ADA°® AS A SECOND

LANGUAGE

Norman H. Cohen

ADA® AS A SECOND
LANGUAGE

Norman H. Cohen
SofTech, Inc.

McGraw-Hill Book Company

New York St. Louis San Francisco Auckland Bogota Hamburg Johannesburg
London Madrid Mexico Montreal New Delhi Panama Paris
Sdo Paulo Singapore Sydney Tokyo Toronto

& o
This book was set m Times Roman by PuBTication Services.
The'editos was Gerald A. Gleason;
the producllibd supervisor was Leroy A. Young;
the cover was designed by Mark Wiceboldt.
Project suptrvision was done by Publication Services.
Arcata Graghics/ Halliday was printer and binder.

ADA® AS A SECOND LANGUAGE

Copyright © 1986 by McGraw-Hill, Inc. All rights reserved.

Printed in the United States of America. Except as permitted under the United States
Copyright Act of 1976, no part of this publication may be reproduced or distributed in any
form or by any means, or stored in a data base or retrieval system, without the prior
written permission of the publisher.

1234567890 HALHAL 89876

Library of Congress Cataloging-in-Publication Data
Cohen, Norman H.
ADA® as a second language.

1. Ada (Computer program language) 1. Title.
QA76.73.A35C64 1986 005.13'3 85-2946

ISEN 0-07-011589-3

Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

ABOUT THE AUTHOR

“.

A

"Norman H. Cohenis a system consultant for Sof Tech, Inc. and author of numerous
articles on the Ada language. He led the development of major parts of the U.S.
Army Ada Curriculum and teaches Ada language and software engineering classes.
Dr. Cohen was a principal contributor to a series of case studies on the use of the
Adalanguage, chief designer of an Ada-based program design language, and leader
of a research preject on the formal verification of Ada programs. He has chaired the
Philadclphia area chapter of SIGAda (the Association for Computing Machinery’s
Special Interest Group on Ada) and a government-sponsored working group on
Ada formal semantics. He received his B.A. in computer science from Cornell

. University and his M.S. and Ph.D. in computer science from Harvard University.

To Dianne; and to David,
llana, and Aviva

PREFACE

Ada as a Second Language is designed to fulfill a wide range of needs. The only
prerequisite is an introductory programming couise or equivalent practical expe-
rience. The book may be used to obtain a reading knowledge of the Ada language,
to obtain a writing knowledge of the Ada language, or to serve as a programming
reference for someone who is already writing Ada programs. It may be used as a
textbook in a course or to learn the Ada language on one’s own.

Ada as a Second Language is at once a tutorial introduction to the Ada
language and a complete reference. In teaching the language, the book takes time to
explain complicated matters in a patient, reassuring manner, with generous expla-
nations. The exposition emphasizes the concerns of the practicing programmer, not
theoretical principles of programming languages. Asa reference, the book contains
a complete description of the nitty-gritty details a programmer needs to write
practical, working Ada programs, not just the general principles needed to convey
the “flavor” of the language. The blemishes of the language, and their practical
implications for the programmer, are described along with the language’s graceful
contours. There are abundant cross-references to the sections in which concepts are
introduced. '

WHAT IS THE FIRST LANGUAGE?

The book is entitled Ada as a Second Language because it is an introduction to the
Ada programming language, but not an introduction to programming. We assume
the reader is familiar with certain fundamental programming notions—variables,
arrays. loops, conditional statements, and subprograms, for example. The first
language can be any statement-oriented high-level langua'ge. However, we pay
particular attention to FORTRAN, PL/I, and Pascal.

The Ada language is based on programming and software-engineering concepts
that may be new to a FORTRAN, PL/1, or Pascal programmer. We take care to
make the reader comfortable with programming concepts like programmer-defined
types, recursion, pointers, exception handling, and concurrency before the corre-

xvii

Xviii ADA AS A SECOND LANGUAGE

sponding Ada language feature is introduced. Furthermore, software-engineering -
concepts like abstract data types, information hiding, and loose coupling, which do
not find direct expression in the FORTRAN, PL/I, and Pascal programming
languages, must be well understood in order to use the Ada programming language
properly. We explain such software-engineering concepts in depth before considering
the associated Ada features.

Ada as a Second Language frequently compares the Ada language’s features to
similar features of FORTRAN, PL/I, and Pascal, to help readers recognize those
instances where the Ada language provides a new notation for a familiar concept.
For example, the Ada language’s FOR loop is compared to the b0 loops of FOR-
TRAN and PL/I and the for loop of Pascal. Of course the exposition of an Ada
feature never relies on a reader’s familiarity with another language.

We also point out circumstances in which familiarity with FORTRAN, PL/I,
or Pascal may confuse students of the Ada language or prejudice them to program
in a manner that is not appropriate for the Ada language. For examiple, there is a
subtle difference between the treatment of loop control variables in the Ada
language and their treatment in the other three programming languages, and this
difference can lead to enigmatic errors; éntities known as constantsin FORTRAN
and PL/1 are called literals in the Ada language, and the term constant has a quite
different meaning; packages can be used in the Ada language in the same way as
COMMON blocks are used in FORTRAN, but this is rarely appropriate; the exceptions
of the Ada language bear strong similarity to the ON-conditions of PL/1, but there
are’ important differences that make PL/I condition handling approaches inap-
propriate in Ada programs. -

While the comparative study of programming languages is fascinating, it is not
the subject of this book. Our emphasis is overwhelmingly on the Ada language.
Other languages are discussed only to the extent that the discussion s likely to help
the reader learn the Ada language.

APPROACH

A programming language cannot be taught simply by enumerating rules. Therefore,
Ada as a Second Language is replete with realistic examples of Ada programming,
One-line examples have their place, but extended examples are also necessary, to
illustrate how features fit together and the contexts in which they ought to be used.
The reader will benefit from over 200 complete Ada compilation units that have
been compiled by a validated Ada compiler to verify their legality. Examples have
been carefully crafted to be neither too simplistic nor too complicated. The examples
are substantial enough to give a realistic idea of how features should be used, but not
so involved that they detract from the point being made. Our primary goal, after all,
is to teach the Ada language, not particular algorithms or applications.

Just as one cannot learn to play bridge well simply by learning the rules of the
game, one cannot learn to program well simply by learning the rules of the
programming language. Ada as a Second Language explains the basic concepts

PREFACE Xix

underlying the features of the Ada language—data abstraction (which it has recently
become fashionable to call “object-oriented design”), modularity, the distinction
between interfaces and implementations, information hiding, portability, and con-
currency, for example—before explaining the features themselves. The book offers
specific practical advice on how and why to use each feature, and warns about
pitfalls to be avoided.

Good programming style is emphasized throughout the text. Guidelines are
provided, for example, on the use of long, descriptive identifiers; the formatting of
program text; the appropriate use of exceptions; and the minimization of recompi-
lation costs. The examples consistently practice what the text preaches.

STRUCTURE OF THE BOOK
The typical chapter begins with a discussion of the programming and software-
engineering concepts underlying a language feature, then goes on to discuss the
essential aspects of the feature itself. Detailed rules About the feature follow later in
a separate section. These details must be learned to write correct Ada programs but
are best deferred until the reader has become comfortable with general principles.
These details can be skipped entirely by the readér who seeks only a genmeral
familiarity with the Ada language or the ability to understand Ada programs
written by others. Each chapter ends with'a summary of the major points and a set
of-exercises. The exercises include drills on fundamental concepts as well as pro-
gramming problems.

Chapters | and 2 contain introductory material. Chapter 1 briefly recounts the
concerns and events that led to the creation of the Ada programming language. This
chapter is net essential for learning to read or write Ada programs, but it does
provide perspective on the motivation for various language features. Chapter 2
provides a high-level overview of the entire language. In addition, the Ada language’s
lexical rules and the notation we use for describing Ada syntax are presented there,
Itis the most important chapter in the book, providing an overall framework within
which the specific information in subsequent chapters can be understood. In
particular, this chapter introduces the crucial Ada notions of separate compilation
units and packages.

Chapters 3 through 6 are concerned with the predominant issue in Ada
programs, data types. Chapter 3 introduces the notion of an abstract data type asa
set of abstract values plus operations on those values, independent of the underlying
physical representation; and describes how the FORTRAN, PL/I, Pascal, and Ada
languages provide increasingly comprehensive support for data abstraction. This
chapter provides the background needed to appreciate the role of data types in the
Ada language, and particularly the role of private types. Chapter 4 describes object
and type declarations and discusses six classes of types in detail—integer, floating-
point, fixed-point, enumeration, array, and record types. Access types are deferred
until Chapter 5 to permit a thorough discussion of the underlying concepts, which
will be new to FORTRAN programmers. Chapter 6 introduces the notion of

XX ADA AS A SECOND LANGUAGE

subtypes. The distinction between subtypes and types, a common stumbling block
for newcomers to the Ada language, is carefully explained. Derived types are
introduced in this chapter to illustrate the concept of strong typing.

Chapters 7 through 9 describe the traditional algorithmic features found in'all
procedural languages. These features are used in earlier chapters and the reader will
already be intuitively familiar with them, but specific rules, caveats, and guidelines
are provided here. Chapter 7 describes in detail the statements used in nonconcurrent
programming. Chapter 8 gives detailed rules about expressions. Chapter 9 treats
subprograms.

The discussion on record types in Chapter 4 is confined to record types wnhout
discriminants. Record types with discriminants are introduced in Chapter 10. We
deliberately separate this discussion from the earlier coverage of data types. The
reader can then master the basic principles of data types before tackling the more
" intricate topic of discriminants. Furthermore, the thorough treatment of subprograms

in Chapter 9 permits more complete and realistic illustrations of how discriminants
are used.

The first ten chapters contain all the information necessary for writing small
Ada programs and individual subprograms. For some programmers, this may be
sufficient. However, it is the features described in the second half of the book—
partigularly support for programming in the large, exceptions, generic program
units, and concurrency—that make the Ada language unique.

Chapters 1 | through 13 describe the features that make it possible to write large
Ada programs while managing their complexity. Though packages are introduced
in Chapter 2 and used in subsequent chapters, Chapter 11 covers them in detail,
relating packages to the notions of modularity and information hiding. Chapter 12
describes private and limited private types and relates them to the discussion of data
abstraction in Chapter 3. Chapter 13 discusses separate compilation. Each of these

. chapters includes abundant advice on the appropriate use of language features, for
example, when it is appropriate to make a private type limited and how to reduce
potential recompilation costs.

Nested program units are introduced as early as Chapter 2, and by this point
the reader should have a strong intuitive notion-of the Ada language’s scope and
visibility rules. Chapter 14 builds on this intuition to provide a formal set of rules.
The idea is to solidify the reader’s understanding of scope and visibility and to
enable him to answer scope and visibility questions in unusual situations where the
answer might not be intuitively obvious. The rules are applied to specific examples
to illustrate how they lead to the conclusions that L the reader expects. This will help
the reader apply the rules in other situations.’

Chapter 15 deals with exceptions. This chapter 1ncludes an optlonal sectlon for
PL/1 programmers, comparing Ada exceptions to PL/1 ON-conditions. A consid-
erable portion of the chapter is deveted to guldclmes for the appropriate use of
exceptions. :

Chapter 16 covers genenc units. The need for generic units is deseribed by
example and the basic notions of template and instance are then discussed. The
mechanics of writingand using generic units are illustrated by examples that convey

PREFACE xxi

the power of generic units and the variety of ways in which they can be used. A
section on generalization provides the thoughtful reader with insights on the
appropriate role for generic units in the design process. -

Chapter 17 discusses the predefined file input and output facilities of the Ada
language. Until this peint, all input and output is performed using a simplified
package, Bas i c_10, whose text is given in the Appendix. Basic_I0 provides a
subset of the predefined facilities, consisting of the rudimentary facilities required
for interesting examples and exercises. The Ada language’s predefined input and
output facilities consist not of additional language features, but rather program
units written using the features already in the language. A description of these
facilities is really a description of a particular set. of Ada softwaré components.
Therefore, while Chapter 17 contains many details provided for the programmer’s
reference, it also serves as an extended illustration of the use of packages, generic

,units, and exceptions.

Chapters 18 and 19 deal with Ada tasks. The reader interested in only a general
overview of the language’s multitasking features can confine his attention to Chapter
18. That chapter discusses fundamental notions of concurrency and asynchronism,
the concept of task objects and task types, and simple rendezvous that do not
involve selective waits. Two examples of multitask programming are provided—
excerpts from a video game program, to illustrate fundamental real-time program-
ming techniques, and a text processing example, to show how multitasking can
simplify apparently sequential problems. Chapter 19 deals with more advanced
aspects of tasking, including activation and termination of tasks, selective waits,
priorities, entry families, abortion of tasks, and variables shared by multiple tasks.

; The interaction between tasks and exceptions is also discussed in this chapter.

Chapter 20 deals with low-level and implementation-dependent progtamming.
The approach is necessarily general, since details vary from one Ada compiler to
another. Rather thanfocusing on a particular compiler, we carefully define a variety
of hypothetical Ada implementations to illustrate implementation-dependent features
and the ways they may differ under different compilers. The hypothetical compilers
are for real machines and devices, so the examples are authentic.

NOTES ON STYLE

Ada as a Second Language capitalizes reserved words and uses a mixture of upper
and lower case for other identifiers. This differs from the style found in most
publlcatlons about the Ada language, but it is a more appropriate style for the
practicing programmer The habit of writing identifiers entirely in upper case is a -
vestige of the day when all programs were entered by keypunch. Given modern-day
keyboards, it makes sense to reserve the use of upper case for highlighting abbrevia-
tions and the beginnings of words. By mixing upper and lower case, we make our
identifier names more expressive and informative. Reserved words should be
written in a way that distinguishes them from other identifiers and makes them
stand out, so that the underlying program structure is apparent. In many publications,

Xxii ADA AS A SECOND LANGUAGE

this is done by setting the reserved words in boldface type. For the many programmers
who do not have boldface available to them, however, this effect is best achieved by
writing reserved words entirely in upper case.

The text uses masculine pronouns in a generic sense, in accordance with
conventional English practice. For example, we speak of how a programmer can
hide the data in his package from other programmers. I am confident that no reader _
will seriously interpret this as an assertion that women are not programmers.
Indeed, as Chapter 1 explains in greater detail, the Ada language is named after the
woman generally regarded as the world’s first programmer.

ACKNOWLEDGMENTS

This book has benefited from the detailed attention that several devoted friends
have paid to it. The comments of Christine Ausnit, Fredric Cohen, and Frank
Pappas led to significant improvements. I am further honored to have had the
manuscript reviewed by two of the Distinguished Reviewers who officially reviewed
the design of the Ada language itself —John Goodenough and Nico Lomuto. Nico
deserves special thanks, both for excellent pedagogical and technical advice and for
his enthusiastic encouragement. Finally,'l am indebted to Jorge Rodriguez for
making the facilities of SofTech, Inc., available to me to compile the book’s
examples.

Ada as a Second Language is the outgrowth of a twenty-session continuing
education course on the Ada language. I told my wife and son that, with a few
months’ effort, I could transform my lecture notes into a textbook. As soon as 1
sat down and started writing, taking care to introduce underlying concepts and to
describe language features completely, it became obvious that I had grossly under-
estimated the effort involved. Perhaps a textbook on the Ada language can be
written in so short a time (in fact I suspect some have been), but not a textbook
worthreading. Three years and two daughters later, as I complete this “few months’
effort,” I thank Dianne for her patience when I needed patience, for her impatience
when 1 needed prodding, and for her loving support throughout. The role of
author’s spouse is not anenviable one, but Dianne accepted the burdens, above and
beyond her already awesome responsibilities, with composure and valor.

Norman H. Cohen

CONTENTS

Chapter 1
1.1
1.2
1.3
1.4
1.5

Chapter 2

2.1
2.2
2.3

24

Chapter 3

3.1
3.2

Preface

The Development of‘the Ada Language
The Defense Department’s Software Crisis

The Effort to Find a Standard Language

The Design of the Ada Language

Other Aspects of the Ada Effort

Summary

An Introduction to the Ada Language

The Text of an Ada Program
Notation for Ada Syntax

An Overview of the Ada Language -

2.3.1 Compilation Units

2.3.2 Subprograms and Main Programs
2.3.3 Statements

2.3.4 A Closer Look at Subprograms

2.3.5 Defining New Types

2.3.6 Extending the Meanings of Operators
2.3.7 Handling Unexpected Situations
2.3.8 Packages

2.3.9 Private Types

2.3.10 Generic Program Units

2.3.11 Concurrent Computations —
2.3.12 Low-Level Interfaces

Summary

Programmer-Defined Data Types
What Is a Data Type?

Treatment of Data Types in the FORTRAN, PL/I, Pascal,

and Ada Languages

xvii

NN BN =

-]

16
16
18
19
22
25
28
29
31
36
38
42

45
50
50

54
vii

viii ADA AS A SECOND LANGUAGE

33

34

Chapter 4

4.1
4.2

43

44

Chapter §

5.1
5.2
53
54

Classes of Ada Data Types

33.1
332
333
3.34
335
336
337
338
3.39

Integer Types
Floating-Point Types
Fixed-Point Types
Enumeration Types
Array Types

Record Types

Access Types

Task Types

Private Types

Summary

Object and Type Declarations

Object Declarations
Type Declarations

4.2.1
422
423
424

4.25
4.2.6

4.2.7

Details

4.3.1
4.3.2
433
4.3.4
435
4.3.6

Integer Type Declarations

Floating-Point Type Declarations
Fixed-Point Type Declarations
Enumeration Type Declarations

4.2.4.1 Manipulation of Enumeration Types
4.2.4.2 Overloading Enumeration Literals
4.2.43 Predefined Enumeration Types
Discrete Types

Array Type Declarations

4.2.6.1 Constrained Array Types

4.2.6.2 Unconstrained Array Types
Record Type Declarations

Static and Dynamic Expressions

Numeric Literals and Universal Expressions

Expressions Allowed in Declarations

Predefined Numeric Types and Portability

Enumeration Types with Character Literals

More on Array Types

4.3.6.1 Null Arrays .
4.3.6.2 Multidimensional Arrays Versus Arrays of Arrays
4.3.6.3 *“One of a Kind” Arrays

Summary

Access Types

Access Type Declarations

Dynamic Allocation

Naming Dynamically Allocated Variables
The Use of Access Types

54.1
542
543
544
545

Variables with Changing Roles
Shared Data

Reducing Copying of Data
Pointing to Arrays of Various Sizes
Recursive Data Types

59
60
60
61
61
62
62
62
62
63
63

65

66
68
69
71
73
74
74
75 .
76
77
79
79
82
86
90
90
91
92
95
96
98
98
99
99
101

109

110 -
11
113
117
117
119
122
124
126

5.5
5.6

Chapter 6

6.1
6.2

6.3
6.4
6.5

Chapter 7

7.1
7.2

7.3

7.4
7.5

7.6
1.7
7.8
7.9
7.10

Chapter 8
8.1

Access Types and Index Constraints
Summary

Subtypes and Type Equivalence

Type Restrictions on the Use of Data
Subtypes .
6.2.1 Subtype Declarations

6.2.2 Compatibility Between Typemarks and Constraints

6.2.2.1 Range Constraints
6.2.2.2 Accuracy Constraints
6.2.2.3 Index Constraints
6.2.3 Discrete Ranges of Subtypes -
6.2.4 Subtypes of Array and Record Components
6.2.5 Predefined Subtypes
Differences Between Types and Subtypes
Derived Types

- Summary

Statements

Assignment Statements
Procedure Call Statements, Input, and Output
7.2.1 Procedure Call Statements
.7.2.2 Input and Output
IF Statements.and CASE Statements
7.3.1 IF Statements
7.3.2 CASE Statements
NULL Statements
LOOP Statements
7.5.1 WHILE Loops
7.5.2 FOR Loops
7.5.3 Basic Loops
EXIT Statements
GOTO Statements
DELAY Statements
Block Statements
Summary

Expressions

Elementary Expressions

8.1.1 Literals
8.1.1.1 Numeric Literals
8.1.1.2 String Literals
8.1.1.3 Enumeration Literals

8.1.1.4 The Literal NULL
8.1.2 Names

8.1.3 Attributes
8.1.4 An Extended Example
8.1.5 Aggregates

8.1.5.1 Array Aggregates

O
8.1.5.2 Record Aggregates -

CONTENTS ix

130
131

135

135
136
138
139
140
142
142
143
145

- 146
146
151
152

156

157
158
158
158
160
161
163
- 166
167
167
168
170
171
177
180
180
183

188

189
190
190
190
191
191
191

192,

197

202
206

X ADA AS A SECOND LANGUAGE

8.2

8.3

84

Chapter 9

9.1
.92
.93
9.4

95

9.6

9.7

9.8

9.9

Chapter 10
101
10.2

8.1.6 Qualified Expressions
8.1.7 Type Conversions
8.1.8 Allocators
8.1.9 Function Calls
Compound Expressions
8.2.1 Exponentiation
8.2.2 Absolute Value *
8.2.3 Multiplication and Division
8.2.4 Remainder
8.2.5 Plus and Minus
8.2.6 Catenation
8.2.7 Relational Operators and Membership Tests
8.2.8 Logical Operators and Short-Circuit Control Forms
. 8.2.8.1 Logical Operators
8.2.8.2 Short-Circuit Control Forms
8.2.8.3 An Example: Insertion Sort
8.2.8.4 Parentheses in Logical Expressions
8.2.8.5 Extensions of the Logical Operators
Details
8.3.1 Order of Evaluation of Operands
8.3.2 . Nondecimal Numeric Literals
8.3.3 Accuracy of Fixed-Point and Floating-Point Arithmetic
8.3.3.1 Model Numbers of a Fixed-Point Subtype
8.3.3.2 . Model Numbers of a Floating-Point Subtype
8.3.4 Attributes of Fixed-Point and Floating-Point Subtypes
8.3.5 Static Expressions and Static Subtypes
8.3.6 Universal Expressions
8.3.7 More On Attributes
8.3.8 Base Types
8.3.9 More on Aggregates
Summary

Subprograms

Procedure Bodies

Function Bodies

Subprogram Calls

Recursive Subprograms

Overloading Subprograms

Defining New Meanings for Operators

The Inline Pragma '

Details

9.8.1 Nested Subprograms and Global Variables

- 9.8.2 The Process of Passing Parameters

9.8.3 More on Overloading
Summary ' '

Record Types with Discriminants

Records with Varying Structure
Declaring Record Types with Biscriminants
10.2.1 Declaring Record Types with Variants

208
209
211
211
212
213
214
214
215
215
216
217
221
222
222
223
225
225
226
226
226
227
229
230
232
233
237
238
238
242
243

253

253
261
263
266
279

‘284

291
293
293
295 .
297
299

306
306

309
311

10.3

10.4

10.5
10.6

10.7

Chapter 11

1.1
1.2
11.3
11.4
1.5
11.6
1.7
11.8
11.9
11.10

Chapter 12

12.1
12.2
12.3
12.4
12.5
12.6
127
12.8

Chapter 13

13.1
13.2
13.3
13.4

13.5
13.6

CONTENTS Xi

10.2.2 Declaring Record Types with Variable-Length
Components

10.2.3 Declaring Types Whose Components Have
Discriminants

10.2.4 Allowable Uses of Discriminants

Discriminant Constraints)

10.3.1 Initial Values of Discriminants

10.3.2 Constrained and Unconstrained Records

10.3.3 Subtypes of Record Types

Dynamically Allocated Records with Discriminants

10.4.1 Allocators for Records with Discriminants

10.4.2 Discriminant Constraints for Access Types

Subprogram Parameters with Discriminants

Details

10.6.1 Full Form of a Discriminant Constraint

10.6.2 Position of Discriminants Within Records

10.6.3 When Expressions Are Evaluated

Summary

Packages

Package Specifications and Package Bodies
The Syntax of Packages

The Placement and Lifetime of a Package
Fractions Revisited

USE Clauses

Renaming Declarations

Derived Subprograms

Packages Without Bodies

Predefined Packages

Summary

Private and Limited Private Types

Abstract Data Types Versus Internal Representations
Declaration of Private Types

The Predefined Package Calendar

Deferred Constants

A Private Type for Sets of Integers

Limited Private Types -

Private Types with Discriminants

Summary)

Separate Compilation

Program Libraries

Compilation Units and Compilations -

Subunits

Order of Compilation.

13.4.1 Top-Down Development and Independent Development
13.4.2 Recompilation

Order of Elaboration

Summary

314

315
316
317
317
318
321
322
323
325
326
327
327
328
328
330

337

338
340
343
35t
357
362
368
370
372
375

382

382
384
389
395
397
404
411
418

421

422
423
432
441
444
446
449
451

Xii ADA AS A SECOND LANGUAGE

Chapter 14

14.1
14.2

14.3
14.4

- Chapter 15
15.1

15.2

15.3
15.4
15.5
15.6
15.7
15.8

Chapter 16

6.1
16.2

16.3
16.4
16.5
16.6
16.7

Chapter 17
17.1

Scope and Visibility

Scope Rules

Visibility Rules

14.2.1 Visibility and Overloading

14.2.2 Nestingg’ Hiding

14.2.3 Direct Vimility and Visibility by Selection
14.2.4 The Effect of USE Clauses

The Package Standard

Summary

Exceptions

Handling Exceptions

15.1.1 Exceptions in Sequences of Statements
15.1.2 Exceptions Raised by Declarations
15.1.3 Exceptions Raised in Handlers
Propagation of Exceptions ,

15.2.1 Propagation from Subprbgram Bodies
15.2.2 Propagation from Block Statements
15.2.3 Propagation from Packages
Predefined Exceptions

Programmer-Defined Exceptions

The Suppress Pragma’

A Comparison With PL/I Conditions
Guidelines for the Use of Exceptions
Summary

Generic Units

Templates and Instances
Generic Formal Parameters
16.2.1 Generic Formal Objects
16.2.2 Generic Formal Subprograms
16.2.3 Generic Formal Types
16.2.3.1 Generic Formal Parameters for Numeric Types
16.2.3.2 Generic Formal Discrete Types
16.2.3.3 Generic Formal Array Types
16.2.3.4 Generic Formal Access Types
16.2.3.5 Generic Formal Private Types
16.2.3.6 Generic Formal Types With Discriminants
16.2.3.7 Generic Formal Parameteérs for Arbitrary
Numeric Types
Generic Instantiations
Defaults for Generic Parameters
Generalization
Predefined Generic Units
Summary

Predefined Input and Output

Basic Concepts
17.1.1 External and Internal Files

457

459
464
464
465
467
472
473
474

479

480
481
486
486
486

" 486

487
488
488
494
500
505
507
514

521

521
532
533
535
539
540
543
546
551
552
555

556
558
560
564
569
573

582

583
583

