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Preface

Need for Support in Learning C++

For the last 16 years, the introductory computer science course has been taught
mostly in Pascal. Over the last two to three years there has been a move toward
C++ in place of Pascal. Even the strongest advocates for the change realize that
C++ is going to be more difficult than Pascal for most beginning students to learn.

C and later C++ were designed for systems programming. Systems programmers
are assumed to know what they mean and mean what they say. Therefore, C++
has very little runtime error checking and compiles some very weird code.
Beginning students, on the other hand, often do not know what they mean and even
more often do not mean what they say. Hence, it is essential that students
understand the syntax and semantics of each construct as they go along. Closed
laboratory activities seem an ideal way to make this happen.

Closed Laboratories in Computer Science

The Denning Report! introduced the term closed laboratories without defining
exactly what they were. At least four different definitions subsequently surfaced.

1. A scheduled time when students work on their programming assignments
under supervision.

2. A scheduled drill and practice time when students work on mini-problems
under supervision.

3. The use of specially prepared laboratory materials where students interact
with the computer as they would a microscope or Bunsen burner. The labs
should help the student discover principles and solutions under supervision.
This definition is closest to the spirit of the Denning Report.

4. A combination of two or more of the above.

With the publication of the Curriculum ‘912 report, laboratory exercises were
suggested for many of the knowledge units. However, a precise definition of what
constituted a closed laboratory activity was not included. And, in fact, many of
the activities suggested could be done equally well in a nonsupervised (or open)
setting.

Laboratory activities as defined in this manual are a combination of definitions
2 and 3.

IDenning, P. J. (chair) "Computing as a Discipline." Communications of the ACM, Vol.
32, No. 1, pp. 9-23.

2Tucker, A. B. (Ed.) "Computing Curricula 1991: Report of the ACM/IEEE-CS Joint
Curriculum Task Force.” Final Draft, December 17, 1991. ACM Order Number 201910,
IEEE Computer Society Press Order Number 2220.
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Open versus Closed Laboratories

Although the Denning Report and Curriculum '91 imply that laboratory exercises
should be done under supervision, we do not feel that this is essential. Our view is
that closed laboratory exercises are valuable for two reasons: the exercises
themselves and the extra contact time with a faculty member or a teaching
assistant. If a closed laboratory environment is not an option, the students can still
benefit from working the exercises on their own.

Organization of the Manual

Each chapter contains three types of activities: Prelab, Inlab, and Postlab. The
Prelab activities include a reading review assignment and simple paper and
pencil exercises. The Inlab activities are broken into lessons, each of which
represents a concept covered in the chapter. Each lesson is broken into exercises
that thoroughly demonstrate the concept. The Postlab exercises are a collection of
outside programming assignments appropriate for each chapter. Each exercise
requires that the students apply the concepts covered in the chapter.

When this manual is being used in a closed-laboratory setting, we suggest that
the Prelab activities be done before the students come to lab. The students can
spend the first few minutes of the laboratory checking their answers (Lesson 1 for
each chapter). The Inlab activities are designed to take approximately two
hours, the usual time for a closed laboratory. However, an instructor can tailor
the chapter to the level of the class by only assigning a partial set of exercises or
by shortening the time allowed.

The Postlab activities present a selection of programming projects. We do not
suggest that all of them be assigned. In most cases, one should be sufficient, unless
there are several related problems.

If the manuatl is not being used in a closed-laboratory setting, an instructor can
assign all or a selection of the Inlab activities to be done independently (see the
section "Flexibility" below). In either a closed or open setting, many of the Inlab
and Postlab activities can be done in groups.

Theoretical Basis for the Activities

The decision to break each chapter in three types of activities is based on the
work of Benjamin Bloom, who developed a taxonomy of six increasingly difficult
levels of achievement in the cognitive domain.? In developing the activities for
this manual, we combined Bloom'’s six categories into three. These categories are
defined below in terms of the concrete example of learning an algorithm (or
language-related construct).

Recognition The student can trace the algorithm and determine what the output
should be for a given data set (no transfer).

Generation The student can generate a very similar algorithm (near transfer).

*Bloom, Benjamin Taxonomy of Educational Objectives—Handbook 1: Cognitive Domain.
New York: David McKay, 1956.
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Projection The student can modify the algorithm to accomplish a major change

(far transfer), can apply the algorithm in a different context, can combine
related algorithms, and can compare algorithms.

The Prelab activities are at the recognition level. Most of the Inlab activities
are at the generation level with a few projection-level activities included where
appropriate. The Postlab activities are projection-level activities.

The activities are also influenced by the work of Kolb and others on how
students learn.* The more actively involved students are in the learning process,
the more they learn. Reading and writing are forms of active involvement.
Therefore, the Prelab activities begin with a reading review, and many of the
exercises ask the students to write explanations of what happened. Just watching
a program run and looking at the answer is a passive activity, but having to write
the answer down transforms the exercise into an active one.

Flexibility

A Laboratory Course in C++ is designed to allow the instructor maximum flex-
ibility. Each chapter has an assignment cover sheet that provides a checklist in
tabular form. The first column of the table in the Assignment Cover Sheet lists
the chapter activities, in the second column students check which activities have
been assigned, in the third column they record what output is to be turned in, and
the fourth column is for the instructor to use for grading. The pages are perforated
so that students can easily tear out sheets to turn in.

Student Disk

The accompanying disk contains the programs, program shells (partial programs),
and data files. A copy of most of the programs or program shells is listed before
the exercises that use the program or program shell. Programs used for debugging
exercises are not shown, however. Because some of the exercises ask the student to
go back to the original version a previous program or program shell, we suggest
that the student copy the disk and work from the copy.

The disk is divided into subdirectories, one for each chapter. The programs and

program shells are stored in files under the program name with a . epp extension.
Header files are stored with a .h extension.

4Svinicki, Marilla D., and Dixon Nancy M. “The Kolb Model Modified for Classroom
Activities.” College Teaching, Vol. 35, No. 4: Fall, pp. 141-146.
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Overview of Programming
and Problem Solving

OBJECTIVES

+ To be able to log on to a computer.

» To be able to do the following tasks on a computer.

Change the active (work) directory.
List the files in a directory.

» To be able to do the following tasks using an editor and a C++ compiler.

Load a file containing a program.
Alter a file containing a program.
Save a file.

Compile a program.

Run a program.

Change a program and rerun it.
Correct a program with errors.
Enter and run a program.

Exit the system.
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Chapter 1: Assignment Cover Sheet

Name Date

Section

Fill in the following table showing which exercises have been assigned for each lesson and check what
you are to submit: (1) lab sheets, (2) listings of output files, and/or (3) listings of programs. Your
instructor or teaching assistant (TA) can use the Completed column for grading purposes.

Assigned: Check or | Submit
Activities list exercise numbers | (1) @ @)|Completed

Prelab

Review

Prelab Assignment

Inlab

Lesson 1-1: Check Prelab Exercises

Lesson 1-2: Basic File Operations

Lesson 1-3: Compiling and Running a
Program

Lesson 1-4: Editing, Running, and Printing
a Program File

Lesson 1-5: Running a Program with an
Error

Lesson 1-6: Entering, Compiling, and
Running a New Program

Postlab
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Prelab Activities

Review

A computer is a programmable electronic device that can store, retrieve, and
process data. The verbs store, retrieve, and process relate to the five basic
physical components of the computer: the memory unit, the arithmetic/logic unit,
the control unit, input devices, and output devices. These physical components are
called computer hardware. The programs that are available to run on a computer

are called software. Writing the programs that make up the software is called
programming.

Programming

A program is a sequence of instructions written to perform a specific task.
Programming is the process of defining the sequence of instructions. There are two
phases in this process: determining the task that needs doing and expressing the
solution in a sequence of instructions.

The process of programming always begins with a problem. Programs are not
written in isolation; they are written to solve problems. Determining what needs
to be done means outlining the solution to the problem. This first phase, then, is
the problem-solving phase.

The second phase, expressing the solution in a sequence of instructions, is the
implementation phase. Here, the general solution outlined in the problem-
solving phase is converted into a specific solution (a program in a specific
language). Testing is part of both phases. The general solution must be shown to
be correct before it is translated into a program.

Let's demonstrate the process with the following problem.

Problem: Calculate the average rainfall over a period of days.

Discussion: To do the job "by hand," you would write down the number of inches
of rain that had fallen each day. Then you would add the figures up and divide
the total by the number of days. This is exactly the algorithm we use in the
program.

Algorithm (on next page):




