85
Temperate Forests 86
Deciduous Forests 86

Coniferous Forests 87 Western Montane Forests 88

Grasslands of the World 89
North American Grassland Development 90
North American Prairies 90
The Taiga 91
The Tundra 92
The Low Arctic 93
The High Arctic 93
The Deserts 94
The Minor Biomes 96
Tropical Savannas 96
Chaparral 96

Chapter 7 Ecology 99
Origins of Ecology 100
Early Concepts in Plant Ecology 101
Limiting Factors 101
Succession 102
Early Concepts in Animal
Ecology 103
Succession 103
The Law of Toleration 103

Focus on Scientific Inquiry: Succession on the Sand Dunes of Lake Michigan 104

Trophic Level 103

Ecosystems 108
Ecological Pyramids 109
Biogeochemical Cycles 110
The Ecological Niche 116
Modern Ecology 117

Chapter 8 Terrestrial Ecosystems 119

Ecosystems and Communities 120
Biotic Ecosystem Models 120
Functional Ecosystem Models 126
Major Temperate Terrestrial
Ecosystems 127
Temperate Forest Ecosystems 127
Grassland Ecosystems 129
Desert Ecosystems 131

Focus on Scientific Explanations: Yellowstone: Drought, Fires, and Carrying Capacity 132

Chapter 9 Aquatic Systems 138

Freshwater Ecosystems 139 Lotic Ecosystems 139 Lentic Ecosystems 144 Marine Ecosystems 149 Oceanic Ecosystems 149 Neritic Ecosystems 154

Human Interventions 155

Focus on Scientific Inquiry: Serendipity and the Deep 156 Chapter 10 Human Populations and the Environment 161

Early Human Settlement 162

Human Population Growth
Through Time 163
Prehistoric Human Population Growth
163
Historic Human Population Growth 164
Modern Human Population Growth
166

Malthusian Limits to Human Population Growth 168

Revolutions and Malthus 168

Human Impacts on Drinking Water 169

Technological Solutions to Modern Environmental Problems 169

Environmental Consequences of the Green Revolution 169 The Future of Agriculture 173 Malthusian Population Limits and the Future 173 Focus on Science and Technology: DDT, Spruce Budworms, and the Insect Bomb 174

Chapter 11 Global Climate Change 178

Time Scales and Climate Changes 179 Hundred-Million-Year Intervals 179 Million-Year Intervals 179 The Present 182

Human-induced Climate Changes 182

The Ecological Effects of Global Temperature Increase 183 The Rising Tide 184 Warming Effects on Biomes 184 Global Warming and Biodiversity 186

Regional Effects of Human Activity 187 Acid Deposition 187 Air Pollution and Forest Decline 190 Soil Acidification 190 Ozone Effects on Forests 191

Human Impacts on Carbon Sinks 192 Tropical Deforestation 192 Marine Carbon Sinks 194 Is Global Greenhouse Warmin

Is Global Greenhouse Warming upon Us? 195

Focus on Scientific Inquiry: Interdisciplinary Teams 196

UNIT II

THE LANGUAGE OF LIFE 201

Chapter 12 Foundations of Genetics 202

Early Ideas About Reproduction 203

Greek Ideas About Reproduction 203 The Scientific Revolution and Sex 204 The Beginning of Modern Genetics 205

Mendel's Laws 207
Mendel's Experiments and the First
Law 207
Mendel's Second Law 210
Mendel and Later Work in
Genetics 212

Focus on Scientific Explanations: Understanding Nature 214

Chapter 13 Cells: Structure, Function, and Reproduction 217

The Cell Theory 218
Maturation of the Cell Theory 218
The Modern Cell Theory 219

The Essence of Cells 219
Cell Structure 219
Visualizing Cells 220
Eukaryotic Cells 220

Chromosomes 226

Asexual Reproduction 227
Prokaryotic Cell (Bacterial) Division:
Binary Fission 227
Eukaryotic Cell Division: Mitosis 228

Sexual Reproduction 230

Meiosis 230 Reproductive Strategies 232 Focus on Scientific Explanations: The Significance of Meiosis and Sexual Reproduction 234

Mendel Revisited 236

Chapter 14 Chromosomes and Heredity 239

Origin of the Chromosome Theory of Heredity 240 Key Discoveries 240 Formulation of the Chromosome Theory 240

Confirmation of the Chromosome Theory 241
Unanswered Questions 241
Fruit Flies Yield Their Secrets 241

Focus on Scientific Inquiry I: The White-eyed Fruit Fly 246 Focus on Scientific Inquiry II: Linkage, Linkage Groups, and Chromosome Mapping 250

Importance of the Chromosome Theory 253

Patterns of Inheritance 254
Incomplete Dominance 254
Multiple Alleles 254
Polygenic Inheritance 255

Alterations in Genetic Materials 255

Chromosomal Mutations 256 Gene Mutations 258

Close of an Era 258

Chapter 15 The Birth of Modern Genetics 261

New Frontiers 262 New Questions 262 New Developments 262

Cells as Chemical Factories 263

Proteins 263 Enzymes 264 Nucleic Acids 265

The Discovery of DNA and Its Role in Living Organisms 266 A Chemical in the Nucleus 266 The Tetranucleotide Hypothesis 266 The "Transforming Principle" 267

The Structure of DNA 272 Demise of the Tetranucleotide Hypothesis 272 In Pursuit of DNA's Structure 273 The Watson-Crick DNA Model 274

Focus on Scientific Inquiry: Experimental Methods in Biology 276

DNA Replication 279
The Watson-Crick Hypothesis 279
The Replication Process 279

Chapter 16 The Nature of Genetic Information 282

The Genetic Role of DNA 283 One Gene, One Enzyme 283 Metabolism 284 Genes and Proteins 286 The General Idea 286

Protein Synthesis 288 Transcription 288 Translation 290

A Closer Examination of Some Particulars 294 Breaking the Genetic Code 294 Control of Gene Expression 295 Mutations 297 A Second Look at Chromosomes and DNA 298 A Look Back 298

Focus on Scientific Explanations: Ancestors 300

The Language of Life 302 **Chapter 17** Human Chromosomes and Patterns of Normal Inheritance 304

Human Chromosomes 305

Chromosome Nomenclature 307

The Human Genome 308

DNA in the Human Chromosome 309

Mendelian Inheritance in Humans 310 Autosomal Dominant and Recessive Traits 311 Some Human Traits Determined by a

Single Gene Pair 311
Some Human Traits Determined by
Multiple Alleles and Polygenes 313

Human Traits Carried on Sex Chromosomes 316

Focus on Scientific Inquiry: Molecular Genetics of Human Color Vision 318

Some Final Thoughts 321

Focus on Science and Society: Human Genetics and the Abuse of Science 322

Chapter 18 Human Genetic Disorders 327

The Nature of Genetic Disorders 328 Gene Mutations 329 Chromosomal Mutations 329

Human Pedigree Analysis 330 Genetic Disorders of Humans 331

Disorders Due to Autosomal Recessive Mutations 333

Disorders Due to Autosomal Dominant Mutations 336

Disorders Due to X-linked Gene Mutations 339

Research on Human Genetic Disorders 340

Prenatal Diagnosis and Genetic Counseling 340 Techniques of Prenatal Diagnosis 341 Genetic Counseling 343

Focus on Scientific Inquiry: Down Syndrome 344

Chapter 19 Recombinant DNA and Genetic Technology 348

Recombinant DNA Technology 349

Gene Cloning 351
Obtaining DNA to Be Cloned 352
Cloning Vectors 354
The Role of Bacteria 356
Gene Libraries 357

Biotechnology 359 The Products of Biotechnology 359

Focus on Science and Society: Biotechnology Policies in the United States 362

The Maturation of Biotechnology 364

Chapter 20 Genetic Engineering of Organisms 366 Genetically Engineered Bacteria 367 Beneficial Bacteria 368

Harmful Bacteria 368 Applying Genetically Engineered Bacteria 370

Genetic Engineering of Plants 370 Protoplasts 371

Agrobacterium tumefaciens 372 Desirable Plant Traits 372 Problems 374

Genetic Engineering of Animals 375

Reproductive Technologies 375 Transgenic Animals 376 Problems 379

Cloning of Whole Organisms 379

Focus on Scientific Inquiry: The Making of a Transgenic Mouse 380

Release of Genetically Engineered Organisms 383

Chapter 21 Humans and Genetic Technology in the Future 386

Human Genetic Disorders 387
Societal Issues 387
Huntington Disease: A Model 389
Human Gene Therapy 389
Technical Problems 389
Ethical Issues 391
Somatic Cell Gene Therapy 391
The Human Genome Project 395
Project Research 397
Importance of the Project 398
Problems with the Project 398

The Future 399
Focus on Scientific Inquiry:
Restriction Fragment Length
Polymorphisms 400

UNIT III

THE EVOLUTION OF LIFE 407

Chapter 22 Darwin and the Origin of the *Origin* 408

Darwin's Observations and Questions
410
Fossils 411
Biogeographical Patterns 411
Adaptation 412
Oceanic Islands 412

Darwin's Voyage 409

Darwin's Collections and the Change of Species 414 Questions About Darwin's Data 414 Natural Selection 414

The Theory of Evolution 416 Darwin's Theory 416

Focus on Scientific Explanations: Scientific Theories Accepted Ideas on the Origin of Species in Darwin's Time 421

Focus on Science and Society: Evolution and Creation in U.S. **Public High Schools** 422

Chapter 23 The Modern Synthesis: Genetics and Natural Selection 427

The Genetics of Evolution 429 Genetic Variation 429 Genetics of Populations 430 Forces of Change 432

Natural Selection 432 Mutation 440 Migration 442 Random Genetic Drift 442 Founder and Bottleneck Effects 442

Focus on Scientific Explanations: The Convergence of Ideas in Biology 444

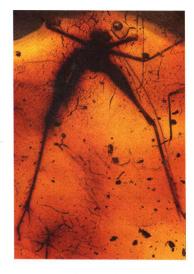
Joint Action of Evolutionary Forces 448

Chapter 24 The Origin of Species 450

Species 451

Speciation 453 Phyletic Evolution 453 Cladogenesis 454

Reproductive Isolating Mechanisms 455


Prezygotic Isolating Mechanisms 458 Postzygotic Isolating Mechanisms 460 Selection for Isolating Mechanisms

The Evolution of Species 461

Chapter 25 The Unfinished Synthesis 463

Paleontology and Evolution 464

The Fossil Record 464 Patterns of Change 466 Other Patterns of Change 470 Fossils and the Modern Synthesis 474 Expanding the Modern Synthesis 475

Focus on Scientific Explanations: The Fossil Record: 700 Million Years of Life 476

Physiology and Evolution 479 Relationship of Physiology to the Theory of Evolution 479 Physiology and Paleontology 481 Other Fields of Biology and Evolution 482

The Unfinished Synthesis 483

Chapter 26 Human Evolution 485 Human Origins 486 Human Evolution 486 Primates 486 Hominids 489

Chapter 27 Animal Behavior 496

Individual Behavior 497 Innate and Learned Behavior 497 Reflexes, Kineses, and Taxes 497 Navigation 499 Fixed Action Patterns 499 Fixed Action Patterns and Learning Learning 504 Instinct and Learning 507 Evolution and Behavior 507 Evolution of Behavior 508 Behavior and the Theory of Evolution

Chapter 28 Social Behavior

Social Behavior and Evolution 512

Fitness 512 Social Interactions 512

Social Groups 515 Features of Social Organization 516 Communication 517

The Adaptive Value of Social Behavior 520

Social Behavior, Sociobiology, and Humans 521

Focus on Scientific Inquiry: Do Animals Think? 522

UNIT IV

THE SYSTEMS OF LIFE 527

Chapter 29 Photosynthesis and Cellular Respiration 528 Energy in the Biological Realm 529

Energy in the Physical Realm

Forms of Energy 529 The Laws of Thermodynamics 530

Biological Energy Transformation Processes 531

Energy-managing Molecules 532

Adenosine Triphosphate 532 Electron Carriers 532

Photosynthesis Radiant Energy 533 Light-trapping Pigments 534 Energy-forming Reactions of Photosynthesis 535

Glycolysis and Cellular Respiration 537 Glycolysis 537 Cellular Respiration 539

The Significance of Photosynthesis and Cellular Respiration 541

Focus on Scientific Inquiry: The Road to Understanding Photosynthesis 542

Chapter 30 Plants: Their Emergence from Seeds 547 The Early View of Plants 548 Our Approach for Studying Plants 549 Seeds 550 Production and Dispersal 550 Seeds of Angiosperms 552 Seed Anatomy and Germination 553 Growth Processes 556 Patterns of Growth 557 Mechanisms of Growth 557 Development 558 Growth and Environmental Factors 560 Energy 560 Atmospheric Resources 561 Soil Resources 562

Focus on Science and Technology: Essential Nutrients and Agriculture 564

Plants and Their Environment 566

Chapter 31 Plant-Environment Relations 569

The Carbon Story 571
Acquisition and Regulation 571
Water Use Efficiency 572
Assimilation and Allocation 574

The Nutrient Story 576 Acquisition of Nitrogen and Sulfur 576

Assimilation of Nitrogen and Sulfur 576

Environmental Stresses 576 The Concept of Environmental Stress 577

Stress Compensation 579 Plant Responses to Anthropogenic Environmental Stresses 580

A New Way of Looking at the Plant World 581 Focus on Scientific Inquiry: Plant Physiological Ecology 582

Chapter 32 Plant Adaptations and Reproduction 587

Adaptations 588 Deciduous Trees 589 Evergreen Trees 593

Reproduction 595
Growth Phases and Patterns 595
Mechanisms of Vegetative Growth and
Reproduction 598
Mechanisms of Savual Reproduction in

Mechanisms of Sexual Reproduction in Plants 601

Gymnosperm Reproduction 601 Angiosperm Reproduction 602

Chapter 33 Cellular Diversity and Organization in Humans 607

Cellular Diversity in Humans 608

Cell Structure 608 Cell Functions 609

Structural Levels of Organization in Humans 611 Cells 611

Tissues 611 Organs 615

Organ Systems 616

Cell Renewal 617

Anatomy and Physiology 616 Maintenance and Control 617 Homeostasis 621 Homeostatic Mechanisms 621 Understanding the Human Body 623

Chapter 34 Some Major Human Organ Systems 625

Integumentary System 626 Epidermis 626 Dermis 627

Skeletal System 629
Bones and Cartilage 629
Joints and Ligaments 629
Functions of the Skeleton 629

Respiratory System 631 Organs of Respiration 631 Control of Breathing 632

Circulatory System 633 Blood Components 633

Focus on Scientific Inquiry: Changing Conceptions of the Circulatory System 634

Vessels 637 The Heart 638 Circulation of the Blood 638 The Lymphatic System 640

Digestive System 640 Mouth, Pharynx, and Esophagus 641 Stomach 642 Small Intestine 642 Accessory Digestive Organs 643

Urinary System 644 Organs of the Urinary System 644 Structure and Function of the Kidney

Survival 647

Large Intestine 643

Chapter 35 Control and Regulation I: The Nervous System 649

Neurons 650 Structure of Neurons 651 Types of Neurons 652 Functions of Neurons 653

The Synapse 654
Types of Synapses 654
Transmission of Nerve Impulse Across a Chemical Synapse 655
Return to Normal 656
The Current Picture 656

Alterations of Normal Synaptic Transmission 656

Organization of the Human Nervous System 658 The Peripheral Nervous System 659 The Central Nervous System 660 Future Frontiers 663 Focus on Scientific Inquiry: Memory 664 Chapter 36 Control and

Chapter 36 Control and Regulation II: The Endocrine System 668

The Classical View of the Endocrine System 669
The Theory of Internal Secretions 671

Endocrinology in the Twentieth Century 671

Endocrine Glands and Hormones 672 Major Classes of Hormones 672 The Lives of Hormones 673 Example: Regulation of Blood Glucose Levels 675 The General Activities of Hormones

Mechanisms of Hormone Action 677

Receptors 677
Peptide Hormones: First and Second Messengers 677
Models for Steroid Hormones 678

The Pituitary Gland 679
The Posterior Pituitary 679
The Anterior Pituitary 681

Focus on Scientific Inquiry: The Neurovascular Hypothesis 682

Future Frontiers 684

Chapter 37 Human Reproduction and Development 687

The Human Reproductive System 688

The Male Reproductive System 689
Sperm Production 689

Sperm Production 689 Sperm Storage and Transport 691 Hormonal Regulation of the Male Reproductive System 692

The Female Reproductive
System 694
Ovum Production and Transport 694
Hormonal Regulation of the Female
Reproductive System 696

Sexual Responses 699
Pregnancy 700
Fertilization 700
Implantation 700
The Endometrium During Pregnancy 700

Focus on Science and Technology: Contraception 702

The Placenta 706

Development 707
Embryonic Development 707
Fetal Development 710
Birth 710

Cells and Development 712

Chapter 38 Human Defense Systems 715

Defense Systems 716
Nonspecific Defense
Mechanisms 716
Body Surfaces 716
Blood Cells and Nonspecific Defense
719
Inflammation 720

Specific Immune Responses 723

Overview 723 Antigens 724 Antibodies 724 Cells of the Immune System 727 Primary Immune Responses 731 Secondary Immune Responses 733

Focus on Scientific Inquiry: Antigen Recognition and Antibody Specificity 734

Tolerance 738
The Other Edge of the Sword 738
Autoimmune Diseases 738
Allergies 739
Organ Transplants 740

Chapter 39 Human Diseases 743

Diseases and Modern Medicine 744

The Role of Lifestyles 744
The Future 744

Diseases of Contemporary Importance in Developed Countries 745