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Preface

Active control of sound and vibration is a relatively new and fast growing field
of research and application. The number of papers published on the subject have
been more than doubling every year for the past ten years and each year more
researchers are becoming involved in this fascinating subject. Because of this
rapid growth and continuing new developments, it is difficult for any book to
claim to cover the subject completely. However, we have attempted to include
the most recent theoretical and practical developments, while at the same time
devoting considerable space to fundamental principles which will not become
outdated with time. We have also devoted space to explaining how active control
systems may be designed and implemented in practice, and the practical pitfalls
which must be avoided to ensure a reliable and stable system.

We have treated the active control of noise and the active control of
vibration in a unified way, even though later on in the book some noise and
vibration control topics are treated separately. The reason for the unified
treatment is that it is becoming increasingly difficult to keep the two disciplines
separate, as one depends so much on the other. For example, the treatment of
the active control of sound radiated by vibrating structures would be incomplete
if either active control of the radiated acoustic field or the active control of the
structural vibration were omitted. Thus, in the first part of the book, which is
concerned entirely with fundamental concepts of relevance to active noise and
vibration control, an attempt has been made to combine the two subjects so that
it can be seen how they are related and how they share many common concepts.

One interesting topic which we have omitted from this book is a discussion
of patents. Not only is the subject a large one (with hundreds of patents already
granted), it is rapidly growing and it is difficult to do justice to it in a book of
this type. One gem of wisdom which we would like to share with our readers is
that some of the patent holders are only too willing to sue for patent




Preface XIX

infringement, even though it can be shown that prior knowledge existed before
many of the patents. Thus, any company preparing to market any products
containing active noise or vibration control should be prepared to fight a legal
battle for their right to do so unless they have obtained a licence to use the
technology from the patent owners. So far, it seems that lawyers and judges have
made more money from active control than any engineering company, and they
don’t even own any patents! It is also of interest to ponder upon the number of
patents which are granted which closely describe an aspect of active noise and
vibration control which has been patented previously. All we can do here is try
to appeal to some sense of reason as too much litigation of this type will stifle
research, slow down new product development and enrich the legal profession
— all of which we would be better off without.
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