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PREFACE

The purpose of this book is to present the major advances in the fundamentals of
quantum physics from 1927 to the present in a manner that cannot be made any
simpler. In selecting the materials covered in this book I bave omitted those topics
which are discussed in conventional textbooks on nonrelativistic quantum me-
chanics, group-theoretic methods, atomic and molecular structure, solid-state
physics, low-energy nuclear physics, and elementary particle physics. With some
regret I have also omitted the formal theory of collision processes; fortunately a
‘careful and detailed treatment of this subject can be found in a companion Addison-
Wesley volume, Advanced Quantum Theory, by P. Roman. Thus the emphasis
is primarily on the quantum theory of radiation, the Dirac theory of leptons, and
covariant quantum electrodynamics. No familiarity with relatnvxstlc quantum
mechanics or quantum-field theory is presupposed, but the reader is assumed to
be familiar with nonrelativistic quantum mechanics (as covered in Dicke and
Wittke or in Merzbacher), classical electrodynamics (as covered in Panofsky and
Phillips or in Jackson), and classical mechanics (as covered in Goldstein).

The book has its origin in lecture notes I prepared for the third part of a three-
quaner sequence of courses in quantum mechanics required of a/l Ph.D. candidates
in physics at the University of Chicago. Twenty years ago such a short course
.in “advanced quantum mechanics” might have covered the materials discussed
 in the last thees ehapteis of Schiff;; We must realize, however, that forty years have

pamd since P: A. M. Dirsc - wrote down the relativistic wave equation for the .
electron; it was nearly twenty years ago that R. P. Feynman invented the famous- -

“graphical techniques that have had profound influences, not.only on quanttim
- electrodynamics and - high-energy nuclear physics, but also on such remotely

-related topics as statistical mechanics, superconductivity, and nuclear many-body'

problems. It is evident that, as the frontier of physics advances, the sort of curric-

ulum adeqm for graduate students twenty years ago is no longer satisfactory
today

Chapter. 1 of .this book i is coneemed with a very ‘brief mtroduct:on to classical

ﬁeld theory needed for the latfer parts of the book.. The subject mattet of Chapter -

ﬁ ig the quanmm theory. offadiation. First, the transverse electromagnetic field
“is quantized’in' ‘anafogy with ﬂaantum—medxamcal harmonic oscillators. The

subsequent*pu‘w of the chapter deal ‘with standard topics such as the emlssnon,'.

absorptlon, and scattenngof light by atoms, and thus provnde rlgorously co;rcct

! "'
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vi PREFACE

(as opposed to superficial) explanatipns of 2 number of atomic phenomena (e. g.,
spontaneous emission, Planck’s radiation law, and the photoelectric effect) with
which the students are alréady familiar from their earlier courses. In addition,
we discuss more advanced topics including radiation damping, resonance fluores-
cence, the Kramers-Kronig (dispersion) relations, the idea of mass renormalization,
and Bethe’s treatment of the Lamb shift.

It is deplorable that fewer and fewer students nowadays study Heitler’s classical
treatise on the quantum theory of radiation. As a result, we see a number of-
sophisticated, yet uneducated, theoreticians who are conversant in the LSZ
formalism of the Heisenberg field operators, but do not know why an excited atom
radiates, or are ignorant of the quantum-theoretic derivation of Rayleigh’s law
‘that accounts for the blueness of the sky. It is hoped that Chapter 2 of this book
«will fill the missing gap in the education of physicists in the mid-twentieth century.

The wave equation of Dira¢ is introduced in Chapter 3 by linearizing the rela-
tivistic second-order equation involving Pauli matrices, as originally done by
.~ B. L. varr der Waerden. I addition to presenting standard topics such as the
. plane-wave solutions, an approximate and the exact treatment. of the hydrogen
atom, and the physical interpretations of Zirterbewegung, we make special attempts
- to familiarize the reader with the physical meanings of the various gamma matrices.
' The inadequacy of the single-particle interpretation of the Dirac theory is pointed
out, and towards the end of. the chap@er we’ quantize the Dirac field using the
Jordan-W:gner method. Although a rigorous proof of the spin-statistics connec-
tion is not given, we demonstrate that it is difficult to construct a sensible field
theory in which the electron does not obey the Pauli exclusion principle. The
chapter ends with applications to weak interactions, including short discussions
T on the two-component _neutrino and parity nonconservation' in nuclear beta

decay, hyperon decay, and pion- decay.

Symmetry considerations are emphasizgd throughout Chapter 3. We not
only discuss the formal transformation properties of the Dirac wave function and
the quantized Dirac field under Lorentz transformations, parity, and charge

- conjugatnon, but also show-how the various symmetry.operators can actually be

- Used in éﬁeclﬂc proBlems {e. g, in constructing momentum and helicity eigen-
functions or in proving that the intrinsic parity of the positren is opposite to that
“of the electron). ‘In Sections 9.and 10 we attempt to clarify the basic difference
between charge conjugation in the unquamized Dirac theory and charge conjuga-
tion in the quantized Dirac ‘theory, which is often a source of confusnon in the
literature.

Covariant perturbatlon theory is eovered in Chapter 4. A distinct feature of
this chiapter is that we present-covariant quantum electrodynamics not as a “new
theory” but rather as a natural and almost immediate consequence of relativistic
quantum mechanics and - elementary. quantum field theory, whose foundations
had béen laid down by 193Z; “In the usual derivation of the Feynman rules from
quantum field theory, one first defines five different kinds of invariant functions,

" three different kinds of ordered products, etc., and during that time the novice
has no idea why these:concepts are introduced. Instead of deriving the Feynman
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rules in the most general case from field theory using the Dyson-Wick formalism,
we demonstrate how, in a concrete physical example, the vacuum expectation
“value of the time-ordered product (0T (¥(x) ¢ (x))|0) emerges in a natural
manner. It is then pointed out how this vacuum expectation value can be inter-
preted pictorially in'terms of the propagation of an electron going forward or
backward in time 4 la Feynman. The simplicity and elegance of the postwar
calculational techniques are explicitly exhibited as we demonstrate how two non-
covariant expressions add up to a single covariant expression. The Feynman
rules are also discussed from the point of view of the unit source solution (the
Green’s function) of the wave equation, and Feynman’s intuitive space-time
approach is compared to the field-theoretic approach. Some electromagnetic
processes. (e. g., Mott scattering, two-photon annihilation=of electron-positron
pairs, Moller scattering) are worked out in detail. The last section of Chapter 4
consists of brief discussions of higher-order processes, the mass and charge re-
normalization, and difficulties with the present field theory. In addition to dis-
cussing standard topics such as the electron self-energy and the vertex correction,
we demonstrate how the principles of unitarity and causality can be utilized to
obtain a sum rule that relates the charge renormalization constant to the prob-
ability of pair creation in an external field. The method for evaluating integrals
appearing in covariant perturbation theory is discussed in Appendix E; as examples,
the self-energy and the anomalous magnetic moment of the electron are calculated
in detail.

We present the covariant calculational fechniques in such a manner that the
reader is least likely to make mistakes with factors of 2, i/, —1, etc. For this
reason we employ, throughout the book, the normalization convention according
to which there is one particle in a box of volume ¥; this is more convenient ip
practlce because ‘we know that the various ¥’s must cancel at the very end, whereas
-the same cgnnot be said about (2r)’s. A good amount of space is devoted to
showmg how. observable quantities like differential cross sections and ‘decay
“rates are sxmpiy related to the covariant .#-matrices, which we can immediately
write down just by looking at the “graphs.”

Throughout this book the empbhasis is on physics with a capxtal P. Complicated
mathematical concepts and formalisms that have little relation to physical reality
are eliminatéd as much as possible. - For instance, the startmg point of the quan-
tization of the Dirac field is the anticommutation relations @fiong the creation and
annihilation operators rather than the anticommutation relation between two
Dirac fields; thig is because the Dirac field itself is not measurable, whereas the
anticommutation relatxon between two creation operators has a simple and direct
physical meaning in terms of physically permnssxble states consistent with the
Pauli exclusion principle.  In this sense. o approach is closer to the “particle”
point of view than to the ‘.‘,ﬁeld‘*-ﬁoih't of view, even though we talk extensively

* about the quantiged Dirac field in the last third of the book. :

Wﬁeﬂever there are-several altematwe methods for deriving the same result,
we do not necessarily choose the maste!egant, but rather present the one that
- makes. tﬁk phyﬁés ofthe proﬂun mogt transparent at each stage of the derivation.

L g . ?
;.f;;{.w., . E

R SRR




viii PREFACE

For example, in discussing the Moller interaction between two electrons we start
with the radiation (Coulomb) gauge formalism of E. Fermi and show how this
noncovariant but simple method can be used to derive, in an almost miraculous
manner, a manifestly covariant matrix element which can be visualized as arising
from the exchange of four types of “covariant photons.” We prefer this approach
to the one based on the Bleuler-Gupta method because the latter introduces
artificial concepts, such as the indefinite metric and negative probabilities, which
are not very enlightening from the point of view of the beginner’s physical under-
standing of quantum electrodynamics.

Wherever possible, we show how the concepts introduced in this. book are
related to concepts familiar from nonrelativistic quantum mechanics or classical
electrodynamics. For example, as we discuss classical electrodynamics in Chapter
1 we review the role of the vector potential in nonrelativistic quantum mechanics

~and, in particular, consider the Aharonov-Bohm effect and flux quantization.
In Chapter 2 the scattering of light by atoms in the quantum theory is compared to
its classical analog. In discussing the polarization correlation of the two-photon
system resulting from the annihilation of an electron-positron pair, we illustrate
some peculiar features of the quantum theory of measurement which have disturbed
such great minds as A. Einstein. In Chapter 4 a fair amount of attention is paid to
the connection between the calculational methods of the old-fashioned perturba-
tion theory (based on energy denominators) and those of covariant perturbation
theory (based on relativistically invariant denominators). In di§cussing the
Moller interaction and the nucleon-nucleon interaction, we try to indicate how
the potential concept one learns about in nonrelativistic quantum mechanics is
related to the field-theoretic description based on the exchange of quanta.

Although numerous examples from meson theory and nuclear physics are
treated throughout the book, it is not our intention to present systematic accounts
of nuclear or high-energy yhenomena. Nonelectromagnetic processes are dis-
cussed solely to illustrate how the ideas and techniques which we acquire in
working out e]ectromagnetlc problems can readily be applied to other areas of
physics,

The forty-seven problems scattered throughout comprise a v1tal part of the
book. The reader who has read the book but cannot work odit the problems has
learned nothing. Even though some of the problems are more difficult and chal-
lenging than others, none are excessively difficult or time-consuming. Nearly
every one of them has been worked out by students at the University of Chicago;
some, in the final examination of the course on which the book is based.

In recent years several excéllent textbooks have appeared on the calculational
techniques in ‘relativistic quantum mechanics. The distinct féature of this book
is not just to teach the bag of trlcks useful only to high-ehergy physicists or to_
show how to ¢gmpute the trace of the product of Dirac matrices, but to make the -
reader aware Of the progress we have made since 1927 in our understanding of
fundamental physical processes in the quantum domain. From this point of view
we believe it is just as important for the student to know how the quantum descrip- .
tion of the radution ﬁeld reduces to the famxhar cla§snc;al dﬁgﬂpnon in the limit

g . [P
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of a large number of quanta, or why the spin-} particle “must” obey the exclusion

principle, as it is to master the rules that enable;us to cqlculate the magnetic .

4

moment of the electron to eight decimals. ]
To summarize our philosophy: Relativistic quantum mechanics and field
theory should be viewed as part of the heroic intellectual endeavor of a large

number of twentieth-century theoretical physicists in the finest tradition of M. -

Planck, A. Einstein, and N. Bohr. It would be catasfrophic'for the future develop-
ment of physics if the terminal course in theoretical physits for most Ph.D. level

students in physics were nonrelativistic quantum mechanits, the fundamentals of

which had essentially been perfected by 1926. For this reason I believe that the
topics covered in this book should be studied seriously by every Ph.D. candidate
in physics, just as nonrelativistic quantum mechanics has become recognized as
a subject matter to be digested by every student of physics and chemistry.

I amygrateful to the Alfred P. Sloan Foundation for a‘fellowship which enabled
me to write the last chapter of the book in the congenial atmosphere of CERN
(European Organization for Nuclear Research). I wish to thank Drs. J. S: Bell,
S. Fenster, and A. Maksymowicz, and Mr. D. F. Greenberg for reading various
parts of the book and making many valuable suggestions. Particular thanks are
due to Mr. I: Kimel for the painstaking task of filling in the equations.

May 1967 ; J.I.S.
Chicago, Hlinois
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CHAPTER 1

CLASSICAL FIELDS

1-1. PARTICLES AND FIELDS

Nonrelativistic quantum mechanics, developed in the years from 1923 to 1926,
provides a unified and logically consistent picture of numerous phenomena in the
atomic and molecular domain. Following P.A.M. Dirac, we might be tempted -
to assert: “The underlying physical laws necessary for the mathematical theory
of a large part of physics and the whole of chemistry are completely known.”

There are, however, basically two reasons for believing that the description
of physical phenomena based on nonrelativistic quantum mechanics is incomplete.
First, since nonrelativistic quantum mechanics is formulated in such a way as to
yield the nonrelativistic energy-momentum relation in the classical limit, it is
incapable of accounting for the fine structure of a hydrogen-like atom. (This
problem was treated earlier by A. Sommerfeld, who used a relativistic generaliza-
tion of N. Bohr’s atomic model.) In general, nonrelativistic quantum mechanics
‘makes no prediction about the dynamical behavior of particles moving at rela-
tivistic velocities. This defect was amended by the relativistic theory of electrons
developed by Dirac in 1928, which will be discussed in Chapter 3. Second, and
what is more serious, nonrelativistic quantum mechanics is essentially a single-
particle theory in which the probability density for finding a given particle inte-
grated over all space is unity at all times. Thus it is not constructed to describe
phenomena such as nuclear beta decay in which an electron and an antineutrino
are created as the neutron becomes a proton or to describe even a simpler process
in which an excited atom returns to its ground state by “spontaneously” emitting
a single photon in the absence of any external field. Indeed, it is no accident that
many of the most creative theoretical physicists in the past forty years have spent
their main efforts on attempts to understand physical phenomena in which various
particles are created or annihilated. The major part of this book is devoted to the
progress physicists have made along these lines since the historic 1927 paper of
Dirac entitled “The; Quantum Theory of the Emission and Absorption
Radiation” opened up a new subject called the quantum theory of fields.

The concept of a field was originally introduced in classical physics to account
for the interaction between two bodies separated by a finite distance. In classical
plysics the electric field E(x, ¢), for instance, is a three-component function defined
at each space-time point, and the interaction between two charged bodies, 1 and
2, is to be viewed as the interaction of body 2 with the electric field created by
body 1. In thé quantum theory, however, the field concept acquirés a new dimen-

1




2 CLASSICAL FIELDS 1-1

sion. As originally formulated in the late 1920’s and the early 1930’s, the basic
idea of quantum field theory is that we associate particles with fields such as the
electromagnetic field. To put it more precisely, quantum-mechanical excitations
of a field appear as particles of definite mass and spin, a notion we shall illustrate
in Section 2-2, where the connection between the transverse electromagnetic field
and photons is discussed in detail. -

Even before the advent of postwar calculational techniques which enabled us
to compute quantities such as the 2s-2p, , separation of the hydrogen atom to
an accuracy of one part in 10% there had been a number of brilliant successes
of the quantum theory of fields. First, as we shall discuss in Chapter 2, the quantum
theory of radiation developed by Dirac and others provides quantitative under-
standings of a wide class of phenomena in which real photons are emitted or
absorbed. Second, the requirements imposed by quantum field theory, when
combined with other general principles such as Lorentz invariance and the
probabilistic interpretation of state vectors, severely restrict the class of particles
that are permitted to exist in nature. In particular, we may cite the following two
rules derivable from relativistic quantum field theory:

a) For every charged particle there must exist an antiparticle with opposite charge
and with the same mass and lifetime. .

b) The particles that occur in nature must obey the spin-statistics theorem (first
proved by W. Pauli in 1940) which states that half-integer spin particles
(e.g., electron, proton, A-hyperon) must obey Fermi-Dirac statistics, whereas
integer spin particles (e.g., photon, 7-meson, K-meson) must obey Bose-

" Einstein statistics.

Empirically there is no known exception to these rules. Third, the existence of
a nonelectromagnetic interaction between two nucleons at short but finite distances
prompts us to infer that a field is responsible for nuclear forces; this, in turn,
implies the existence of massive particles associated with the field, a point first
emphasized by H. Yukawa in 1935. As is well known, the desired particles, now
known as sr-mesons or pions, were found experimentally twelve years after the
theoretical prediction of their existence.

These considerations appear to indicate that the idea of associating particles
with fields and, conversely, fields with particles is not entirely wrong. There are,
however, difficulties with the present form of quantum field theory which must
be overcome in the futuré. First, as we shall show in the last section of Chapter
4, despite the striking success of postwar quantum electrodynamics in calculating
various observable effects, the “unobservable” modifications in the mass and charge
of the electron due to the emission and reabsorption of a virtual>photon turn out
to diverge logarithmically with the frequency of the virtual photon. Second, the
idea of associating a field with each “particle” observed in nature becomes ridic-
Jlous and distasteful when we consider the realm of strong interactions where
many different kinds of “particles” are known to interact with one another; we
know from experiment that nearly 100 “particles” or “resonances” participate
in the physics of strong interactions. This difficulty became particularly acute
in 1961-1964 when a successful classification scheme of strongly interacting
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particles was formulated which groups together into a single “family” highly un-
stable “particles” (lifetimes 107% sec, often called strong interaction resonances)
and moderately metastable particles (lifetimes 10~'° sec).] Yet, despite these difficul-
ties, it is almost certain that there are many elements in present-day quantum
field theory which are likely to survive, say, one hundred years from now.

Before we study quantized fields, we will study classical fields. In part this deci-
sion is motivated by the historical fact that prior to the development of quantum -
electrodynamics there was the classical electrodynamics of Maxwell which, among
other things, successfully predicted the existence of Hertzian electromagnetic
waves. This chapter is primarily concerned with the elements of classical field
theory needed for the understanding of quantized fields. As a preliminary to the
study of quantization we are particularly interested in the dynamical properties
of classical fields. For this reason we will foliow an approach analogous to Hamil-
ton’s formulation of Lagranglan mechanics.

1-2. DISCRETE AND CONTINUOUS MECHANICAL SYSTEMS

The dynamical behavior of a single particle, or more precisely, a mass point in
classical mechanics, can be inferred from Lagrange’s equation of motion

d (oL oL
— ——— — e——— T ‘ .
i(55) 5 =" (D
which is derivable from Hamilton’s variational principle
ty
8 [ L(g., 4ot = 0. (12
15

The Lagrangian L (assumed here not to depend-explicitly on time) is given by the
difference of the kinetic energy T and the potential energy V,

L=T-V, (1.3)

’

and the variation in (1.2) is to be taken over an arbitrary path g,(f) such that 3¢,
vanishes at ¢, and ¢,. The Hamiltonian of the system is

H=3%pq¢g—L, (1.4)
where the momentum p;, canonical copjugate to qi, is given by

aL

e (1.5)

P =

$In fact the one-to-one correspondence between a “field” and a-“particle” appears to be
lost in a more modern formulation of the field theory of strong interactions as many (if
not all) of the so-called “elementary” particles may well be regarded as bound (or
resonant) states of each other. The distinction between fundamental particles and com-
posite states, however, is much more clear-cut in the realm of the electromagnetic inter-
actions among electrons, muons, and photons. As an example, in Section 4-4 we shall
‘calculate. the lifetime of the ground state of positronium without introducing a field
corregponding to the positronium.




4 CLASSICAL FIELDS 1-2

These considerations can be generalized to a system with many particles. As
a concrete example, let us consider a collection of N particles connected with
identical springs of force constant £ and aligned in one dimension, as shown in
Fig. 1-1.1 By calling 7, the displacement of the ith particle from its equilibrium
position we write the Lagrangian L as follows:

L=} f_‘, [maf — k(e — 7)) ﬂ’b’b’ﬁbﬂ’b’b’b’bﬁ_

allm .. -—ka(’7"” — "I)z
7|l a™ a Fig. 1-1. Partlcles connected with identical
springs.
a?,, (1.6)

where q is the separation distance between the equilibrium positions of two neigh-
boring particles and .#, is the linear Lagrangian density, i.e. the Lagrangian den-
sity per unit length.

We can pass from the above discrete mechanical system to a continuous
mechanical system as the number of degrees of freedom becomes infinite in such
a way that the separation distance becomies infinitesimal: .

a—dx, m_, p = linear mass density,

a (1.7)
P =% 00, pa ¥y — Young’s modulus.
a ox .
We now have

| szgdx, (1.8)
- where :
= [m; — Y(a”) } (1.9)

We note that 7 itself has become a function of the continuous parameters x and ¢.
Yet in the Lagrangian formalism 7 should be treated like a generalized “coor-
dinate” just as ¢, in L of Eq. (1.2).

In formulating the variational principle in the continuous case we consider

s rls
5 “Ldt:5letfdx.,\?(77,i;,g—z)- (1.10)
The variation on % is assumed to vanish at ¢, and ¢, and also at the extremities
of the space integration. (In field theory this latter requirement is not stated ex-
plicitly since we are usually considering a field which goes to zero sufficiently
rapidly at infinity.) Otherwise the nature of the variation is completely arbitrary.
The variational integral becomes

Bf Lt = fdtJ-dx {3$ & + 3(387;/?;@ ® (gx) + 8(3;7%08 (571)}

_ jdtfdx {a,?a aax(a"(%)% aaz 2@n /31)8’7} (1-11)

{This problem is treated in greater detail in Goldstein (1951), Chapter 11.
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where the integrations by parts of the last two terms can be justified since 87 vanishes
at the end points of the space and time intervals. If (1.11) is to vanish for any
arbitrary variation satisfying the above requirements, we must have

A 8 0% & _ o

ax 3@no%) 5 3Enen o O - (112
This is called the Euler-Lagrange equation.} In our particular example (1.9),
Eq. (1.12) becomes

/R s ' ,
Y Fr = 0. (1.13)
This is to be identified with the wave equation for the one-dimensional propaga-

tion of a disturbance with velocity / Y/u. We can define the Hamiltonian density
J in analogy with (1.5) as ‘

_ o2
H =75 o7 )
Ly an\?
— 4t + 3 ¥ () (1.14)
2% /on is called the canonical momentum conjugate to 7, and is often denoted

by 7. The two terms in (1.14) can be identified respectively with the kinetic and
potential energy densities.

1-3. CLASSICAL SCALAR FIELDS

Covariant notation. The arguments of the preceding section can readily be gen-
eralized to three space dimensions. Consider a field which is assumed to be a real
function defined at each space-time point, X, f; % now depends on ¢, d¢p/dx;,
(k = 1,2, 3), and a¢/ar. The Euler-Lagrange equation reads )

R o _2&F 0L _
Z.5x,5@d/ox) T 3t 5@ 0 0. (1.15)

We wish to write (1.15) in a relativistically covariant form, but first let us recall
- some properties of Lorentz transformations. We introduce a four-vector notation
in which the four-vector b, with p = 1, 2, 3, 4 stands for

b[t‘: (bb b?y bS’ bA) = (b; ibo), (1.16)

where b,, by, and b, are real, and b, = ib, is purely imaginary. In general, the
Greek indices g, v, A, etc., run from 1 to 4, whereas the italic indices i, J, k, etc.,

1In the literature this equation is sometimes writen in the form

2 ¥ 3% _,
“at 9(on]ar) o T 7
/
where 5.%/87 is called the functional derivative of % with respect to 7. This version is not
recommended since (a) it obscures the dependence of £ on the space coordinate, and
(b) it singles out time, which is against the spirit of the covariant approach (to be discussed
in the next section). '
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run from 1 to 3. The coordinate vector x, is given by
xu = (xb x?: xs: x4)
= (X, ict). (1.17)

The symbols x, y, and z may also be used in place of)n, x3, and x;. Under a Lorentz
transformation, we have

Xy = Ay X, ‘ o (1.18)
where the a,, satisfy
a;wau.k = 81/3) (ai‘)}w - auM’ (119)
Hence
= (@)X, =a,.x, (1.20)

when x"-and x are related by (1.18). The matrix elements a;;, a,, are purely real,
whereas a;, and a,; are purely imaginary. A four-vector, by definition, transforms
in the same way as x, under Lorentz transformations. Because of (1.20) we have

9 _9x, 0 9 . (1.21)

97; = 9—xf ax, = Qw 7%,
so the four-gradient 9/dx, is a four-vector. The scalar product b-c is defined by
b.c=b,c, —Ebc,—l—b464
= b-c—boco. (1.22)
It is unchanged under Lorentz transformations, since

b = a#,,bvaﬂck = Su;\bvcl

= b-c. (1.23)
A tensor of second rank, ¢,,, transforms as
£ = A Qyotro (1.24)

Generalizations to tensors of higher rank are straightforward. Note that we make
no distinction between a covariant and a contravariant vector, nor do we define
the metric tensor g,,. These complications are absolutely unnecessary in the special
theory of relativity. (It is regrettable that many textbook writers do not emphasize
this elementary point.)

Equation (1.15) can now be writ‘ten as

0 A oL :

o oGhe) B4 = ° 4B
It is seen that the field equation derivable from the Lagrangian density .# is covari-
ant (i.e., the equation *“looks the same” in all Lorentz frames) if the Lagrangian
density % is chosen to be a relativistically scalar density. This is an important
point because the relativistic invariance of % is so restrictive that it can be used
as a guiding principle for “deriving” a covariant wave equation.

Neutral scalar field. As an illustration let ¢(x) be a scalar field which, by definition,
transforms like

d'(x) = $(x), (1.26)
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under a Lorentz transformation, where ¢’ is the functional form of the field in the
primed system. Now the dependence of # on space-time coordinates is only
through the field and its first denvatlves and x, cannot appear explicitly in .#.
This means that d¢/ox, is the only four-vector dt our disposal; when it appears
in % it must be contracted with itself. Moreover, if we are interested in obtaining
a linear wave equation, . must be a quadratic function of ¢ and 8¢/dx,. A pos-
sible candidate for & consistent with the above requirements is

- b o9 242\,
<z = 7 (34\'“ ox, TP ) (1.27)
"~ From the Euler-Lagrange equation (1.25) we obtain )
¢ 2 —
7 ax,.( 3x,‘) twe=0 (1.28)
or . ’
¢ — w'é =0, (1.29)
where
N
=V — =2 (1.30)

c2or

The wave equation (1.29) is called the Klein-Gordon equation. It was considered
in the middle 1920’s by E. Schrodinger, as well as by O. Klein and W. Gordon,
as a candidate for the relativistic analog of the nonrelativistic Schrodinger wave
equation for a free particle. The similarity of (1.29) to the relativistic energy
momentum relation for a free particle of mass m,

E* —|pfc’ = mic, o3
becomes apparent as we consider heuristic substitutions:

02 il

E——»lha—t—y P~ thaxk (1.32)

The parameter w in (1.29) has ihe dimension of inverse length, and, using (1.32),
we may make the identification

= mcfh. | ' (1.33)
Numerically 1/g is 1.41 x 1073 cm for a particle of mass 140 MeV/c? (corre-
sponding to the mass of the charged pion).

Yukawa potential. So far we have been concerned with a field in the absence of any
source. Such a field is often called a free field. The interaction of ¢ with a source
_can easily be incorporated into the Lagrangian formalism by adding

ylut = _QbP, ' . i (1.34)

to (1.27), where p is the source density, which is, in general, a function of space-
time coordinates. The field equation now becomes

C¢ —pié=p (1.35)




