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PREFACE

Ada as a Second Language is designed to fulfill a wide range of needs. The only
prerequisite is an introductory programming couise or equivalent practical expe-
rience. The book may be used to obtain a reading knowledge of the Ada language,
to obtain a writing knowledge of the Ada language, or to serve as a programming
reference for someone who is already writing Ada programs. It may be used as a
textbook in a course or to learn the Ada language on one’s own.

Ada as a Second Language is at once a tutorial introduction to the Ada
language and a complete reference. In teaching the language, the book takes time to
explain complicated matters in a patient, reassuring manner, with generous expla-
nations. The exposition emphasizes the concerns of the practicing programmer, not
theoretical principles of programming languages. Asa reference, the book contains
a complete description of the nitty-gritty details a programmer needs to write
practical, working Ada programs, not just the general principles needed to convey
the “flavor” of the language. The blemishes of the language, and their practical
implications for the programmer, are described along with the language’s graceful
contours. There are abundant cross-references to the sections in which concepts are
introduced. '

WHAT IS THE FIRST LANGUAGE?

The book is entitled Ada as a Second Language because it is an introduction to the
Ada programming language, but not an introduction to programming. We assume
the reader is familiar with certain fundamental programming notions—variables,
arrays. loops, conditional statements, and subprograms, for example. The first
language can be any statement-oriented high-level langua'ge. However, we pay
particular attention to FORTRAN, PL/I, and Pascal.

The Ada language is based on programming and software-engineering concepts
that may be new to a FORTRAN, PL/1, or Pascal programmer. We take care to
make the reader comfortable with programming concepts like programmer-defined
types, recursion, pointers, exception handling, and concurrency before the corre-
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sponding Ada language feature is introduced. Furthermore, software-engineering -
concepts like abstract data types, information hiding, and loose coupling, which do
not find direct expression in the FORTRAN, PL/I, and Pascal programming
languages, must be well understood in order to use the Ada programming language
properly. We explain such software-engineering concepts in depth before considering
the associated Ada features.

Ada as a Second Language frequently compares the Ada language’s features to
similar features of FORTRAN, PL/I, and Pascal, to help readers recognize those
instances where the Ada language provides a new notation for a familiar concept.
For example, the Ada language’s FOR loop is compared to the b0 loops of FOR-
TRAN and PL/I and the for loop of Pascal. Of course the exposition of an Ada
feature never relies on a reader’s familiarity with another language.

We also point out circumstances in which familiarity with FORTRAN, PL/I,
or Pascal may confuse students of the Ada language or prejudice them to program
in a manner that is not appropriate for the Ada language. For examiple, there is a
subtle difference between the treatment of loop control variables in the Ada
language and their treatment in the other three programming languages, and this
difference can lead to enigmatic errors; éntities known as constantsin FORTRAN
and PL/1 are called literals in the Ada language, and the term constant has a quite
different meaning; packages can be used in the Ada language in the same way as
COMMON blocks are used in FORTRAN, but this is rarely appropriate; the exceptions
of the Ada language bear strong similarity to the ON-conditions of PL/1, but there
are’ important differences that make PL/I condition handling approaches inap-
propriate in Ada programs. -

While the comparative study of programming languages is fascinating, it is not
the subject of this book. Our emphasis is overwhelmingly on the Ada language.
Other languages are discussed only to the extent that the discussion s likely to help
the reader learn the Ada language.

APPROACH

A programming language cannot be taught simply by enumerating rules. Therefore,
Ada as a Second Language is replete with realistic examples of Ada programming,
One-line examples have their place, but extended examples are also necessary, to
illustrate how features fit together and the contexts in which they ought to be used.
The reader will benefit from over 200 complete Ada compilation units that have
been compiled by a validated Ada compiler to verify their legality. Examples have
been carefully crafted to be neither too simplistic nor too complicated. The examples
are substantial enough to give a realistic idea of how features should be used, but not
so involved that they detract from the point being made. Our primary goal, after all,
is to teach the Ada language, not particular algorithms or applications.

Just as one cannot learn to play bridge well simply by learning the rules of the
game, one cannot learn to program well simply by learning the rules of the
programming language. Ada as a Second Language explains the basic concepts
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underlying the features of the Ada language—data abstraction (which it has recently
become fashionable to call “object-oriented design”), modularity, the distinction
between interfaces and implementations, information hiding, portability, and con-
currency, for example—before explaining the features themselves. The book offers
specific practical advice on how and why to use each feature, and warns about
pitfalls to be avoided.

Good programming style is emphasized throughout the text. Guidelines are
provided, for example, on the use of long, descriptive identifiers; the formatting of
program text; the appropriate use of exceptions; and the minimization of recompi-
lation costs. The examples consistently practice what the text preaches.

STRUCTURE OF THE BOOK
The typical chapter begins with a discussion of the programming and software-
engineering concepts underlying a language feature, then goes on to discuss the
essential aspects of the feature itself. Detailed rules About the feature follow later in
a separate section. These details must be learned to write correct Ada programs but
are best deferred until the reader has become comfortable with general principles.
These details can be skipped entirely by the readér who seeks only a genmeral
familiarity with the Ada language or the ability to understand Ada programs
written by others. Each chapter ends with'a summary of the major points and a set
of-exercises. The exercises include drills on fundamental concepts as well as pro-
gramming problems.

Chapters | and 2 contain introductory material. Chapter 1 briefly recounts the
concerns and events that led to the creation of the Ada programming language. This
chapter is net essential for learning to read or write Ada programs, but it does
provide perspective on the motivation for various language features. Chapter 2
provides a high-level overview of the entire language. In addition, the Ada language’s
lexical rules and the notation we use for describing Ada syntax are presented there,
Itis the most important chapter in the book, providing an overall framework within
which the specific information in subsequent chapters can be understood. In
particular, this chapter introduces the crucial Ada notions of separate compilation
units and packages.

Chapters 3 through 6 are concerned with the predominant issue in Ada
programs, data types. Chapter 3 introduces the notion of an abstract data type asa
set of abstract values plus operations on those values, independent of the underlying
physical representation; and describes how the FORTRAN, PL/I, Pascal, and Ada
languages provide increasingly comprehensive support for data abstraction. This
chapter provides the background needed to appreciate the role of data types in the
Ada language, and particularly the role of private types. Chapter 4 describes object
and type declarations and discusses six classes of types in detail—integer, floating-
point, fixed-point, enumeration, array, and record types. Access types are deferred
until Chapter 5 to permit a thorough discussion of the underlying concepts, which
will be new to FORTRAN programmers. Chapter 6 introduces the notion of
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subtypes. The distinction between subtypes and types, a common stumbling block
for newcomers to the Ada language, is carefully explained. Derived types are
introduced in this chapter to illustrate the concept of strong typing.

Chapters 7 through 9 describe the traditional algorithmic features found in'all
procedural languages. These features are used in earlier chapters and the reader will
already be intuitively familiar with them, but specific rules, caveats, and guidelines
are provided here. Chapter 7 describes in detail the statements used in nonconcurrent
programming. Chapter 8 gives detailed rules about expressions. Chapter 9 treats
subprograms.

The discussion on record types in Chapter 4 is confined to record types wnhout
discriminants. Record types with discriminants are introduced in Chapter 10. We
deliberately separate this discussion from the earlier coverage of data types. The
reader can then master the basic principles of data types before tackling the more
" intricate topic of discriminants. Furthermore, the thorough treatment of subprograms

in Chapter 9 permits more complete and realistic illustrations of how discriminants
are used.

The first ten chapters contain all the information necessary for writing small
Ada programs and individual subprograms. For some programmers, this may be
sufficient. However, it is the features described in the second half of the book—
partigularly support for programming in the large, exceptions, generic program
units, and concurrency—that make the Ada language unique.

Chapters 1 | through 13 describe the features that make it possible to write large
Ada programs while managing their complexity. Though packages are introduced
in Chapter 2 and used in subsequent chapters, Chapter 11 covers them in detail,
relating packages to the notions of modularity and information hiding. Chapter 12
describes private and limited private types and relates them to the discussion of data
abstraction in Chapter 3. Chapter 13 discusses separate compilation. Each of these

. chapters includes abundant advice on the appropriate use of language features, for
example, when it is appropriate to make a private type limited and how to reduce
potential recompilation costs.

Nested program units are introduced as early as Chapter 2, and by this point
the reader should have a strong intuitive notion-of the Ada language’s scope and
visibility rules. Chapter 14 builds on this intuition to provide a formal set of rules.
The idea is to solidify the reader’s understanding of scope and visibility and to
enable him to answer scope and visibility questions in unusual situations where the
answer might not be intuitively obvious. The rules are applied to specific examples
to illustrate how they lead to the conclusions that L the reader expects. This will help
the reader apply the rules in other situations.’

Chapter 15 deals with exceptions. This chapter 1ncludes an optlonal sectlon for
PL/1 programmers, comparing Ada exceptions to PL/1 ON-conditions. A consid-
erable portion of the chapter is deveted to guldclmes for the appropriate use of
exceptions. :

Chapter 16 covers genenc units. The need for generic units is deseribed by
example and the basic notions of template and instance are then discussed. The
mechanics of writingand using generic units are illustrated by examples that convey
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the power of generic units and the variety of ways in which they can be used. A
section on generalization provides the thoughtful reader with insights on the
appropriate role for generic units in the design process. -

Chapter 17 discusses the predefined file input and output facilities of the Ada
language. Until this peint, all input and output is performed using a simplified
package, Bas i c_10, whose text is given in the Appendix. Basic_I0 provides a
subset of the predefined facilities, consisting of the rudimentary facilities required
for interesting examples and exercises. The Ada language’s predefined input and
output facilities consist not of additional language features, but rather program
units written using the features already in the language. A description of these
facilities is really a description of a particular set. of Ada softwaré components.
Therefore, while Chapter 17 contains many details provided for the programmer’s
reference, it also serves as an extended illustration of the use of packages, generic

,units, and exceptions.

Chapters 18 and 19 deal with Ada tasks. The reader interested in only a general
overview of the language’s multitasking features can confine his attention to Chapter
18. That chapter discusses fundamental notions of concurrency and asynchronism,
the concept of task objects and task types, and simple rendezvous that do not
involve selective waits. Two examples of multitask programming are provided—
excerpts from a video game program, to illustrate fundamental real-time program-
ming techniques, and a text processing example, to show how multitasking can
simplify apparently sequential problems. Chapter 19 deals with more advanced
aspects of tasking, including activation and termination of tasks, selective waits,
priorities, entry families, abortion of tasks, and variables shared by multiple tasks.

; The interaction between tasks and exceptions is also discussed in this chapter.

Chapter 20 deals with low-level and implementation-dependent progtamming.
The approach is necessarily general, since details vary from one Ada compiler to
another. Rather thanfocusing on a particular compiler, we carefully define a variety
of hypothetical Ada implementations to illustrate implementation-dependent features
and the ways they may differ under different compilers. The hypothetical compilers
are for real machines and devices, so the examples are authentic.

NOTES ON STYLE

Ada as a Second Language capitalizes reserved words and uses a mixture of upper
and lower case for other identifiers. This differs from the style found in most
publlcatlons about the Ada language, but it is a more appropriate style for the
practicing programmer The habit of writing identifiers entirely in upper case is a -
vestige of the day when all programs were entered by keypunch. Given modern-day
keyboards, it makes sense to reserve the use of upper case for highlighting abbrevia-
tions and the beginnings of words. By mixing upper and lower case, we make our
identifier names more expressive and informative. Reserved words should be
written in a way that distinguishes them from other identifiers and makes them
stand out, so that the underlying program structure is apparent. In many publications,
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this is done by setting the reserved words in boldface type. For the many programmers
who do not have boldface available to them, however, this effect is best achieved by
writing reserved words entirely in upper case.

The text uses masculine pronouns in a generic sense, in accordance with
conventional English practice. For example, we speak of how a programmer can
hide the data in his package from other programmers. I am confident that no reader _
will seriously interpret this as an assertion that women are not programmers.
Indeed, as Chapter 1 explains in greater detail, the Ada language is named after the
woman generally regarded as the world’s first programmer.
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