Logic
Designer’s
Manuoal

AR

 JOHN D. LENK

Logic Designer’s Manual

John D. Lenk
Consulting Technical Writer

Reston Publishing Company
A Prentice-Hall Company
Reston, Virginia

e ——— e
i
¢ Librsry of Congress Cataloging in Publication Data

Lenk, John D
Logic designer’s manual.

Includes index.

1. Logic circuits. 2. Computers—Circuits.
3. Electronic circuit design. I Title.
TK7868.L.6L46 621.3819'535 76-52957
ISBN 0-87909-450-8

© 1977 by Reston Publishing Company
A Prentice-Hall Company
Reston, Virginia 22090

All rights reserved. No part of this book
may be reproduced in any way, or by any means,
without permission in writing from the publisher.

10 9 87 65 43 21

Printed in the United States of America

Preface

The Logic Designer’'s Manual is an outgrowth of the author’s popular Hand-
book of Logic Circuits. Most of today’s logic design is accomplished with
complete logic circuits, generally found in IC (integrated circuit) and/or
plug-in module form. In prior years, it was necessary for the designer to
implement such circuits as decoders, flip-flops, counters, registers, distribu-
tors, arithmetic units, and so on. Today, all these circuits are available in IC
form, thus eliminating the need to make up circuits using basic logic gates.
However, to use packaged logic circuits effectively, today’s designer must
be able to interconnect off-the-shelf logic circuits to form logic systems. The
purpose of the Logic Designer’s Manual is to £ill that need.

is manual is written for logic IC users, rather than for designers
of logic ICs. That is; the manual is written on the basis of using existing,
commercial logic ICs to solve design and application problems. Typical users
include design specialists who want to develop logic systems with available
ICs, or technicians who must service logic equipment containing logic ICs.
Experimenters and hobbyists can also make good use of this approach to
logic IC applications.

There are two very common, although not necessarily accurate, con-
cepts concerning logic ICs. First, it is assumed that the basic approach to
logic design involves informing an IC manufacturer of design parameters
and requirements for a particular logic system, and instructing the manu-
facturer to fabricate an IC (or group of ICs, or possibly a microprocessor)
which meets these exact requirements. While this approach is satisfactory
- for some highly specialized logic systems, and particularly where cost is no
factor, the approach may generally be wasteful and often unnecessary. On
the other hand, it is often assumed that existing commercial logic ICs are

vii

viii Preface

limited in application, that such ICs are designed with only one or two uses
in view.

There is a middle ground. Except for certain very special circuits,
there are a number of commercial logic ICs that can be adapted to meet
most logic circuit and system requirements. Also, new logic IC modules are
being developed by various manufacturers. Likewise, although most off-the-
shelf logic ICs are manufactured with certain specific uses in mind, these ICs
are certainly not limited to only those uses. Thus, the approach found in this
manual serves a two-fold purpose: (1) to acquaint the reader with logic ICs,
in general, so that the user can select commercial units to meet his particular
requirements, and (2) to show the reader the many other uses for existing
logic ICs not found on the manufacturer’s datasheet.

Chapter 1 is an introduction to logic design, which includes the
basics of logic circuits, the logic symbols in common use throughout the
industry, the basic principles of logic equations, and corresponding functions.
The first chapter also provides detailed procedures for the design of both
combinational and sequential networks. This chapter summarizes the entire
subject of Jogic design, on the assumption that many readers will be students
who are not familiar with all phases of the logic field.

Chapter 2 describes logic circuit elements available in IC form
(decoders, distributors, counters, registers, and so on). This chapter describes
what is available as well as how the circuits operate, and how they are used
in basic systems.

The remainder of the text, Chapters 3 through 10, covers design
applications of the basic circuits and elements discussed in Chapter 2. These
chapters cover such subjects as data selectors, decoders, counters, registers,
analog/digital and digital/analog converters, arithmetic units, memories,
interface circuits, noise problems, and miscellaneous logic devices. The
circuits described represent a cross-section of the entire logic field.

The author considers logic design to be an art rather than an exact
science. He recognizes that there are many alternate solutions or designs to
the problems described here. However, the designs presented in this manual
are proven with time and will get the job done. To use the manual effec-
tively, the reader is invited to study both the alphabetical index (at the end
of the book) and the table of contents. In either or both lists, the reader will
often find one or more designs listed that meet his exact needs. If not, the
circuits described in this manual will at least provide a starting point for
special design requirements.

The author has received much help from many organizations and
individuals prominent in the field of logic design. He wishes to thank them
all, and wants to express special thanks to the following: Cambridge
Thermionic Corporation; Digital Equipment Corporation; Hewlett-Packard;
Honeywell, Inc.; International Telephone & Telegraph; Litton Industries;
Motorola Semiconductor Products, Inc.; Radio Corporation of America; and
Texas Instruments Incorporated.

The author also wishes to express his appreciation to Mr. Joseph' A.
Labok of Los Angeles Valley College, and to Mr. Richard L. Castellucis of
Southéim Technical Institute for their help and encmgagemenp S

> "‘

Contents

PREFACE ’ vii
INTRODUCTION TO LOGIC DESIGN 1
1-1 Defining Logical Algebra, 2
1-2 Binary Number System, 2
13 Binary Coded Decimal and Other Special
Logic Codes, 9
14 The States and Quantities of Logic Algebra, 11
1-5 Logical Algebra Notation, 11
1-6 Operations in Logical Algebra, 14
1-7 Symbols in Logical Algebra, 14
18 Truth Tables, 16
19 Positive and Negative Logic, 18
1-100 The AND Function, 21
1-11 The OR Function, 24
1-12 ©= The AND-OR Function, 25
1-13 The NOT Function, 26
1-14 The NAND Function, 27
1-15 The NOR Function, 28
1-16 The EXCLUSIVE OR and EXCLUSIVE NOR

Functions, 30 !

iv

Contents

1-17

1-18

1-19
1-20

1-21

1-22

1-23

Basic Logic Elements and Symbols, 31
Modification and Identification of Logic
Symbols, 35

Implementing Basic Logic Functions, 40
Working With Combinational and Sequential
Logic Networks, 41

Design Procedure for Basic Combinational
Networks, 42

Basic Logic Design Using Diagrams and
Maps, 54

Design Procedure for Basic Sequential
Network, 70

IC LOGIC DEVICES

2-1 Logic Forms, 73

2-2 Selecting Logic Integrated Circuits, 111

2-3 Interpreting Logic IC Datasheets, 114

24 Practical Considerations for Logic ICs, 117

COMBINATIONAL LOGIC

31 Decoders, 121

3-2 Encoders, 129

3-3 Universal Function Generator, 129

3-4 Parity and Comparator Networks, 131

3-5 Data Distributors and Selectors
(Multiplexers), 140

3-6 TTL Decoder/ Demultiplexer, 146

3-7 TTL Data Selector (Multiplexer), 158

SEQUENTIAL LOGIC

4-1 Flip-Flops and Latches, 173

4-2 Counters, 186

4-3 Shift Registers and Shift Elements, 198

4-4 Universal Counter Circuit, 211

4-5 Using Programmable or Universal Counters, 219

4-6 Using Shift Registers as Pulse Delay
Networks, 226

4-7 Typical Counter and Reglster Apphcatlons 231

DIGITAL-TO-ANALOG AND ANALOG-TOa

DIGITAL CONVERSION

5-1 Conversion Between Analog and ngltal

5-2

Information, 209
High-Speed D/A Converters, 246

73

121

173

239

2 4

10

Contents

5-3 High-Speed A/D Converters, 250
5-4 Successive Approximation A/D Converter, 254

ARITHMETIC UNITS

6-1 Adder Circuits, 263

6-2 Subtractor Circuits, 274

6-3 Sign and Equality Comparators, 274
6-4 Arithmetic Arrays, 276

6-5 Typical Arithmetic Array Design, 287
6-6 High-Speed Binary Multiplication, 298

MEMORY UNITS

7-1 Typical MOS Memories, 305

7-2 VProgramming a PROM, 311

7-3 Replacing Sequential Logic With ROMs, 320

INTERFACING

81 Basic Interfacing Circuit, 334

8-2 MOS Interface, 335

8-3 ECL and HTL Level Translators, 360
8-4 RTL Interface, 364

8-5 Summary of Interfacing Problems, 366

8-6 Line Driver and Receiver Considerations, 367

8-7 Interface Considerations for Numeric Display
Systems, 386

8-8 Interface Between Industrial Logic and Power
Devices, 406

NOISE CONSIDERATIONS IN LOGIC

CIRCUITS

91 Noise Sources, 441

9-2 Noise Precautions, 442

9-3 Noise Specifications, 444

9-4 Noise Immunity Test, 447

9-5 Test Results for CMOS, TTL, HTL, DTL, 451
9-6 Test Circuits for ECL, 457

9-7 Test Conditions for ECL, 461

9-8 Test Results for ECL, 462

9-9 Summary of ECL Noise Immunity, 466

MISCELLANEOUS LOGIC CIRCUITS

10-1 MOS Devices Used as Astable and Monostable
Oscillators, 469

10-2 Clock Waveform Circuits, 481

263

305

333

441

469

Contents

10-3 Crystal Oscillator for Logic Circuits, 483

10-4 Period Selector, 484

10-5 Contact Bounce Eliminator, 485

10-6 Latch Circuits, 486

10-7 Pulse-Forming Multivibrator, 488

10-8 Astable Multivibrator, 488

10-9 Monostable MV Circuits, 489

10-10 ECL Gate Monostable MV Circuits, 491

10-11 One-Shot MV Controlled by RC Time
Constant, 499

INDEX 501

Introduction to
Logic Design

Today’s logic designer must work with logic equations, circuits imple-
mented by interconnecting basic logic gates, and complete logic cir-
cuits in IC module form. No matter what logic elements are used,
many problems in logic design can be solved by working out the solu-
tion in equation form first, and then making circuits (or interconnect-
ing IC elements) to match the equations. As an example, if a circuit
is to be minimized (reduced to the least number of logic elements),
the equipment is reduced to the simplest form “on paper,” and the
simplified equation is converted to a circuit.

Even when simplification is not involved, it is easier to write
an equation than to wire a circuit. A good example of this is a logic
module that has six inputs and one output, in which the output must
be present when three (and only three) of the inputs are present. With
such a problem, the equation is written to express the relationship of
the six inputs to the output. Then the equation is converted to a cor-
responding circuit.

Today’s designer must be familiar with logic equations (also
known as logical algebra, Boolean algebra—after the English mathe-
matician George Boole—computer algebra, or computer logic). The
designer must be able to manipulate logical equations (usually to

1

Chap. 1 Introduction to Logic Design

2

simplify them), and then to convert the equations into practical cir-
cuits. This task is greatly simplified if the designer can write an equa-
tion for a given circuit as a first step to improving the circuit. For
example, it may be necessary to convert a circuit from positive logic
to negative logic in order to accommodate an external circuit function.

In addition to a practical working knowledge of logical
algebra, the designer must be familiar with the symbols used in logic
circuits, the binary number system (typical to most logic systems), the
basic logic circuit forms, mapping of logic circuits, and certain other
problems common to all logic design. These subjects are discussed in
summary form throughout this chapter.

1-1 DEFINING LOGICAL ALGEBRA

Conventional algebra is the symbolic expression for relationships of
number variables. Logical algebra is a method of symbolically ex-
pressing the relationship between logic variables. Logical algebra
differs from conventional algebra in two respects:

1. Arithmetic operations are not performed in logical algebra.

2. The symbols used in logical algebra (usually letters) do not
represent numerical values.

Logical algebra is ideally suited to any system of intelligence
based on two opposite states, such as “on” or “off.” Thus, logical alge-
bra is specifically suited to express the opening and closing of elec-
trical switches, the presence or absence of electrical pulses, or the
polarity or amplitude relationship of pulses. Logical algebra is also
compatible with the binary number system (a two-state arithmetic
system), and the various special logic codes discussed in Secs. 1-2
and 1-3.

1-2 BINARY NUMBER SYSTEM

In the binary system, all numbers can be maae up by using only ones
and zeros, rather than zero through nine, as in the decimal system.
Consequently, instead of requiring ten different values to represent
one digit, logic circuits using the binary method need only two values
for each digit. In logic circuits, these values are easily indicated by
the presence or absence of a signal (or pulse), or by positive and nega-
tive signals, or even by two different voltage levels.

In binary, the value of each digit is based on 2, and the

Sec. 1-2 Binary Number System 3

powers of 2. In a binary number, the extreme right-hand digit is mul-
tiplied by 1, the second-from-the-right digit is multiplied by 2, the
third-from-the-right digit is multiplied by 4, and so on. This can be
displayed as follows:

98 9of 96 95 9+ 93 92 91 9o
256 128 64 32 16 8 4 2 1

In binary, if the digit is zero, its value is zero. If the digit is
one (1), its value is determined by its position from the right. For ex-
ample, to represent the number 77 in binary form, the following com-
bination of zeros and ones is used:

256 128 64 32 16 8 4 2 1
0o o0 1 0 0 1 1 0 1

64+0f0+8+4+0+1=77

which means 1001101 in pure binary form = 77.

1-2.1 Converting Decimal Numbers Into Binary
Numbers

A decimal number can be converted into a binary number in
- two ways. The obvious way is to make up a chart showing the power
of two, as has just been done, and to then count the necessary number
of ones and zeros to make up the desired decimal number.

For example, assume that the number 33 is to be converted.
The number 33 is more than 32 (sixth position from the right) but
less than 64 (seventh position from the right). This means that you
need a combination of six digits (ones or zeros—probably both).

Start with the 'sixth position, or 32. Since you want number
32, write a one in the sixth position. Then move to the fifth position,
or 16. Thirty-two plus 16 is greater than the desired 33, so use a zero
for the fifth position. The fourth position is 8, and 8 plus 32 is more
than 33, so you use a 0 for the fourth position. The same is true of the
third position, or 4, and the second position, or 2, so both of these posi-
tions use a 0. The first (right-hand) position is 1, and 1 plus the sixth
position (or 32) makes the desired 33, so both of these positions require
a 1. Thus, the pure binary equivalent of 33 is 100001. This is shown in
Figuré 1-1, along with some other examples for tabular conversion of
decimal and binary numbers.

4 Chap. 1. Introduction to Logic Design

Binary
: 25| 2% 23222 | 2°
Decimol 16 T8 T2 [2 1
0 |0]J]oOj{OoO]O]O]O
1 ojlojJo]oOof|o] 1
2 Jololo]Jof1]o0
I [ojlo]olo]| 11
4 [ojolo]1lo]lo
5 ojo]o0] 1|01
6 loJ]ojlol1[1]o0
7 (0} (6] 0 1 1 1
8 [oJo]J1]o0]o]o
9 [0J]o[1]0]O0]1
i0 JloJo]1]o]t]o
20 [0 1]O0O]1]0]O
30 o] 11 1]1]1]0
—~{~33 [1]O0]oOoJo]oOo]1
30 [1 o] 1|]o0]o]o
47 1401 1]1 1
50 | 1 |1]o0]o]|1]o0
33 =1 0 0 0 O 1]

Figure 1-1. Tabular conversion of decimal and binary numbers.

The alternate method for converting from decimal to binary
is to divide the decimal number by two as many times as is necessary
to lower the quotient to a number less than two (1 or 0), using the
remainders for each step of division as the binary numbers. This is
shown in Figure 1-2.

Successive | Original number Remainder
dividers and dividends (binary number)
2 33 1
2 ' 3 0 N
2 8 (o]
2 4 0 - NN
2 2 O— O\
2 1 1—1 000 O 1

[33=1 00001

Figure 1-2. Converting decimal numbers to binary numbers by division.

Sec. 1-2 Binary Number System 5

For example, again assume that 33 is to be converted. Thirty-
three divided by 2 is 16, with a remainder of 1. This 1 is the right-
hand or first-position digit (also known as the least significant digit, or
LSD). - '

Sixteen divided by 2 is 8 with a remainder of 0. This 0 is the
second-position digit.

Eight divided by 2 is 4 with a remainder of 0. This 0 is the
third-position digit. Two divided by 2 is 1 with a remainder of 0. This
0 is the fourth-position digit.

* One divided by 2 is considered as 0 (since the whole number

1 can not be divided: by 2), and there is a remainder of 1. This 1 is

the sixth position. The 1 is also the left-hand or last-position digit
(known as the most significant digit, or MSD). :

Thus, the binary count for the decimal number 33 is 100001.

1-2.2 Adding Binary Numbers
The rules for adding binary numbers are:

0+0=0
0+1=1
1+0=1

1 + 1 = 0, with a carry of 1.

Assume that the previous decimal 33 (binary 100001) is added
to decimal 77 (binary 1001101):

1001101
+ 100001

1101110 = decimal 110

There is a special rule for adding columns of binary numbers.
If the number of the ones in any single column is greater than 2,
divide the number of ones by 2. The number of times that 2 will
divide into the number of ones is the amount of ones carried to the
next column. If the number of ones divides evenly by 2, then the
column total is written as 0. If the column does not divide out evenly,
but has a remainder of 1, then the column total is written as 1.

For example:

101
101
101

1111 = decimal 15.

6 Chap. 1‘ Introduction to Logic Design

In the first (right-hand) column there are three ones. This is
more than 2, so it is divided by 2. Two goes into 3 once, with a re-
mainder of 1. Therefore, the remainder of ‘1 is written for the first-
position (right-hand) digit, and the 1 is carried into the second position.
This results in:

1
101
101
101

1

- In the second column, there is 1 plus 0, plus 0, plus 0, or
simply 1. This is less than 2, so the special rule does not apply. In-
stead, 1 + 0 =1, and the second-position (middle) total is 1. This
results in:

101
101
101

11

In the third (left-hand) column, there are three 1s. This is
more than 2, so it is divided by 2. Two goes into 3 once, with a
remainder of 1. Therefore, the remainder of 1 is written for the third
position, and the 1 is carried into the fourth position. This results in:

1
101
101
101

111

In the fourth position, there is a 1 (carried over) plus blanks
or zeros. This is less than 2, so the special rule does not apply. Instead,
1+ 0 =1, and the fourth-position total is 1. This results in:

101
101
101

1111 = decimal 15.

Sec. 1-2 Binary Number System 7

1-2.3 Subtracting Binary Numbers

The rules for subtracting binary numbers are:

|
O ~O0

!

O k= O
|
-~ 0O 0

i

, with a borrow of 1.

Assume that the previous decimal 33 (binary 100001) is sub-
tracted from decimal 77 (binary 1001101):

1001101
—100001

101100 = decimal 44.

1-2.4 Multiplying Binary Numbers
The rules for multiplying binary numbers are:

O O s
X X X X
C O~
(1 I T
QOO

Assume that the decimal 9 (binary 1001) is multiplied by
decimal 3 (binary 11).

1001
x 11
1001
1001
11011 = decimal 27.

Note that multiplication is a form of adding and shifting, In
logic circuits, there are many systems for multiplication, but they
can be classified into two groups. In one group, multiplication is done
by adding (with an adder, Chapters 2 and 5) and shifting (with a
register, Chapter 4). The other method involves repeated addition.
For example, 3 x 9 is, in effect, 9 added together three times (or 3
added together nine times). Multiplication of binary numbers is dis-
cussed further in Chapter 6.

8 Chap. 1 Introduction to Logic Design

1-2.5 Dividing Binary Numbers

In binary, division is a form of subtraction. For example, if
decimal 12 is divided by decimal 3, then you can subtract 3 from 12,
counting how many times it is subtracted until there is nothing left, or
until the remainder is less than 3. Dividing 3 (binary 11) into 12 (bi-
nary 1100) results in:

100 or decimal 4

11./1100
11

00

Dividing 5 (binary 101) into 12 (binary 1100) results in:

10 or decimal 2

101v/1100
101

10 or decimal 2 remainder.

In logic circuits, division is usually done with subtractors
(Chapter 2) and shift registers (Chapter 4). However, binary division
can be done with logic subtraction circuits (operating at high speeds)
and simple storage registers.

1-2.6 Binary Fractions

To express fractions by binary numbers, proceed initially as
in decimals. For example,

3 11
5 101

This means that the radix uses negative powers or exponents.
For example, binary 0.0011 (= 0.375 decimal) represents:

0 x 27 + (1 x 2°3) + (1 x 2-9)

1 1 3
0 + —_ [= - = 0.
) + 3 3 0.375

Figure 1-3 converts a number of common decimal fractions
to binary equivalents.

