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Notation

Electronic charge, 1.6 X 10 "C.

Dielectric constant, g, = 8.86 X 107" F/cm, e, = 12 for
silicon.

Electron and hole effective masses.

Planck’s constant, 6.63 X 10 * J - s {(chapter 2); division-
point spacing (chapters 3-9).

Boltzmann’s constant, 1.38 X 10°%* J/°K (chapter 2); time
steplength (chapters 4-9).

Energy, bandgap energy.
Temperature.
Boltzmann factor [g/(k T).
Intrinsic free-electron density.
Electron and hole densities.
Donor and acceptor concentrations.
Effective doping concentration (N, — N,)
Potential.
g
Electron and hold quasi-Fermi potentials.
Electric field in vector and scalar, E = —grad 1.
Electron and hole mobilities.
Electron and hole diffusion constants.
Electron and hole current densities in vector and scalar.
Time.
Generation and recombination rates.
Electron and hole ionization rates.

Electron and hole lifetimes.



Preface

More than thirty years have elapsed since the advent of the semiconductor
device. Shockley established a rigid theoretical basis for device analysis in
his 1949 paper, where the basic equations are presented in exactly the form
that i1s now used.

Thereafter, a tremendous number of technical papers appeared that
followed this basis and dealt with the analysis of the different devices in
various operation modes. For the first fifteen years, the analysis was
implemented largely in such a manner that closed-form solutions were
deduced from the basic equations under some simplifying assumptions.

Meanwhile, however, such methodology was recognized to have only
limited applicability, especially when a unified device model was desired.
This understanding led to the introduction of numerical analysis under the
name of device modeling. which has evolved markedly in the past fifteen
years, simultaneously supported by the enormous progress in computer
performance.

As a result, contemporary device modeling has attained, at least among
specialists, such a high level that even two-dimensional transistor analysis for
DC steady state, as well as time-dependent problems, is implemented on
high-performance computers that yield solutions within a reasonable time
limit.

In view of this situation, numerical analysis is expected to become so
popular that a large number of researchers and engineers will be concerned
largely with it, although not necessarily as specialists. In fact, as computer
performance steadily increases, problems that are moderately difficult today,
such as exact one-dimensional modeling, will in the near future be studied
and practiced commonly by many people. including students specializing in
electronics.

With the aforementioned background, this book was written for numer-
ical analysis of bipolar devices in general, with the intention of characterizing
it in several ways. First, a detailed description is given in each relevant
chapter for the derivation of discrete-form equations from the original
differential equations, so that readers can easily write computation programs
based on their own understanding. This distinguishes the book from many
papers on device modeling presented in technical journals, where the detailed
formulation is not always given, either because of space limitations or for
other reasons.

Second, the numerical methods are designed in such a way that they are
commonly applicable without an essential change in computer algorithm to
many different types of devices, such as diodes, transistors, and thyristors, as
well as many operation modes, such as DC steady state and nonsteady
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transient. This" is especially true for chapters 4-6, devoted to one-
dimensional models. whose validity has been proved through many practices
in device design and characterization. A common concept in these one-
dimensional models is extended to the two-dimensional analysis of chapter 7,
based on the Newton-SLLOR method. where a one-dimensional line segment
is treated as a unit block.

Fourth, engineering aspects of modeling were considered by providing
each relevant chapter with a number of realistic computation results, through
which readers will understand the meaning and applicability of numerical
analysis as a useful tool for device design.

Finally, two supplementary chapters, 8 and 9, were added. In chapter 8, a
special case of two-dimensional analysis is discussed for reverse-biased p-n
diodes concerning an estimate for breakdown voltages, where Poisson’s
equation is solved by employing the finite-element method as the only
exception. Chapter 9 is devoted to the hybrid two-dimensional model, which
will find various applications in many realistic problems because it character-
istically includes two-dimensional effects without requiring as much compu-
tation time as the exact two-dimensional analysis.

I hope that this book will be used by many people willing to study the
implementation of numerical device analysis, as well as by those willing to
practice it in research and development and in device design. I hope, also,
that knowledge of numerical analysis contributes to predicting characteristics
of some of the devices that will appear in the future.
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General Concept

Definition of Device Modeling

Device modeling is the technique for developing a model by means of which
the actual behavior of a device can be simulated theoretically. Consider, for
instance. a transistor, as illustrated in figure 1-1. Fabrication of the
transistor involves many steps, which follow a number of prescribed design
conditions—for example, resistivities for a starting material and an epitaxial
layer, junction depths and surface resistivities for a number of impurity-
diffusion processes, and lateral sizes for emitter and base areas. These
quantities are called device-design parameters. A reasonable transistor
model will be able to predict the electrical characteristics exhibited by the
finished samples. These will include static current versus voltage character-
istics, current-amplification factors, and cutoff frequencies or switching
characteristics.

In general, actual device characteristics are functions of the design
parameters. Therefore, the model must generate accurate theoretical results
for an arbitrary set of design-parameter values.

The concept of modeling has only recently become a topic considered by
device researchers and design engineers. However, the modeling concept
itself originates in Shockley’s paper published in 1949, which established the
theoretical foundation for the junction diode and the transistor.! Starting from
a set of differential equations, Shockley demonstrated a very clear view of the
behavior of the semiconductor device. He did so almost immediately after the
invention of the transistor itself by his own group.

Such a theoretical treatment was called device analysis, rather than
device modeling. However, the difference between these two concepts is
inconsequential here. It is sufficient to understand that the performance of
device analysis for the purpose of developing a model is called device
modeling.

The basic differential equations for device modeling include those for the
current transport of electrons and holes, both consisting of a diffusion-current
and a drift-current component. The drift component is represented as the
product of the carrier density and the electric field. Since both of these are
unknown variables, the transport equations are nonlinear.

As will be discussed later, the nonlinearity involved is of an exponential
type, which deviates strongly from a linear relation. This strong nonlinearity



