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The Flow Pattern of a Supersonic Projectile

By G. B. WHITHAM
University of Manchester, England *

Summary

A complete first approximation is given of the supersonic flow past any
slender, axisymmetrical body-wake combination, whose meridian section may
have discontinuities in slope. A hypothesis, which is amply substantiated, is
made that the failures of linearized theory for a description of the flow pattern
may be corrected by replacing the approximate characteristics in that theory
by the exact characteristics (or at least by a sufficiently good approximation to
the exact ones); the ideas involved are deseribed in the introduction (Part 1)
since they are of general application, and the mathematical details for the
projectile are furnished in Parts 2 and 3. To complete the description of the
flow, the shocks, which occur in regions where the characteristics would otherwise
form a limit line and the solution cease to be single-valued, are determined
(Part 4) from the simple geometrical property that, to a first order in its strength,
a shock bisects the angle between the characteristics on each side of it. This
condition proves extremely powerful in the mathematical analysis, and it has
additional value in that it also gives a simple qualitative picture of how the shocks
occur and fit into the pattern. The general theory is applied in Part 5 to the
typical example of the 5-10 calibre ogival headed bullet with a suitable wake.
In Part 6, the value of the pressure at any point of the fluid is determined, and,
in Part 7, the way in which the drag is related to the rate of increase of the energy
of the fluid is investigated. The latter leads to an interesting new expression for
the von Karman drag in terms of a function which is fundamental to the whole
theory. Finally, in the Appendix, the corresponding theory for the two-dimen-
sional steady and one-dimensional unsteady flows is set out since it gives some
new information on these topics. Probably the most important result obtained
in the Appendix is in the problem of a piston which oscillates periodically. 1t is
found that, at a large distance from the piston, the strengths of the shocks depend
only on the properties of the fluid, the distance from the piston and the period of
the oscillation; they are independent of the particular piston motion.

1. Introduction

A mathematical theory is given of the disturbance produced in the surround-
ing air by a projectile moving with supersonic speed. A solution of the flow
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inside the wake is not obtained; its mean boundary is assumed to be known and
it is the flow past the given body-wake combination which is described. The
theory is first written out assuming that the body' is axisymmetrical, slender and
pointed at the nose {(with the Muach number sufficiently in excess of 1 for the
front shock to be attached), although discontinuities in the slope of the meridian

‘section are allowed; then a complete first approximation to the whole flow pattern-

is given. If some of these conditions are not satisfied, the description is not com-
plete but, as will be explained later, many important results can be taken over to
these cases without modification.

Valuable information of the shape of the wake and a picture of the shocks
which oceur in the flow are provided by photographs of bullets in flight; the basice
flow pattern is sketched in Figure 1. At the base of the projectile there is a

Figure 1

roughly conical dead air region at a lower pressure so that the stream expands
sharply round the base; a typical value for the angle through which it turns is
12°. But then, the stream is recompressed as the boundary layer between it and
the dead air region thickens to form the turbulent wake of roughly constant
cross-section. Fluctuations of the wake boundary due to the turbulence inside
will not affect the main features of the flow and are ignored. Turning now to
the flow pattern, there is an attached front shock which curves round towards
the undisturbed Mach direction and weakens as the distance from the body
increases; ahead of it the flow is undisturbed. At the rear, there will always be
a second shock (this would be true even if the wake were taken to be of constant
cross-section equal to the base of the body). A rear shock is immediately more
difficult to deal with than the front one since there is a non-uniform state on both
sides of it, but in addition, further complications arise in that more than one
shock may be formed, particularly if there are diseontinuities in the slope of the
meridian section (although not only in such cases). Thus, there may be a shock
system at the rear consisting of several shocks, ultimately running together to

The term “body” will henceforth be used to include the wake.
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form the main shock which decays in a similar way to the front one. The predic-
tion and description of such a complex shock system forms the most fascinating
part of the theory.

The corresponding problem of two dimensional supersonic flow past an aerofoil
was solved by Friedrichs [1). The theory is considerably easier since a solution
of the exact equations of the isentropic flow is already known, i.e. the so-called
“simple wave”, and it is only necessary to fit on the shocks in a suitable manner.
Moreover the determination of the shocks themselves is less complicated since
Friedrichs assumes that there are just single shocks attached to the leading and
trailing edges, respectively, and that the low behind the rear shock is undisturbed.
If the aerofoil section has no compressive discontinuities in slope and is pointed
at each end, this is a good approximation to the truth?®; hence discussion of the
formation of a shock inside a disturbed region is avoided in this case. Howeyver,
it is more important in the analogous unsteady problems of one dimensional
plane waves which Friedrichs also treats, and in these problems he does consider
shock formation inside a wave, but is only able to obtain the details of the shoek
near the point of formation; he cannot go on to describe its ultimate decay, for
example. Now, these problems can be solved by the methods of this paper
and so, although its main objective is the projectile problem, the corresponding
theory for two-dimensional flow (and the analogous one dimensional wave prob-
lems) in which the flow pattern for any thin aerofoil section is deseribed, is set
out briefly in the Appendix. Of course this theory would only give the first
approximation whereas the Friedrichs theory, with a certain modification which
is described in the next paragraph, is correct to a second order; thus the present
method loses some aceuracy but penetrates further.

The question of the accuracy of Friedrichs’ theory raises a very important
point. That theory and also the theory which will be described for the axisym-
metrical problem, use solutions of the isentropic equations of motion to describe
the flow and then the occurrence and positions of curved shocks are determined
from them. This procedure has been criticised on the grounds of inconsistency
since curved shocks are of non-uniform strength and the flow behind is therefore
not isentropic. The explanation is that the isentropic equations of motion are
used not beeause it is assumed that the flow is exactly isentropic, but because it
is thought that they will give a good approximation tu the correct (non-isentropic)
one since the shocks concerned are weak and the entropy changes at a shock
are of the third order in its strength. In order to clarify the position and put
this extremely general and valuable approach on a firm basis, Lighthill [2] has
investigated the accuracy of Friedrichs’ theory and applied a comprehensive
check on its results. He finds that the theory is correct to the second order
(as expected) with one important exception: the position of the rear shock is

It would not be so for a body of revolution satisfying these conditions since even on
linearized theory, the flow behind the body is not uniform (the “tail” of a cylindrical sound
pulse).



correct only to a first order. This is due to a wide third order pressure wave,
spread out behind the main disturbance, which interacts with the rear shock
over a laree distance to modify its position The pressure wave is determined
and the results for the rear shock are corrected. The knowledge of the validity
of the approach in Friedrichs’ work justifies its use in other problems, since a
similar behaviour 1s expected. Thus in the flow past the projectile strietly
similar effects may be sketched in but *: this paper, sinice only the first order low
pattern is obtained they will not appear in the analysis.

For the axisymmetrical flow past a projectile no exact solution of the equations
of motion is avallable, so that the first step in this theory is to provide a valid
description of the non-linear flow. The existing linearized theory is now well-
known (see, for example, Lighthill (3]), but it is easily seen to be inadequate,
as 1t stands, for a detailed description of the flow outlined above. In it the
disturbance 1s propagated diagonally downstream along straight parallel charac-
teristics z — r V(M® — 1) = constant, where z is the distance along the axis
from the nose, r the distance from the axis and M the Mach number of the main
stream. This is obviously incorrect since, in fact, the disturbed region spreads out
with curved characteristics which ultimately diverge (see Figure 1). Moreover,
the shocks, whose presence in the correct theory is most important, are entirely
absent smce they are a non-hnear phenomenon; for example, in the linearized solu-
tion, the flow is uniform ahead of the leading characteristica — r V(ME~1) =0
whereas it is known that the front shock is there. The same failures oceur in
Broderick’s further approximations [4], since his reduction of the equations to a
series of linear ones avoids the essential non-linearity of the problem. However,
in spite of this criticism, these theories are extremely valuable because (i) they
do give valid approximations to the pressure forces acting on the body, and (ii)
(much more important from the present point of view) the failure of the linear
theory as a description «f the flow can be remedied. The modified linear theory
forms the basis of the work. 1t is the solution, in this problem, corresponding to
the “simple wave’ used in Friedrichs’ work; in fact, when the method is applied
to the two dimensional flow (see Appendix) it does give the first approximation
to the “simple v.ive.” From it the theory is developed as outlined in the
summary.

The ideas which have culminated in this theory arose from the author’s
previous work on the problem [5]. In this work, a direct attack was made on the
vxact equations of motion but to make the task less formidable, the discussion
was limited to the behaviour at large distances. A solution was found as a series
in descending powers of r and it was noticed that, for the case of a slender body
when the disturbance could be assumed to be small from the outset and hence
certain terms neglected, the solution had the same form as the expansion of the lin-
earized one except that the approximate characteristic variable z — r v/ (M° — 1)
was replaced therein by the exact one y(z, r) such that ¥y = constant is an exact
characteristic curve. Hence it was deduced that the only failure of linearized
theory at large distances is that the characteristics in it are incorrect. The




only real use made of this interesting fact was that, by ecomparison, the arbitrary
function and constants appearing in the general theory were obtained in terms of
the body shape; the full meaning and the possibility of its application in a general
way were not appreciated. Now it becomes the starting point of the whole
theory; the fundamental hypothesis is made that linearized theory gives a valid
first approximation to the flow everywhere provided that in it the approximate
characteristics are replaced by the exact ones, or at least by a sufficiently good
approximation to the exact ones. (A more precise statement is given with the
mathematical details in Part 2.}

An examination of the underlying physical ideas reveals the reasons for
making this hypothesis. Linearized theory is essentially an acoustic one in that
disturbances are propagated at a constant speed equal to the speed of sound in
the main stream; it does not take account of the variation in the local speed of
sound or of the convection of sound with the moving fluid. It is permissible
to use such a theory to describe the propagation of disturbances in very small
regions; but if they are to be combined into a complete pictur:. the appropriate
local speed of propagation which is equal to th: local speed of sound plus the
local fluid velocity, must be used in each region, otherwise the error accumulates.
Thus it is expected that the linearized theory has the correct variation of physical
quantities along the characteristics, which trace the paths of the wave fronts,
but has the wrong curves for the characteristics. The hypothesis is designed to
adjust this. Apurt from the phy-ical interpretation, the theory is amply sub-
stantiated by the checks that can be made in several places of its correct predic-
tion of certain results that are already known by other methods. Among these
checks, there is the complete reproduction of the results at Jarge distances which
were found previously, and others will be remarked as they arise. Finally, exactly
the same procedure in the problems which are discussed by Friedrichs yields the
first approximation to his results. Thus there can be little doubt of the validity
of the hypothesis.

1t is assumed in the theory that the body is slender and pointed at the nose,
with the front shock attached, but even if these conditions are not satisfied it
may still be used to deduce the behaviour of the flow at large distances. For,
certainly at a sufficient distance from the body the disturbance will be small.
Therefore, consider a stream tube with radius so large that its deviation from a
cylinder of constant radius is very small. Then the problem of the flow outside is
that of the flow past a quasi-cylindrical duct and it may be described by the
theory of this paper, and hence the similar results at large distances obtained.
In this case, of course, the arbitrary function occurring in the solution remains
undetermined since it depends on the shape of the stream tube which is unknown
unless the flow near the body is solved. This is in agreement with the previous
work [5] since then the arbitrariness could only be resolved when the body was
slender and the general theory linked up with the shape of the body by means of
linear theory. Thus the present theory entirely replaces the previous paper;
it is much fuller, it includes all the “lurge distance” results and is obtained much
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more quickly and easily since the exact equations of motion are now avoided.
The other restrictive condition is that of axial symmetry. Suppose that this condi-
tion is relaxed but that the body is slender and pointed at the nose (with attached
shock). The linearized theory of this problem has been given by Ward [6],
and it is found that the flow becomes axisymmetrical when r \/TM -1/ {x —
r vV (M? = 1)} is not small. The quantity z — r v/ (M* — 1) is the linearized
form of the characteristic variable and measures the distance from the nose at
which the characteristic starts; hence the condition is, correctly interpreted,
that at any point the distance from the axis divided by the distance from the
nose at which the characteristic surface {on which the point lies) started from the
body, should not be small. This is clearly satisfied at large distances, but it is
also true at points on the front shock; they are effectively at large distances be-
cause the appropriate characteristic surfaces arise so very close to the nose.
(Considerable use is also made of this in the axisymmetrical case; it is discussed
in more detail in Part 4.) Hence the results for the front shock and all the theory
at large distances apply unchanged to the non-axisymmetrical slender body.
From these extensions, it seems reasonable to suggest that the results for large
distances apply to the supersonic flow past any finite body. These results are
(see Parts 4 and 6) that there are two main shocks whose equations are approxi-
mately z = r/(M* — 1) — br'*and z = rv(M® — 1) + b;r'%, where b and b,
are constants depending on the body shape. The strengths fall off like r°"
and at points between the shocks the pressure falls linearly with time at a rate
0.24/(1 — M%) r ‘atmospheres/millisec (where r is measured in metres) which
is independent of the body shape.

Before proceeding to the detailed theory, it is of interest to consider the applica-
tions of the method presented here to other problems. In principle at least, the
method is extremely simple, the main reason for this being that the non-linear
equations of motion are avoided, although the geometrical treatment of the
shocks by the ‘“‘angle propertv’”’ adds much to the simplicity of its application.
Moreover, since the means by which the linearized theory is rectified is of a
general nature, it is hoped that this new approach will prove to be of value in
other problems of research. It is immediately applicable to the connected
problems of fluid flow in which there are only two independent variables. The
one-dimensional unsteady waves and the two-dimensional steady supersonic
flow (already discussed by Friedrichs) have been mentioned. Others which are
easily solved are the problems of unsteady waves with cylindrical or spherical
symmetrv. The latter of these is of practical interest in explosions but since
in explosions a very large disturbance of the air is desired (projectiles are designed
to have the opposite effect), only the behaviour the theory gives at large distances
would be of value. Hence there is little of practical importance to be added to
the author’s paper [7] on the subject, although the work could now be considerably
shortened, and for scientific interest a very weak explosion could be described
completely. The author hopes to solve other problems involving two independent
variables, where the only difficulty is the application of the method, and also to




develop a similar technique for problems involving three independent variables.

In the account of the work many figures are necessary; they are of two types:
First there are sketches which form part of the explanation of the text; in order
to make the essential details clear they are not drawn in correct proportion (for
example, distances in the Mach direction are very large and therefore sketches of
the flow plane are contracted in this direction). These figures are numbered and
are inserted in the text at the appropriate points. Secondly, there are graphs
which show the results of numerical calculations, and may be referred to through-
out the paper; because of their different nature these are collected separately
at the end of the paper.

2. Improvement of Linearized Theory

Let the steady stream have velocity U in the z-direction, and at a general
point (z, r) let the velocity be (U 4+ Uw, Uv). The flow is assumed to be irrota-
tional hence the perturbation velocities v and » may be deduced from a potential
¢ which, on the linearized theory, satisfies the equation

| 1 2
(1) " d’rr + ;¢r - a¢z.r = O,

where @ = V/ (Mz — 1) and suffixes denote partial differentiation. The solution
of (1) which represents a disturbance propagated downstream from a body is

I A N OX
@ ¢ = j; Vi =t — o
giving
- _[77 J'(8) di
@ “= j; Vi — 8 -t
1T - of(0d
(4) T or fo \/(13 _ t)2 _ a21_2’

the downstream characteristics of the equation are  — ar = constant. The
arbitrary function f(x) is determined from the boundary condition on the body
and will be dealt with in detail in the next paragraph.

The method by which linearized theory must be modified has been described
in the introduction and is embodied in the following precise hypothesis.
Linearized theory gives a correct first approximation everywhere provided that the
value which it predicts for any physical quantity, at a given distance r from the axis
on the approximate characleristic * — ar = constant, pointing downstream from a
given point on the body surface, is interpreled as the value, at that distance from the
axis, on the exact characieristic which points downstream from the said point.
Carrying out the modification, » and v become, replacing * — ar by y(z, 7),

7
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y is now determined from the condition that y(z, r) = constant is a characteristic
curve,; that 1s, along 1t dz/dr = cot (u + 8), where p is the local Mach angle
and @ is the local direction of flow. The local velocity of sound, q, is determined
from Bernoulli’s equation,

2 2
a

@) e o LGRS I e R R

where suffix 0 refers to the Valﬁe in the undisturbed stream and « is the ratio of
the specific heats, hence

(8) u = sin™’ g =y — (1 + 7 ; 1 Mi)a"‘u + 0@ + o),

where ¢ is the magnitude of the velocity. The stream direction 8 is given by
tan"'{o/(1 4+ w)} = v + O’ + v®). Therefore, on y = eonstant,

d (v + DM’

(9) o =« 1 o w— M@+ aw) + OW + ).

The value of y on a characteristic has not been defined uniquely, although on the
body it must be approximately equal to £ — ar (which it replaces in linearized
theory); it-is now made quite definite by tuking it equal to the value of £ — ar
at the point where the characteristic meets the body surface.® Then, substitution
of (5) and (6) in (9) gives, on performing the integration,

ES A {mza? TR RS Y.

T=ar % Vi =1
. . [ '\/y—t—!—zar-—\/y—t
10 — 2 1 { e
(10 fu ANy — i f 2ar + vy -

Vy — t+ 2aR(y) + \/y—t},
. L d
\/y—'t+2aR(y)—\/y—tf(t) LTy

=oar —cy, 1) + 9,

say, where R(z) is the radius of the body. The expression (10) determines
y(z, r) only approximately, since in (9) terms O(x* + v*) have been neglected

3t is convenient, however, to think of y as being approximately the distance z from the
nose, where the characteristic produced meets the axis.
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and the first order approximations (5), (8) substituted. But, unlike linearized
theory which takes y = z — ar, thus neglecting a term which becomes infinitely
large compared to £ — ar both at large distances and near the leading Mach
cone (see (12)), this is a valid approximation since the terms- neglected really
-are small compared to those retained. Egquations (5), (6) and (10) now describe
the solution.

This equation for the characteristics, which determines y(x, r), is extremely
complicated and fortunately it is not necessary to make use of it in this form.
In general only the approximation for ar/y large is required. Then the expressions
(5), (6) and (10) become

(11) u = f/(‘;)a rV% b = —au,
(12) x=ar — kFy)r'” + y,
where
fo de
13) Fiy) = f T
and

k — 2—-1/2(7 + 1)M4a_3/2-

Taking v = 1.4, a graph of the varation of £ with Mach number M is given in
Graph A. The function F(y) is fundamental to the whole theory and is the most
important function associated with flow past a body of revolution, as will be
seen. 'The next paragraph is devoted to its determination from the given body
shape, and to a consideration of its properties.

1t should be noted that, as far as the value of the physical quantities  and v
are concerned, nothing is gained by preferring (10) to (12), since when ar/y
is not large, both ¢(y, r) and kF (y)r'’® are small and the differences they make in
(5) and (8) are of the same order as terms already neglected there. Hence for
the physical quantities, the value of y determined by (12) may be used every-
where. However (10) still provides the correct approximation to the character-
istic curves near the body; this will be used later.

It may be mentioned as additional support for the theory that (11) and
(12) are in agreement with the general principle, deduced by Lighthill in §6
of his paper [8].

3. The Function F (y)

The arbitrary function f(x) is determined by application of the boundary
condition that the normal velocity at the body surface is zero. This condition
when linearized becomes v = R’(x) on r = R(z), where E(x) is the body radius
at a distance z from the nose. In the most well known form of the linearized



theory, 1t is assumed that the body is sufficiently smooth (S’(z) continuous at
least) for the expression (4) for v to be approximated as f(x)/r when r is small,
hence the boundary condition gives ‘

f@) = R(x)R'(x) = S'(z)/2m,
so that from (13),

S'(t) dt

Vy—t

If $'(x) and S”(z) are continuous and O(§°) then the error in using this value of
f(z) and hence the error in F(y) is O(8* log 1/8) (see [3]), where & is the thickness
ratio; under these conditions the body will be said to be “smooth’” and the simple
form (14) will be used. If S”'(z) has discontinuities, (14) still gives some approxi-
mation and its accuracy and limitations may be investigated directly as in the
previous case but this will not be done here. It is easier and more instructive to
see when the general expression, which must be found in any case to apply when
S’(z) is discontinuous, may be reduced to (14).

The linearized theory for a body with discontinuities of slope has been given
by Lighthill [9] and in fact the author is indebted to Professor Lighthill for
suggesting thé expression for F(y) which must be used in this case. The “dis-
continuity theory’” makes use of the powerful Heaviside calculus in which the
operation [g dz is represented symbolically by p~'. Then (2), (3) and (4) become

¢ = —Kolapr)f(a),

(14) o =5 [

(15) u = —pK,(epr)f(z),

v = —apKilapr)f(x) = apK (apr)f(x),

where K, and K, are the Bessel functions as defined by Watson. Application of
the boundary condition yields

(16) B (x) = [apK lepn) f()], -k »

and although this gives a formal relation for f(z) its interpretation is difficult
in general because [K,{apr)],-z«, cannot simply be replaced by K,(apR(x)),
(the latter would allow the operators to act on R(x) and this is not intended).
If the body is smooth it is permissible in (16) to use the expansion K,(apr) ~
(apr)™" for apr small since a formal rule of Heaviside calculus is that in such an
expression apr behaves like ar/x (which formally it represents) in that if ar/x
is small then the expression in question may be expanded for apr small, and ar/z
1s small on the body. Hence apK,(apr)f(z) ~ f(x)/r and (16) gives f(z) =
R(x)R'(z). But, if the body has a discontinuity of slope at = ¢, , apr behaves
in the expression like ar/(z — ¢,) which is small only away from the discontinuity;
hence some other approach is required. If the problem were that of flow outside
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a quasi-cylindrical duct with R(x) approximately constant there would be no
difficulty; (16) would give immediately

_ 1 S'(x)
(17) 1@ = RR(opR) 2r °
This suggests that if in the case of the projectile the body is divided into small
intervals x = ¢, ,¢7=1,2 3, ---, the contrlbutlon to f(x) of the increment
AS'(t) in 8(z) in the z-th interv al 18

_ 1 AS(t)
B opR; K (apR;) 2w

where R(t,) = R, and H(x) is the Heaviside unit step function. Now f(x) is
taken to be D fi(x) and it may be verified that the boundary condition (16)
is satisfied. For at # = {, , say, the contribution of f,(x) to the right hand side
of (16) is

K, (apR,)_ AS'(1)
(19) RK(apk) 2 1@~ 4

1f ¢, is not near ¢, so that aR,/({, — t.) is small the expansions of the Bessel func-
tions for small argument can be used as for the smooth body, and (19) is approxi-
mately AS'(¢,)/R. ; i t; is near i, so that (R, — R.)/R, is small, (19) is again
approximately AS’(t;)/R, . Now for all the ¢; , one of these conditions holds, be-
cause if (¢, — t;) = O(aR,) then R(t,) = R(t. + O(aR,)) = R(t;) + O(aR'(t)R,),
that is (R, — R.)/R, = O(aR]) which is small by definition of a slender body,
hence (19) is AS’(t;)/R, for all 7 and clearly (16) is satisfied by the sum. Essen-
tially the method is a combination of the methods used for the smooth body and
the duct; away from the discontinuities the former can be used with its expansions
for small apR, whilst near a discontinuity R(z) is approximately constant and
the duct expressions apply. Thus f(z) is the sum over ¢ of the terms given by
(18). If g(x) represents {pK,(p)} *H(x) then f,(z) = g{(x — t,)/aR.;}AS(t; )/27r,
hence summing over z and taking the limit,

(20) f@) = fo (aR(t) )dg;(t)'

The properties of g(x) and f{z) can be discussed in detail by the methods used
below but it is unnecessary in this work since the important function is F(z) =

x'2p"*f(x). The value of F is found similarly to f by summing the contributions
from (18) and taking the limit, and is

(18) Ji{z) H(zx — &),

@ ro = [ () k) B,
where |
22) h(z) = \/%’ KIGS H(z).
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Expressions (20) and (21) are Stieltjes integrals and apply whether S'(z) is
discontinuous or not,

In order to discuss the properties of F(y), it is necessary to know the function
h(z). The expression (22) for h(z) may be interpreted by the usual methods of
the Heaviside calculus and calculated numaérically, but in addition its behaviour
for small and large values of £ may be deduced from the corresponding behaviour
of its representation (22) for large and small values of p, respectively. For
large p, K,(p) ~ ='%¢%/(2p)"”* hence for small z, h(z) ~ H(x) = H(z + 1);
for small p, K,(p) ~ p™' hence for large z, h{x) ~~(2x)"""*. Therefore h(x) is
zero until z = — ] where it jumps to the value 1, and 1t ultimately tends to zero
like (22)'/%; the graph of h(z) obtained from the numerical work is shown in
Graph B, together with that of (22)7"% It is observed that h(x) attains its
asymptotic value very quickly, t} e two curves being indistinguishable for z > 4,
and since p~ ' {h(z) — (22)"V*} = p 2 *(2p) "V *{(K.(p))T' — p} = Dasp— 0,
the areas under the curves are equal.

The upper limit in the integral for F(y) may be replaced by T'(y), where
y = T — aR(T). because /(2) = 0 for r < —1i. This value T is the dist.nee
from the nose at which the characteristic y = constant leaves the body surface,
thus F(y) depends upon the shape of the body up to this point as would be ex-
pected from the nature oi supersonic flow. However, for the smooth body.
expression (14) for F(y) includes values of S(i{) only for the shorter range
0 <t £y Of course, this deviation from the expected range of dependence
occurs in the first place in the ordinary lincarized theory, and it is a remarkable
result of that theory (see [3]) that although on general grounds it would be ex-
pected to introduce an error, for a smooth body it actually improves the accuracy.
It is of interest to consider the connection between (14) and (21) further. Assum-
ing that S'(#) is continuous, it is observed that (14) is obtained from (21) by
replacing the integrand in the latter by its asymptotic value (y — #)7'% and
replacing the upper limit 7T'(y) by y. The first step is true for the part of the
range for which t < 7 where y = = + 4aR(r) since h(z) approximately attains its
asymptotic form at x = 1; hence to obtain (14)

(23) f,T (als(z))l/z’L(ZR-_(—t)t) d;'rr( .

is replaced by

1 [ v 8T di
2r L ‘\/y —_ t.

For a smooth body, S"(t) is continuous. Henece using the fact that the areas
under the curves of h(x) and (2r)™'* are equal, the difference of (24) and (23)
is certainly of smaller order than the error O(6%) in (21). (The error in (21) is a
factor 1 + 0(8) and for the smooth body F(y) is 0(8%).) Thus (14) and (21)
are equivalent in this case and it is interesting that in fact (14) is more accurate.
Near a discontinuity of S’ {f} it may be shown that the error in replacing (23)

(24)
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by (24) is O(5*'%). Hence (14) gives a poor approximation to (21) and moreover
the value of F'(y) given by (14) becomes infinite at the point whereas it may be
shown from (21) that it should really be 0(5*?); for these reasons (14) will not
be used except for the smooth body. It may be remarked in connection with this
that even when 8'(t) is discontinuous, away from the discontinuities (there must
be no discontinuity of S'(¢) or 8”(t) in' r < ¢t < T) the general expression for
F(y) may be approximated by the Stieltjes integral

1 (" dS(t)

2n o Yy — t

which might have been expected to provide the necessary extension of the smooth
body theory to the discontinuous case. '

Now a discontinuity of S’(f) at t = {, , say, causes a discontinuity in F(y)
of magnitude

(26) (aRLZtl))W S,

(25)

Such a jump in F(y) means that for the corresponding value of y; F can take a
whole range of values and hence there will be a fan of characteristics t = ar —
kF(y)r'’® -+ y through that point on the body. If the discontinuity in slope is
& decrease, AF < 0 and the flow expands round the corner in direct analogy with
the Prandtl-Meyer expansion of two dimensions; if the discontinuity in slope
is an increase, the fan is reversed so that there is a fold in the flow plane and an
attached shock must intervene. These occurrences are discussed in detail in
Part 4 but it may be noted here that the range of slopes of the characteristics in
the fan 1s in exact agreement with the two-dimensional result.

The behaviour of F(y) for small and large y will be required in the course of
the work. For y sufficiently small, there are no discontinuities of S'(f) (for the
bodies under consideration) and the expression (14) is applicable. Near the nose
S"(l) = 2r¢" where ¢ is the initia) slope R’(0), i.e., the nose semi-angle, hence

@7 F(y) ~ 2897 as  y—0.

For y sufficiently large, there will be no discontinuities near t = y, hence (25)
may be used, ie. F(y) = »'*p'*S'()/2xr = ='’p*”S(y)/2x. The behaviour
of F(y) for large y is deduced from the behaviour of its operational representation,
and for a body whose ultimate radius is finite, the Heaviside representation of
S(y) is S() + O(p) for small p; therefore

(28) Fly) ~«'*p**8(w)/2r = y*’S(»)/4x a5 y—w.

Finally, the result that [T F(y) dy = 0 will be required later. Since F(y) =
=2V (y), ft Fly) dy' = p 'Fly) = ='*p '*f(y), and this integral tends to
zero as y — o if #%p " *f(y) — 0 as p — 0. This is the case provided that
the representation of f is like p*/**%, where 8 > 0, as p — 0, i.e. f(y) = Oy **™®)
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