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Forward

This textbook series is published at a very opportunity time when the
discipline of industrial engineering is experiencing a phenomenal growth in China
academia and with its increased interests in the utilization of the concepts,
methods and tools of industrial engineering in the workplace. Effective utilization
of these industrial engineering approaches in the workplace should result in
increased productivity, quality of work, satisfaction and profitability to the
cooperation.

The books in this series should be most suitable to junior and senior
undergraduate students and first year graduate students, and to those in industry
who need to solve problems on the design, operation and management of

industrial systems.

Gavriel Salv

Department of Industrial Engineering, Tsinghua University
School of Industrial Engineering, Purdue University
April, 2002
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DEFINITION

DEFINITION

Network Models

Many important optimization problems can best be analyzed by means of a graphical or network representation. In this chapter, we consider four
specific network models—shorfest path problems, maximum flow problems, CPM-PERT project-scheduling models, and minimum-spanning
free problems—for which efficient solufion procedures exist. We also discuss minimum-cost network flow problems (MCNFPs), of which
transportation, assignment, fransshipment, shortest path, and maximum flow problems and the CPM project-scheduling models are all special
cases. Finally, we discuss a generalization of the fransportation simplex, the network simplex, which can be used to solve MCNFPs. We begin
the chapter with some basic terms used to describe graphs and nefworks.

Basic Definitions

A graph, or network, is defined by two sets of symbols: nodes and arcs. First, we define
a set (call it V) of points, or vertices. The vertices of a graph or network are also called
nodes.

We also define a set of arcs A.

An arc consists of an ordered pair of vertices and represents a possible direction of
motion that may occur between vertices. =

it
L

For our purposes, if a network contains an arc (j, k), motion is possible from node
J to node k. Suppose nodes 1, 2, 3, and 4 of Figure 1 represent cities, and each arc
represents a (one-way) road linking two cities. For this network, V = {1, 2, 3,4} and
A ={(1,2),(2,3),(3,4), 4,3), (4, 1)}. For the arc (j, k), node j is the initial node, and
node k is the terminal node. The arc (j, k) is said to go from node j to node k. Thus, the
arc (2, 3) has initial node 2 and terminal node 3, and it goes from node 2 to node 3. The arc
(2, 3) may be thought of as a (one-way) road on which we may travel from city 2 to city
3. In Figure 1, the arcs show that travel is allowed from city 3 to city 4, and from city 4 to
city 3, but that travel between the other cities may be one way only.

Later, we often discuss a group or collection of arcs. The following definitions are
convenient ways to describe certain groups or collections of arcs.

A sequence of arcs suchthaﬁ ery

very arc has exactly one vertex in common with the
previous arc is called a chain. « ' '



FIGURE 1
Example of o Network
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1.2

EXAMPLE 1

FIGURE 2
Network for Powerco

2 Chopter 1 Network Models

A path is a chain in which the terminal node of each arc is identica} to the initial
node of the nextarc. » - o

For example, in Figure 1, (1, 2)-(2, 3)-(4, 3) is a chain but not a path; (1, 2)-(2, 3)-
(3,4) is a chain and a path. The path (1, 2)~(2, 3)-(3, 4) represents a way to travel from
node 1 to node 4.

Shortest Path Problems

In this section, we assume that each arc in the network has a length associated with it.
Suppose we start at a particular node (say, node 1). The problem of finding the shortest
path (path of minimum length) from node 1 to any other node in the network is called a
shortest path problem. Examples 1 and 2 are shortest path problems.

Let us consider the Powerco example (Figure 2). Suppose that when power is sent from
plant 1 (node 1) to city 1 (node 6), it must pass through relay substations (nodes 2-5). For
any pair of nodes between which power can be transported, Figure 2 gives the distance (in
miles) between the nodes. Thus, substations 2 and 4 are 3 miles apart, and power cannot
be sent between substations 4 and 5. Powerco wants the power sent from plant 1 to city 1

Plant 1

Substations



EXAMPLE 2

Solution

TABLE 1
(or Maintenance Costs

TABLE 2
Cor Toodedn Prices

1.2 Shortest Path Problems 3

to travel the minimum possible distance, so it must find the shortest path in Figure 2 that
joins node 1 to node 6.

If the cost of shipping power were proportional to the distance the power travels, then
knowing the shortest path between plant | and city 1 in Figure 2 (and the shortest path
between plant / and city j in similar diagrams) would be necessary to determine the shipping
costs for the transportation version of the Powerco problem.

I'have just purchased (at time 0) a new car for $12,000. The cost of maintaining a car during
a year depends on the age of the car at the beginning of the year, as given in Table 1. To
avoid the high maintenance costs associated with an older car, I may trade in my car and
purchase a new car. The price I receive on a trade-in depends on the age of the car at the
time of trade-in (see Table 2). To simplify the computations, we assume that at any time, it
costs $12,000 to purchase a new car. My goal is to minimize the net cost (purchasing costs
+ maintenance costs — money received in trade-ins) incurred during the next five years.
Formulate this problem as a shortest path problem.

Our network will have six nodes (1. 2, 3, 4, 5, and 6). Node i is the beginning of year i.
Fori < j, anarc (i, j) corresponds to purchasing a new car at the beginning of year i and
keeping it until the begmmng of year j. The length of arc (/, j) (call it cj) is the total net
cost incurred in owning and operating a car from the beginning of year i to the beginning
of year j if a new car is purchased at the beginning of year i and this car is traded in for a
new car at the beginning of year j. Thus,

¢;; = maintenance cost incurred during years i, i +1,...,j — |
-+ cost of purchasing car at beginning of year i
— trade-in value received at beginning of year f
Annyal
Ageof Cor  Mointenance
{years) Cost
0 $2.000
1 $4,000
2 $5,000
3 $9.000
4 $12,000
Age of Car
(yeors)  Trade-in Price
i $7000
2 $6000
3 $2000
4 $1000
5 $0



FIGURE 3
Network for Minimizing Car Costs
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Applying this formula to the information in the problem yields (all costs are in thousands)

cp=2+12-7=7 Cp=2+4+5+9+12—1=3
Ca=2+4+12-6=12 C=2+12-7=7
Cy=2+445+12-2=21 cis=2+4+12-6=12
Cs=24+44+5+9+12-1=3I C=2+4+5+12-2=21
Co=2+4+54+9+12+12-0=44 ¢, =2412-7=7
Cy=2+12-7=7 C=2+4+12-6=12

Gy =24+4+12-6=12 co=2+12-7=7

Cry=2+4+5+12-2=21

We now see that the length of any path from node 1 to node 6 is the net cost incurred during
the next five years corresponding to a particular trade-in strategy. For example, suppose
trade in the car at the beginning of year 3 and next trade in the car at the end of year 5 (the
beginning of year 6). This strategy corresponds to the path 1-3-6 in Figure 3. The length
of this path (c,; + c,,,) is the total net cost incurred during the next five years if I trade in
the car at the beginning of year 3 and at the beginning of year 6. Thus, the length of the
shortest path from node 1 to node 6 in Figure 3 is the minimum net cost that can be incurred
in operating a car during the next five years.

Dijkstra’s Algorithm

Assuming that all arc lengths are nonnegative, the following method, known as Dijkstra’s
algorithm, can be used to find the shortest path from a node (say, node 1) to all other
nodes. To begin, we label node 1 with a permanent label of 0. Then we label each node i
that is connected to node | by a single arc with a “temporary” label equal to the length of
the arc joining node 1 to node i. Each other node (except, of course, for node 1) will have
a temporary label of co. Choose the node with the smallest temporary label and make this
label permanent.

Now suppose that node i has just become the (k + 1)th node to be given a permanent
label. Then node i is the kth closest node to node 1. At this point, the temporary label of any
node (say, node ') is the length of the shortest path from node 1 to node i’ that passes only
through nodes contained in the k — 1 closest nodes to node 1. For each node J that now




1.2 Shortest Path Problems 5

has a temporary label and is connected to node i by an arc, we replace node j’s temporary
label by

node j’s current temporary label
node i’s permanent label 4 length of arc (i, j)

{Here, min{a, b} is the smaller of a and b.) The new temporary label for node j is the length
of the shortest path from node 1 to node j that passes only through nodes contained in the
k closest nodes to node 1. We now make the smallest temporary label a permanent label.
The node with this new permanent label is the (k + 1)th closest node to node 1. Continue
this process until all nodes have a permanent label. To find the shortest path from node 1
to node j, work backward from node j by finding nodes having labels differing by exactly
the length of the connecting arc. Of course, if we want the shortest path from node 1 to
node j, we can stop the labeling process as soon as node j receives a permanent label.

To illustrate Dijkstra’s algorithm, we find the shortest path from node 1 to node 6 in
Figure 2. We begin with the following labels (a * represents a permanent label, and the ith
number is the label of the node i): {0 4 3 oo oo ool Node 3 now has the smallest
temporary label. We therefore make node 3’s label permanent and obtain the following
labels:

[0*43*000000]

We now know that node 3 is the closest node to node 1. We compute new temporary
labels for all nodes that are connected to node 3 by a single arc. In Figure 2 that is node 5.

New node 5 temporary label = min{cc, 3 + 3} = 6

Node 2 now has the smallest temporary label; we now make node 2’s label permanent. We
now know that node 2 is the second closest node 1o node 1. Our new set of labels is

[0 4 3" o0 6 oo

Since nodes 4 and 5 are connected to the newly permanently labeled node 2, we must
change the temporary labels of nodes 4 and 5. Node 4’s new temporary label is min
{oo, 4 + 3} = 7 and node 5’s new temporary label is min {6, 4 + 2} = 6. Node 5 now has
the smallest temporary label, so we make node 5’s label permanent. We now know that
node 35 is the third closest node to node 1. Our new labels are

[0 4 3 7 6 o

Since only node 6 is connected to node 5, node 6’s temporary label will change to min
{00, 6 + 2} = 8. Node 4 now has the smallest temporary label, so we make node 4’s label

permanent. We now know that node 4 is the fourth closest node to node 1. Our new labels
are

[0 4 3 7 6 3]

Since node 6 is connected to the newly permanently labeled node 4, we must change
node 6’s temporary label to min {8, 7 + 2} = 8. We can now make node 6’s label permanent.
Our final set of labels is [0*  4* 3* 7* 6* 8*]. We can now work backward and find
the shortest path from node 1 to node 6. The difference between node 6’s and node 5’s
permanent labels is 2 = length of arc (5, 6), so we go back to node 5. The difference between
node 5’s and node 2’s permanent labels is 2 = length of arc (2, 5), so we may go back to
node 2. Then, of course, we must go back to node 1. Thus, 1-2—-5-6 is a shortest path (of



REMARK

TABLE 3
Trensshipment Representation
of Shortest Path Problem
and Optimal Solution (1)

6 Chapter 1 Network Models

length 8) from node 1 to node 6. Observe that when we were at node 5, we could also have
worked backward to node 3 and obtained the shortest path 1-3-5-6.

The Shortest Path Problem as o Transshipment Problem

Finding the shortest path between node i and node j in a network may be viewed as a
transshipment problem. Simply try to minimize the cost of sending one unit from node i
to node j (with all other nodes in the network being transshipment points), where the cost
of sending one unit from node k to node &’ is the length of arc (k, k') if such an arc exists
and is M (a large positive number) if such an arc does not exist. The cost of shipping
one unit from a node to itself is zero. This transshipment problem may be transformed
into a balanced transportation problem.

To illustrate the preceding ideas, we formulate the balanced transportation problem
associated with finding the shortest path from node 1 to node 6 in Figure 2. We want to
send one unit from node 1 to node 6. Node | is a supply point, node 6 is a demand point,
and nodes 2, 3, 4, and 5 will be transshipment points. Using s = 1, we obtain the balanced
transportation problem shown in Table 3. This transportation problem has two optimal
solutions:

1 z2=4+2+2=8,x,= Xy5 = Xgg = X33 = X4, = 1 (all other variables equal 0).
This solution corresponds to the path 1-2-5-6,
2 z=3434+2=8, Xy3 = X35 = X5¢ = X5y = X, = 1 (all other variables equal 0).
This solution corresponds to the path 1-3-5-6.

After formulating a shortest path problem as a transshipment problem, the problem may be solved
easily by using LINGO or a spreadsheet optimizer.

e 23 v s 6 sy
A IR R 5 e 72 B 7 R 2
A BN I 2 R e ey
N B N e 2 R w7
N B 2 I 2 % B 72 5
A I8 B 2 B 2 xR 5

Demand 1 1 I | I



Problems
Group A

Find the shortest path from node 1 to node 6 in Figure

Find the shortest path from node 1 to node 5 in Figure

WA N W

Formulate Problem 2 as a transshipment problem.

4  Use Dijkstra’s algorithm to find the shortest path from
node 1 to node 4 in Figure 5. Why does Dijkstra’s algorithm
fail to obtain the correct answer?

5 Suppose it costs $10,000 to purchase a new car. The
annual operating cost and resale value of a used car is shown
in Table 4. Assuming that one has a new car at present,
determine a replacement policy that minimizes the net costs
of owning and operating a car for the next six years.

6 Itcosts$40tobuya telephone from the department store.
Assume that I can keep a telephone for at most five years and
that the estimated maintenance cost each year of operation

FIGURE 4

Nefwork for Problem 2

FUIGURE 5  Network for Problem 4

TABLE 4
Ageof Cor  Resale Operating
{yeors} Valve Cost
1 $7000  $300 (year 1)
2 36000  $500 (year 2)
3 $4000  $800 (year 3)
4 33000  $1200 (year 4)
5 $2000  $1600 (year 5)
6 31000  $2200 (year 6)

1.2 Shortest Path Problems 7

is as follows: year 1, $20; year 2, $30; year 3, $40; year
4, $60; year 5, $70. T have just purchased a new telephone.
Assuming that a telephone has no salvage value, determine
how to minimize the total cost of purchasing and operating
a telephone for the next six years.

7 At the beginning of year | a new machine must be pur-
chased. The cost of maintaining a machine i years old is
given in Table 5.

The cost of purchasing a machine at the beginning of
each year is given in Table 6.

There is no trade-in value when a machine is replaced.
Your goal is to minimize the total cost (purchase plus main-
tenance) of having a machine for five years. Determine the
years in which a new machine should be purchased.

Group B

8 A library must build shelving to shelve 200 4-inch high
books, 100 8-inch high books, and 80 12-inch high books.
Each book is 0.5 inch thick. The library has several ways
to store the books. For example, an 8-inch high shelf may
be built to store all books of height less than or equal to 8
inches, and a 12-inch high shelf may be built for the 12-inch
books. Alternatively, a 12-inch high shelf might be built to
store all books. The library believes it costs $2300 to build
a shelf and that a cost of $5 per square inch is incurred for
book storage. (Assume that the area required to store a book
is given by height of storage area times book’s thickness.)
Formulate and solve a shortest path problem that could
be used to help the library determine how to shelve the books

TABLE S
Age at Beginning of Yeor  Mintenance Cost for Next Yeor

0 $38,000

1 $50,000

2 $97,000

3 $182,000

4 $304,000

TABLE 6

Year  Purchase Cost
1 $170,000
2 $190,000
3 $210,000
4 $250,000
5 $300,000

"Based on Ravindran (1971).
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at minimum cost. (Hint: Have nodes 0, 4, 8, and 12, with <,
being the total cost of shelving all books of height > i and
< j on a single shelf.)

9 Acompany sells seven types of boxes, ranging in volume
from 17 to 33 cubic feet. The demand and size of each box is
given in Table 7. The variable cost (in dollars) of producing
each box is equal to the box’s volume: A fixed cost of $1000
is incurred to produce any of a particular box. If the company

10 Explain how by solving a single transshipment problem
you can find the shortest path from node 1 in a network to
each other node in the network.

TABLE 7
Box ]l 1 3 4 5 6 7

desires, demand for a box may be satisfied by a box of larger
size. Formulate and solve a shortest path problem whose
solution will minimize the cost of meeting the demand for

boxes.

1.3

EXAMPLE 3

Solution

FYGURE &
Network for Sunco Oit

33 30 26 24 19 I8 17
400 300 500 700 200 400 200

Size
Demond

Maximum Flow Problems

Many situations can be modeled by a network in which the arcs may be thought of as
having a capacity that limits the quantity of a product that may be shipped through the arc.
In these situations, it is often desired to transport the maximum amount of flow from a
starting point (called the source) to a terminal point (called the sink). Such problems are
called maximum flow problems. Several specialized algorithms exist to solve maximum
flow problems. In this section, we begin by showing how linear programming can be used
to solve a maximum flow problem. Then we discuss the Ford—Fulkerson (1962) method for
solving maximum flow problems.

LP Solution of Maximum Flow Problems

Sunco Oil wants to ship the maximum possible amount of oil (per hour) via pipeline from
node so to node si in Figure 6. On its way from node so to node si, oil must pass through
some or all of stations 1, 2, and 3. The various arcs represent pipelines of different diameters.
The maximum number of barrels of oil (millions of barrels per hour) that can be pumped
through each arc is shown in Table 8. Each of these numbers is called an are capacity.
Formulate an LP that can be used to determine the maximum number of barrels of oil per
hour that can be sent from se to si.

Node so is called the source node because oil flows out of it but no oil flows into it.
Analogously, node si is called the sink node because oil flows into it and no oil flows out

()




TABLE 8
Arc Capacities for Sunco Oil

1.3 Maximum Flow Problems ¢

Arc Capacity

(so, 1) 2
(so,2) 3
(1,2) 3
(1,3 4
(3, si) 1
(2, si) 2

of it. For reasons that will soon become clear, we have added an artificial arc a, from the
sink to the source. The flow through g, is not actually oil; hence the term artificial arc.

To formulate an LP that will yield the maximum flow from node so to si, we observe
that Sunco must determine how much oil (per hour) should be sent through arc (7, j). Thus,
we define

x;; = millions of barrels of oil per hour that will pass through arc (i, j) of pipeline

As an example of a possible flow (termed a feasible flow), consider the flow indentified by
the numbers in parentheses in Figure 6.

X, =2, x53=0, X, =2, x3,=0, X, =2, Xy, =2, X0 =0
For a flow to be feasible, it must have two characteristics:
0 < flow through each arc < arc capacity (1)
and
Flow into node i = flow out of node i (2)

We assume that no oil gets lost while being pumped through the network, so at each
node, a feasible flow must satify (2), the conservation-of-flow constraint. The introduction
of the artificial arc a, allows us to write the conservation-of-flow constraint for the source
and sink.

If we let x, be the flow through the artificial arc, then conservation of flow implies that
X, = total amount of oil entering the sink. Thus, Sunco’s goal is to maximize X, subject to
(1) and (2):

max z = x;

s.L. x, . <2 (Arc capacity constraints)

so, I —
50.2 = 3
X, =<3
x2,.ri = 2

x; =4

X

x3,xi = 1



EXAMPLE 4

Solution

EXAMPLE 5

TABLE 9
Arc Copacities for
Fly-by-Night Airines

10 Chopler | Nework Models

Xy =X, X0 (Node so flow constraint)
X, =X, + X, (Node 1 flow constraint)
Xoot X=Xy, (Node 2 flow constraint)

X3 =X, ; (Node 3 flow constraint)
Xyt G =X (Node si flow constraint)
x, 20

ij =
One optimal solution to this LP is z = 3, X1 =2 x3=Lx,=bLx ,=1x_ =
1, x, ; = 2, x, = 3. Thus, the maximum possible flow of oil from node so to si is 3 million
barrels per hour, with 1 million barrels each sent via the following paths: so—1-2-si,

s0~1-3-si, and so-2—s¥.

The linear programming formulation of maximum flow problems is a special case of the
minimum-cost network problem (MCNFP) discussed in Section 1.5. A generalization of
the transportation simplex (known as the network simplex) can be used to solve MCNFPs.

Before discussing the Ford-Fulkerson method for solving maximum flow problems,
we give two examples for situations in which a maximum flow problem might arise.

Fly-by-Night Airlines must determine how many connecting flights daily can be arranged
between Juneau, Alaska and Dallas, Texas. Connecting flights must stop in Seattle and then
stop in Los Angeles or Denver. Because of limited landing space, Fly-by-Night is limited
to making the number of daily flights between pairs of cities shown in Table 9. Set up a
maximum flow problem whose solution will tell the airline how to maximize the number
of connecting flights daily from Juneau to Dallas.

The appropriate network is given in Figure 7. Here the capacity of arc (i, j) is the maximum
number of daily flights between city i and city j. The optimal solution to this maximum flow
problemis 7 = x, =3, X, 9= 3x, = l’xs,oe =2, X p=1 Xpe.p = 2. Thus, Fly-by-
Night can send three flights daily connecting Juneau and Dallas. One flight connects via
Juneau-Seattle-L.A ~Dallas and two flights connect via Juneau—Seattle—Denver—Dallas.

Five male and five female entertainers are at a dance. The goal of the matchmaker is to
match each woman with a man in a way that maximizes the number of people who are

Maximum Number
Gities of Duily Flights
Juneau--Seattle (J, S) 3
Seattle-L.A. (S, L) 2
Seattle~Denver (S, De) 3
L.A.-Dallas (L, D) 1
Denver-Daillas (De, D) 2



