® A LABORATORY COURSE IN

A Laboratory Course

in C++

Nell Dale

University of Texas, Austin

JONES AND BARTLETT PUBLISHERS
Sudbury, Massachusetts
BOSTON TORONTO LONDON SINGAPORE

M L i B . -~ [P

World Headguarters
Jones and Bartlett Publishers

* 40 Tall Pine Drive

. Sudbury, MA 01776
978-443-5000
info@jbpub.com
www jbpub.com

Jones and Bartlett Publishers Canada
P.O. Box 19020

Toronto, ON M5S 1X1

CANADA

Jones and Bartlett Publishers International
Barb House, Barb Mews

London W6 7PA

UK

Copyright © 1997 by Jones and Bartlett Publishers, Inc.

All rights reserved. No part of the material protected by this copyright notice may be reproduced
or utilized in any form, electronic or mechanical, including photocopying, recording, or any
information storage or retrieval system, without permission from the copyright owner.

Library of Congress Cataloging-in-Publication Data

Dale, Nell.
A laboratory course in C++ / Nell Dale.
. cm.

ISBN 0-7637-0247-1

1. C++ (Computer program language) 1. Title.
QA76.73.C153D336 1996
005.13’3--dc20 96-32748

CIp

Acquisitions Editor: David Geggis
Developmental Editor: Karen Jolie
Production Editor: Marilyn E. Rash
Manufacturing Manager: Dana L. Cerrito
Cover Design: Hannus Design Associates
Cover Printing: John P. Pow Company
Printing and Binding: Edwards Brothers, Inc.

Printed in the United States of America
00 99 98 109 87 6

Preface

Need for Support in Learning C++

For the last 16 years, the introductory computer science course has been taught
mostly in Pascal. Over the last two to three years there has been a move toward
C++ in place of Pascal. Even the strongest advocates for the change realize that
C++ is going to be more difficult than Pascal for most beginning students to learn.

C and later C++ were designed for systems programming. Systems programmers
are assumed to know what they mean and mean what they say. Therefore, C++
has very little runtime error checking and compiles some very weird code.
Beginning students, on the other hand, often do not know what they mean and even
more often do not mean what they say. Hence, it is essential that students
understand the syntax and semantics of each construct as they go along. Closed
laboratory activities seem an ideal way to make this happen.

Closed Laboratories in Computer Science

The Denning Report! introduced the term closed laboratories without defining
exactly what they were. At least four different definitions subsequently surfaced.

1. A scheduled time when students work on their programming assignments
under supervision.

2. A scheduled drill and practice time when students work on mini-problems
under supervision.

3. The use of specially prepared laboratory materials where students interact
with the computer as they would a microscope or Bunsen burner. The labs
should help the student discover principles and solutions under supervision.
This definition is closest to the spirit of the Denning Report.

4. A combination of two or more of the above.

With the publication of the Curriculum ‘912 report, laboratory exercises were
suggested for many of the knowledge units. However, a precise definition of what
constituted a closed laboratory activity was not included. And, in fact, many of
the activities suggested could be done equally well in a nonsupervised (or open)
setting.

Laboratory activities as defined in this manual are a combination of definitions
2 and 3.

IDenning, P. J. (chair) "Computing as a Discipline." Communications of the ACM, Vol.
32, No. 1, pp. 9-23.

2Tucker, A. B. (Ed.) "Computing Curricula 1991: Report of the ACM/IEEE-CS Joint
Curriculum Task Force.” Final Draft, December 17, 1991. ACM Order Number 201910,
IEEE Computer Society Press Order Number 2220.

ix

R

X

Preface

Open versus Closed Laboratories

Although the Denning Report and Curriculum '91 imply that laboratory exercises
should be done under supervision, we do not feel that this is essential. Our view is
that closed laboratory exercises are valuable for two reasons: the exercises
themselves and the extra contact time with a faculty member or a teaching
assistant. If a closed laboratory environment is not an option, the students can still
benefit from working the exercises on their own.

Organization of the Manual

Each chapter contains three types of activities: Prelab, Inlab, and Postlab. The
Prelab activities include a reading review assignment and simple paper and
pencil exercises. The Inlab activities are broken into lessons, each of which
represents a concept covered in the chapter. Each lesson is broken into exercises
that thoroughly demonstrate the concept. The Postlab exercises are a collection of
outside programming assignments appropriate for each chapter. Each exercise
requires that the students apply the concepts covered in the chapter.

When this manual is being used in a closed-laboratory setting, we suggest that
the Prelab activities be done before the students come to lab. The students can
spend the first few minutes of the laboratory checking their answers (Lesson 1 for
each chapter). The Inlab activities are designed to take approximately two
hours, the usual time for a closed laboratory. However, an instructor can tailor
the chapter to the level of the class by only assigning a partial set of exercises or
by shortening the time allowed.

The Postlab activities present a selection of programming projects. We do not
suggest that all of them be assigned. In most cases, one should be sufficient, unless
there are several related problems.

If the manuatl is not being used in a closed-laboratory setting, an instructor can
assign all or a selection of the Inlab activities to be done independently (see the
section "Flexibility" below). In either a closed or open setting, many of the Inlab
and Postlab activities can be done in groups.

Theoretical Basis for the Activities

The decision to break each chapter in three types of activities is based on the
work of Benjamin Bloom, who developed a taxonomy of six increasingly difficult
levels of achievement in the cognitive domain.? In developing the activities for
this manual, we combined Bloom'’s six categories into three. These categories are
defined below in terms of the concrete example of learning an algorithm (or
language-related construct).

Recognition The student can trace the algorithm and determine what the output
should be for a given data set (no transfer).

Generation The student can generate a very similar algorithm (near transfer).

*Bloom, Benjamin Taxonomy of Educational Objectives—Handbook 1: Cognitive Domain.
New York: David McKay, 1956.

Preface xi

Projection The student can modify the algorithm to accomplish a major change

(far transfer), can apply the algorithm in a different context, can combine
related algorithms, and can compare algorithms.

The Prelab activities are at the recognition level. Most of the Inlab activities
are at the generation level with a few projection-level activities included where
appropriate. The Postlab activities are projection-level activities.

The activities are also influenced by the work of Kolb and others on how
students learn.* The more actively involved students are in the learning process,
the more they learn. Reading and writing are forms of active involvement.
Therefore, the Prelab activities begin with a reading review, and many of the
exercises ask the students to write explanations of what happened. Just watching
a program run and looking at the answer is a passive activity, but having to write
the answer down transforms the exercise into an active one.

Flexibility

A Laboratory Course in C++ is designed to allow the instructor maximum flex-
ibility. Each chapter has an assignment cover sheet that provides a checklist in
tabular form. The first column of the table in the Assignment Cover Sheet lists
the chapter activities, in the second column students check which activities have
been assigned, in the third column they record what output is to be turned in, and
the fourth column is for the instructor to use for grading. The pages are perforated
so that students can easily tear out sheets to turn in.

Student Disk

The accompanying disk contains the programs, program shells (partial programs),
and data files. A copy of most of the programs or program shells is listed before
the exercises that use the program or program shell. Programs used for debugging
exercises are not shown, however. Because some of the exercises ask the student to
go back to the original version a previous program or program shell, we suggest
that the student copy the disk and work from the copy.

The disk is divided into subdirectories, one for each chapter. The programs and

program shells are stored in files under the program name with a . epp extension.
Header files are stored with a .h extension.

4Svinicki, Marilla D., and Dixon Nancy M. “The Kolb Model Modified for Classroom
Activities.” College Teaching, Vol. 35, No. 4: Fall, pp. 141-146.

Acknowledgments

Xil

No author writes in a vacuum. There is always formal and informal feedback from
colleagues. Thanks to those of you in my department who patiently answered "by
the way" questions about C++. Thanks also to the following colleagues who wrote
formal reviews of the manuscript: Mary D. Medley, Augusta College; Susan
Wallace, University of North Florida; Paul Ross, Millersville University of
Pennsylvania; Jeanine Ingber, University of New Mexico, Albequerque; James C.
Miller, Bradley University; Ed Korntved, Northwest Nazarene College; Charles
Dierbach, Towson State University; Mansar Zand, and University of Nebraska,
Omaha. My special thanks to Mark Headington, University of Wisconsin, La
Crosse, who must be the world's most meticulous reviewer and proofreader.

I want to add a special word of thanks to Porter Scobey at Saint Mary's
University who discovered that there was a problem with recognizing the end of
line under certain systems and then helped us solve the problem.

To Karen Jolie, a long-time colleague who always has the right answers; to
Dianne Cannon Wood, who did a masterful job of copyediting; to Marilyn Rash,
the production editor; and to all the staff at Jones and Bartlett: thank you. I trust
that this is the beginning of a long and rewarding association.

Contents

Preface iX
Acknowledgments xii

1 Overview of Programming and Problem Solving 1
Prelab Activities 5

Chapter 1: Prelab Assignment 9

Lesson 1-1: Check Prelab Exercises 11

Lesson 1-2: Basic File Operations 12

Lesson 1-3: Compiling and Running a Program 13

Lesson 1-4: Editing, Running, and Printing a
Program File 14

Lesson 1-5: Running a Program with an Error 15
Lesson 1-6: Entering, Compiling, and Running a New
Program 16

Postlab Activities 17

2 C++ Syntax and Semantics, and the Program
Development Process 19

Prelab Activities 23
Chapter 2: Prelab Assignment 27
Lesson 2-1: Check Prelab Exercises 29

Lesson 2-2: Components of a Program 30
Lesson 2-3: Sending Information to the Cutput
Stream 31

Lesson 2-4: Working with Numeric Expressions 32
Lesson 2-5: Debugging 33
Postlab Activities 35

3 Arithmetic Expressions, Function Calls,
and Output 37

Prelab Activities 41

Chapter 3: Prelab Assignment 45

Lesson 3-1: Check Prelab Exercises 47
Lesson 3-2: Arithmetic Operations 48
Lesson 3-3: Formatting Qutput 50

Lesson 3-4: Value-Returning Functions 52
Lesson 3-5: Debugging 54

Postlab Activities 55

jiv

Contents

Program Input and the Software
Design Process 57

Prelab Activities 61

Chapter 4:
Lesson 4-1:
Lesson 4-2:
Lesson 4-3:
Lesson 4-4:
Lesson 4-5:

Prelab Assignment 65

Check Prelab Exercises 67

Input Statement and Data Consistency 68
Input and Output with Files 72
Top-Down Programming 74

Debugging 75

Postlab Activities 77

Conditions, Logical Expressions, and Selection

Control Structures 79

Prelab Activities 83

Chapter 5:
Lesson 5-1:
Lesson 5-2:
Lesson 5-3:
Lesson 5-4:
Lesson 5-5:
Lesson 5-6:
Lesson 5-7:

Prelab Assignment 91
Check Prelab Exercises 93
Boolean Expressions 9
If-Then Statements 95
If-Then-Else Statements 96
Nested Logic 98

Test Plan 100

Debugging 101

Postlab Activities 103

Looping

105

Prelab Activities 109

Chapter 6:
Lesson 6-1:
Lesson 6-2:
Lesson 6-3:
Lesson 6-4:
Lesson 6-5:

Prelab Assignment 113
Check Prelab Exercises 115
Count-Controlled Loops 116
Event-Controlled Loops 118
Nested Logic 120
Debugging 123

Postlab Activities 125

Functions

127

Prelab Activities 131

Chapter 7:
Lesson 7-1:
Lesson 7-2:
Lesson 7-3:
Lesson 7-4:
Lesson 7-5:

Prelab Assignment 137

Check Prelab Exercises 139

Functions without Parameters 140
Functions with Value Parameters 142
Functions with Reference Parameters 144
Debugging 147

Postlab Activities 149

10

11

Scope, Lifetime, and More on Functions

Prelab Activities

Chapter 8:
Lesson 8-1:
Lesson 8-2:
Lesson 8-3:
Lesson 8-4:
Lesson 8-5:

Postlab Activities

Additional Control Structures

Prelab Activities

Chapter 9:
Lesson 9-1:
Lesson 9-2:
Lesson 9-3:
Lesson 9-4:
Lesson 9-5:

Postlab Activities

Contents

153

157

Prelab Assignment 161

Check Prelab Exercises 163
Static and Automatic Variables
Value-Returning and Void Functions
Test Plan 169

Debugging 170

171

165
166

173

177
Prelab Assignment
Check Prelab Exercises 185
Multi-Way Branching 186
Additional Control Structures
Test Plan 191

Debugging 192

193

181

187

Simple Data Types: Built-In and

User-Defined

Prelab Activities
Chapter 10:

Lesson 10-1:
Lesson 10-2:
Lesson 10-3:
Lesson 10-4:
Lesson 10-5:

Postlab Activities

One-Dimensional Arrays

Prelab Activities

Chapter 11:
Lesson 11-1:
Lesson 11-2:
Lesson 11-3:

Lesson 11-4:

Postlab Activities

195

199

Prelab Assignment
Check Prelab Exercise
Numeric Data Types 208
Char Data Types 212
Enumeration Data Types
Debugging 216

217

205
207

214

219

223

Prelab Assignment 227

Check Prelab Exercises 229
One-Dimensional Array Data Types
with Integer Indexes 230
One-Dimensional Array Data Types
with Enumeration Indexes 232
Test Plan 234

235

vi Contents

12 Applied Arrays: Lists and Strings 237

Prelab Activities 241

Chapter 12: Prelab Assignment 247

Lesson 12-1: Check Prelab Exercises 251

Lesson 12-2: Linear (Unsorted) List Operations 252
Lesson 12-3: Sorted List Operations 253

Lesson 12-4: Strings 254

Lesson 12-5: Debugging 256

Postlab Activities 257

13 Multidimensional Arrays 259

Prelab Activities 263

Chapter 13: Prelab Assignment 265
Lesson 13-1: Check Prelab Exercises 267
Lesson 13-2: Two-Dimensional Tables 268
Lesson 13-3: Multidimensional Tables 271
Lesson 13-4: Debugging 272

Postlab Activities 273

14 Records (C++ Structs) 275

Prelab Activities 279

Chapter 14: Prelab Assignment 283
Lesson 14-1: Check Prelab Exercise 285
Lesson 14-2: Record Data Types 286
Lesson 14-3: Lists as Records 288
Lesson 14-4: Hierarchical Records 290
Lesson 14-5: Arrays of Records 291
Lesson 14-6: Test Plans 293

Postlab Activities 297

15 Classes and Data Abstraction 299

Prelab Activities 303

Chapter 15: Prelab Assignment 309

Lesson 15-1: Check Prelab Exercises 311

Lesson 15-2: Class Data Type 312

Lesson 15-3: Header and Implementation Files 315
Lesson 15-4: Class Constructors 318

Lesson 15-5: Debugging 319

Postlab Activities 321

16 Object-Oriented Software Development 323

Prelab Activities 327
Chapter 16: Prelab Assignment 331

17

18

19

Lesson 16-1: Check Prelab Exercises 333
Lesson 16-2: Classes 334

Lesson 16-3: Classes with Inheritance 336

Lesson 16-4: Virtual Methods 337
Lesson 16-5: Debugging 339
Postlab Activities 341

Pointers, Dynamic Data, and Reference Types

Prelab Activities 347

Chapter 17: Prelab Assignment 353
Lesson 17-1: Check Prelab Exercises 355
Lesson 17-2: Pointer Variables 356
Lesson 17-3: Dynamic Data 357

Lesson 17-4: Classes and Dynamic Data
Lesson 17-5: Debugging 361

Postlab Activities 363

Linked Structures 365

Prelab Activities 369

Chapter 18: Prelab Assignment 371
Lesson 18-1: Check Prelab Exercises 373
Lesson 18-2: Unordered Linked Lists 374
Lesson 18-3: Linked Lists of Objects 377
Lesson 18-4: Sorted Lists of Objects 379
Lesson 18-5: Debugging 380

Postlab Activities 381

Recursion 383

Prelab Activities 387

Chapter 19: Prelab Assignment 389
Lesson 19-1: Check Prelab Exercises 391
Lesson 19-2: Simple Variables 392
Lesson 19-3: Structured Variables 393
Lesson 19-4: Debugging 394

Postlab Activities 395

Appendixes 397

Glossary 403

359

Contents

vii

343

-1

Overview of Programming
and Problem Solving

OBJECTIVES

+ To be able to log on to a computer.

» To be able to do the following tasks on a computer.

Change the active (work) directory.
List the files in a directory.

» To be able to do the following tasks using an editor and a C++ compiler.

Load a file containing a program.
Alter a file containing a program.
Save a file.

Compile a program.

Run a program.

Change a program and rerun it.
Correct a program with errors.
Enter and run a program.

Exit the system.

Chapter 1 Overview of Programming and Problem Solving 3

Chapter 1: Assignment Cover Sheet

Name Date

Section

Fill in the following table showing which exercises have been assigned for each lesson and check what
you are to submit: (1) lab sheets, (2) listings of output files, and/or (3) listings of programs. Your
instructor or teaching assistant (TA) can use the Completed column for grading purposes.

Assigned: Check or | Submit
Activities list exercise numbers | (1) @ @)|Completed

Prelab

Review

Prelab Assignment

Inlab

Lesson 1-1: Check Prelab Exercises

Lesson 1-2: Basic File Operations

Lesson 1-3: Compiling and Running a
Program

Lesson 1-4: Editing, Running, and Printing
a Program File

Lesson 1-5: Running a Program with an
Error

Lesson 1-6: Entering, Compiling, and
Running a New Program

Postlab

Chapter 1 Overview of Programming and Problem Solving 5

Prelab Activities

Review

A computer is a programmable electronic device that can store, retrieve, and
process data. The verbs store, retrieve, and process relate to the five basic
physical components of the computer: the memory unit, the arithmetic/logic unit,
the control unit, input devices, and output devices. These physical components are
called computer hardware. The programs that are available to run on a computer

are called software. Writing the programs that make up the software is called
programming.

Programming

A program is a sequence of instructions written to perform a specific task.
Programming is the process of defining the sequence of instructions. There are two
phases in this process: determining the task that needs doing and expressing the
solution in a sequence of instructions.

The process of programming always begins with a problem. Programs are not
written in isolation; they are written to solve problems. Determining what needs
to be done means outlining the solution to the problem. This first phase, then, is
the problem-solving phase.

The second phase, expressing the solution in a sequence of instructions, is the
implementation phase. Here, the general solution outlined in the problem-
solving phase is converted into a specific solution (a program in a specific
language). Testing is part of both phases. The general solution must be shown to
be correct before it is translated into a program.

Let's demonstrate the process with the following problem.

Problem: Calculate the average rainfall over a period of days.

Discussion: To do the job "by hand," you would write down the number of inches
of rain that had fallen each day. Then you would add the figures up and divide
the total by the number of days. This is exactly the algorithm we use in the
program.

Algorithm (on next page):

