it 93

Numerical and Computer
Methods in Structural Mechanics

Edited by

STEVEN J. FENVES NICHOLAS PERRONE
ARTHUR R. ROBINSON WILLIAM C. SCHNOBRICH




Numerical and Computer
Methods in Structural Mechanics

Edited by

STEVEN J. FENVES

Department of Civil Engineering
Carnegie-Mellon University
Pittsburgh, Pennsylvania

ARTHUR R. ROBINSON

Department of Civil Engineering
University of lilinois
Urbana, lilingis

<

NICHOLAS PERRONE

Office of Naval Research
Department of the Navy
Arlington, Virginia

WILLIAM C. SCHNOBRICH

Department of Civil Engineering
University of lllinois
Urbana, llinois

ACADEMIC PRESS New York and London 1973

A Subsidiary of Harcourt Brace Jovanovich, Publishers



CorYRIGHT © 1973, BY ACADEMIC PRESS, INC.

ALL RIGHTS RESERVED.,

NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR
TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC
OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING. OR ANY
INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT
PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS, INC.
111 Fifth Avenue, New York, New York 10003

United Kingdom Edition published by

ACADEMIC PRESS, INC. (LONDON) LTD.
24/28 Oval Road, London NW1

L1BRARY OF CONGRESS CATALOG CARD NUMBER: 72-88339

PRINTED IN THE UNITED STATES OF AMERICA



Preface

The impact of modern digital computers on the field of structural
mechanics has consisted of far more than mere -application of existing’
numerical techniques to problems of ever increasing complexity. Indeed,
afar-ranging, yet often subtle, interaction has grown up between the methods
employed for the static and dynamic analysis of structures and structural
elements on the one hand and the capabilities of computer hardware and
software on the other. Itis important for the progress of structural mechanics
that the implications of this interaction be recognized by practmoners of
structural mechanics and by computer software designers.

The objective of this Office of Naval Research Symposium was to
summarize the present and probable future status of numerical methods in
structural mechanics and of related computer techniques and computer
capabilities. The concern for exploration of these separate areas and their
interaction is reflected in seven aspects which can be distinguished in these
Proceedings.

First, the analytical basis of the finite element method—the computer
technique most widely implemented in software—is examined broadly in
four papers. Cowper presents a general introduction to the finite element
procedure and a discussion of convergence in terms of variational principles.
Isoparametric and related elements are treated by Zienkiewicz; incompatible
displacement models by Wilson, Taylor, Doherty, and Ghaboussi; and '
hybrid models by Pian.

Second, the paper by Schrem and the one by Irons and Kan explore in
depth two fundamerital and interrelated aspects of the numerical and
computer implementation of finite element procedures, namely the storage
and retrieval of data and the selection of equation-solving algorithms.

Third, an entire session, consisting of the papers by Meijers ; Tocher and
Herness; Yates, Sable, and Vinson; Dainora; Chu; and Ayres, was devoted
to a critical review of some of the significant general-purpose structural
mechanics programs. Inselecting the papers, the organizers of the Symposium
were attempting to concentrate on those programs which have gained a
measure of practical use outside the organization which originated the
program. While novel, this attempt to obtain constructive critical information
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from knowledgeable users must be viewed as a token one. To provide much-
needed program information exchange among users, greatly expanded
efforts in this direction are warranted.

As a fourth aspect, a session concentrated on the presentation of alterna-
tives to and extensions of the usual finite element approaches and on relations
and comparisons among various analytical outlooks. The paper by Wright
and Baron presents a comprehensive survey of finite difference methods.
The contributions by Key and Krieg and by Bushnell provide useful com-
parisons and combinations of finite difference and finite element methods.
The difficulties of nonlinear, dynamic finite element problems are explored
by McNamara and Marcal. The paper by Schnobrich and Pecknold
describes a direct physical interpretation to aid in the selection of finite
difference models.

Fifth, the Symposium addressed itself to a major future trend in structural
mechanics computing, namely the abandonment of individual, unconnected
programs in favor of large, integrated data bases. The paper by Fenves is
devoted to general questions of large interactive systems. The role of
computer graphics, an important tool in such information systems, is
discussed by Batdorf and Kapur. Two outstanding accomplishments in the
actual implementation of integrated data bases are the subjects of papers
by Moe and by McCormick, Baron, and.Perrone.

Sixth, the organizers of the Symposium felt that it was their obligation
to bring to the attention of workers in structural mechanics new software
and hardware capabilities which have a major potential impact on computer
use, both in the nature of problems to be tackled and the magnitude of
problems that can be handled. The papers by Wong and by Graham discuss
such outstanding new capabilities, as well as the challenges they pose.

The final session of the Symposium paralleled the last part in that it "
dealt specifically with new applications that seem likely to affect the content
of the discipline of structural mechanics itself in the next decade. The paper
by Kamel, Liu, and White extrapolates the problems which relate to ship
design. Gallagher’s paper points out the trends which can be perceived in
numerical analysis, while the contribution of Rice and Tracey indicates the
analytical problem-solving capability needed for an effective approach to
problems of fracture mechanics. Technically important new areas which
apply structural mechanics, biomechanics and crash safety, are discussed
by Bugliarello and Desjardins.

Itis hoped that the exposition of problems and interests in this Symposium
will illustrate the degree of interaction existing now between numerical and
computer methods in structural mechanics and will foster an even broader
symbiosis between these areas in the future.
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PART I

Finite Elements—Fundamentals

Variational Procedures and Convergence of
Finite-Element Methods

G. R. Cowper

NATIONAL AERONAUTICAL ESTABLISHMEN™
NATIONAL RESEARCH COUNCIL OF CANAD.
OTTAWA, CANADA

When the finite-element method first appeared on the scene in the mid-
1950s, stiffness matrices were derived on what might be termed an “in-
tuitive™ or “‘direct’’ basis. Continuous structures were regarded in the same
light as those structures such as trusses and frames, which were actually
made up of physically discrete elements. Thus a continuous structure was
regarded as an assembly of elements which were joined only at nodes, and
one spoke of the forces applied at nodes and of the equilibrium of nodes.
Interelement continuity considerations did not go beyond the matching of
displacements at nodes. As the method developed it was realized that the
method could be regarded as an application of the variational principles of
structural mechanics, especially of the principle of minimum potential
energy. This realization greatly stimulated the development of the method.
Certainly, variational principles are now generally used as the foundation
of the finite element method, as is evident from a perusal of the proceedings
of several recent symposia on the subject.

There are several advantages to basing the finite-element method on
variational principles. One is that the method is thereby put on a sound
theoretical foundation. Another is that the requirements for interelement -
continuity are clarified, as these requirements are quite explicit in the state-
ment of the variational principles. Furthermore, greater flexibility in the
formulation of elements is possible because generalized displacements need
not be restricted to quantities that are conjugate to physical forces and

1



2 G. R. COWPER

moments. Indeed the entire concept of nodal forces as actual physical
forces can be dispensed with. Higher dérivatives of displacement, for example
curvatures and twists in the case of a bent plate, become acceptable as
generalized displacements. Greater flexibility in the formulation of elements
also comes about because a variety of variational principles are available.
In addition to the classical principles of minimum potential energy and
minimum complementary energy there is the more general principle of
Reissner, and also a number of modified principles which permit the relaxa-
tion of various requirements, particularly requirements of interelement
continuity of displacements or stresses. A final advantage is that the scope of
the finite element method is broadened to include nonstructural problems
which can be expressed in terms of a variational principle. The method has
been applied to problems of heat flow, potential and viscous fluid flow,
seepage of ground water, and others.

The classical variational principles of linear structural mechanics are the
principles of minimum potential energy and of minimum complementary
energy. The former principle may be stated thus: The potential energy is
stationary with regard to all kinematically admissible variations of dis-
placements from the state of equilibrium. For stable equilibrium the stationary
value of the potential energy is an absolute minimum. In symbols,

M=0, MN=U-V 1)

where IT is the potential energy, U is the strain energy of the body, and V is
the virtual work of the applied loads. An alternative statement is : Among all
kinematically admissible displacements, those satisfying the equilibrium
conditions make the potential energy an absolute minimum. Note that the
displacements must be kinematically admissible. This means that they must
satisfy sufficient continuity conditions within the structure and must satisfy.
the kinematic boundary conditions. There is, however, no requirement that
the stress boundary conditions be satisfied.

The principle of minimum complementary energy is concerned with stress
fields that satisfy the conditions of equilibrium but not necessarily the
requirements of compatibility. It may be stated thus: Among all statically
admissible stress fields, the one which satisfies the stress-strain relations in
the interior of the structure and the displacement boundary conditions
makes the complementary energy an absolute minimum. :

Some analysts have found that the requirements of kinematic admissibility
or static admissibility are rather troublesome to achieve with finite elements,
especially in plate and shell problems. As a result, a number of modified
variational principles have been proposed which allow relaxed continuity
conditions. These principles have been used effectively, chiefly by Pian and
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Tong [2], as a basis for so-called hybrid elements. Reissner’s variational
principle has also been used as a basis for finite elements. Reissner’s principle
is more general than either of the principles of minimum potential or com-
plementary energy, in that it allows simultaneous variations in both stresses
and displacements. This permitstindependent assumptions as to the distribu-
tions of displacements and stresses, and is claimed to thus lead to more
accurate approximations for the stresses. The hybrid principles and
Reissner’s principle, unlike the principles of minimum potential and com-
plementary ehergy, are not minimum principles but state only that certain
functionals are stationary.

The variational principles and their application to the finite element
method have been discussed and classified by a number of writers. Mention
may be made of the excellent surveys by Pian 1] and Pian and Tong [2]
and the conference papers of Hansteen [3] and Tottenham [4]. Mention
should also be made of the earlier papers of de Veubeke [5], [6], which point
out the dual nature of the principles of minimum potential energy and
minimum complementary energy and emphasize how these two principles
can be used to set bounds on stiffness coefficients. The survey of Pian is
particularly useful in illustrating and classifying the many different possibili-
ties for formulating finite elements based on the various variational principles.
In view of these surveys it would be superfluous to go further into the details
of variational principles, and I would like to turn instead to the question
of convergence.

Does an approximate solution, obtained by means of finite elements,
converge to the correct solution as the mesh of finite elements is uniformly
refined? For compatible displacement elements and for equilibrium elements
a relatively simple proof of convergence can be given, based on the minimum
property of the potential or complementary energies. A convergence proof
is of more than academic interest. For one thing, it contributes to the con-
fidence with which finite elements can be used, because the user has a
guarantee that his results must approach the correct answer as the mesh of
elements is refined. This has not always been the case, and the early days of
the method provided examples of ill-chosen elements which did not converge
to the right answer. In addition the convergence proof points up the con-
ditions necessary for convergence and good accuracy, and thus provides
useful guidance in constructing elements. The essential points of the proof
have been given in a number of papers [7]-[10], of which the paper by McLay
is particularly notable.

We consider the convergence as it applies to compatible displacement
elements which are formulated on the basis of the principle of minimum
potential energy. Using this principle, approximate solutions to a structural
analysis problem can be constructed by the Rayleigh-Ritz procedure. The



