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Preface to the Series -

On Perspectives. Mashematical logic arose from a concern with the nature and
the limits of rational or mathematical thought, and from a desire to systematise
the modes of its expression. The pioneering investigations were diverse and largely
autonomous. As time passed, and more particularly in the ldst two decades, inter-
connections between different lines of research and links with other branches of
mathematics proliferated. The subject is -now both rich and varied, It is the aim
of the series to provide, as it were, maps or guides to this complex terrain. We
shall not aim at encyclopaedic coverage; nor do we wish to prescribe, like. Euclid,
a definitive version of the elements of the subject. We are not committed to any
particular philosophical programme. Nevertheless we have tried by critical discussion
to ensure that each book represents a coherent line of thought; and that, by
developing certain themes, it will be of greater interest than a mere assemblag
of results and techniques. _ '

-~ The books in the series differ in level: some are introductory some highly
specialised. They also differ in scope: some offer a wide view of an area, others
present asingle line of thought. Each book is, at its own level, reasonably self-contained.
Although no book depends on another as prerequisite, we have encouraged authors
to fit their book in with other planned volumes, sometimes deliberately seeking
coverage of the same material from different points of view. We have tried to attain -
a reasonable degree of uniformity of notation and arrangement. However, the books
in the series are written by individual authors, not by the group. Plans for books are
discussed and argued about at length. Later, fnb@yfdger’nent is given and revisions
suggested. But it is the authors who do the Work.; if, as we hope, the series proves of
value, the credit will be theirs. i o -

History of the Q-Group. During 1968 the idea’of an integrated series o, monographs
on mathematical logic was first mooted. Various discussions led to a meeting at
Oberwolfach in the spring of 1969. Here the founding mesibers of the group (R. O.
Gandy, A. Levy, G. H. Miiller, G. E. Sacks, D. S. Scott) discussed the project in
earnest and decided to go ahead with it. Professor F. K. Schmidt and Professor Hans
Hermes gave us encouragement and support. Later Hans Hermes jaingd the group.
To begin with all was fluid. How ambitious should we be? Shculd wewrite the books
ourselves? How long would it take? Plans for authorless books were promoted,
savaged and scrapped. Gradually there emerged a form and a method. At the end of
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an infinite discussion we found our name, and that of the series. We established our
centre in Heidelberg. We agreed to meet twice a year togeiher with authors, con-
sultants and assistants, generally in Oberwolfach. We soon found the value of
colluboration: on the one hand the permanence of the founding group gave coherence
to the. over-all plans: on the other hand the stimulus of new contributors kept the
project alive and flexible. Above all, we found how intensive discussion could modify
the authors’ ideas and our own. Often the battle ended with a detailed plan for a better
hook which the author was keen to write and which would indeed contribute a
perspective.

Acknowledgements. The confidence and support of Professor Martin Barner of
the Mathematisches Forschungsinstitut at Oberwolfach and of Dr. Klaus Peters
of Springer-Verlag made possible the first meeting and the preparation of a provisional
plan. Encouraged by the Deutsche Forschungsgemeinschaft and the Heidelberger
Akademie der Wissenschaften we submitted this plan to the Stiftung Volkswagenwerk
where Dipl. Ing. Penschuck vetted our proposal; after careful investigation he -
became our adviser and advocate. We thank the Stiftung Volkswagenwerk for a
generous grant (1970-73) which made our existence and our meetings possible.

Since 1974 the work of the group has beén supported by funds from the Heidelberg
Academy ; this was made possible by a special grant from the Kultusministerium von
Baden-Wiirttemberg (where Regierungsdirektor R. Goll was our counsellor). The
success of the negotiations for this was largely due to the enthusiastic support of the
former President of the Academy, Professor Wilhelm Doerr. We thank all those
concerned.

Finally we thank the Oberwolfach Institute, which provides just the right atmo-
sphere for our meetings, Drs. Ulrich Felgner and Klaus Gléde for all their help,
and cur indefatigable secretary Elfriede Ihrig.

Oberwolfach R. O. Gandy H. Hermes
Septemiber 1975. A. Levy G. H. Miiller
G. E. Sacks D. S. Scott



Author’s Preface

Almost all the recently-published books on set theory are of one of the following
two kinds. Books of the first kind treat set theory on an elementary level which is,
roughly, the level needed for studying point set topology and Steinitz’s theorem
on the existence of the algebraic closure of a general field. Books of the second kind
- are books which give a more or less detailed exposition of several areas of set
theory that are subject to intensive current research, such as constructibility,
forcing, large cardinals and determinacy. Books of the first-kind may serve well
as an introduction to the subject but are too elementary for the student or the
mathematician who wants to gain a deeper understanding of set theory. The books
of the second kind usually go hurriedly through the basic parts of set theory in
their justified haste to get at the more advanced topics. One of the advantages of
writing a book in a series such as the Perspectives in Mathematical Logic is that
one is able to write a book on a rather advanced level covering the basic material
in an unhurried pace. There is no need to reach the frontiers of the subject as one
can leave this to other books in the series. This enables the author to pay close
attention to interesting and important aspects of the subject which do not lie on
* the straight road to the very central topics of current research. :

' I started writing this book in 1970. During the long period since that time I
ha¥e been helped by so many people that I cannot name them all here. Several of
my colleagues advised me on the material in the book, read parts of the manuscript
and made very useful remarks, and taught me new theorems and better proofs of
theorems I knew. Many typists typed the numerous versions of the manuscript
and bore with admirable patience all my inconsistent instructions. I shall mention
in name only Klaus GKde and Uri Avraham to whom I am most grateful for
diligently reading the galley proofs, correcting many misprints and mistakes.
This book would not have been written without the initiative and encouragement
of my colleagues in the Q group. 1 enjoyed very much their company and
collaboration. ’

I shall be most grateful to any reader who will point out misprints, mistakes
and omissions and who will supply me with additional bibliographical references.
This will hopefully be incorporated in later printings of this book.

Most of this book was written while I stayed as a visitor at Yale University in
- the academic year 1971-72 and at UCLA in 1976-77. I extend my thanks to the
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National Science Foundation of the United States for partially supporting me
during those years.

May 12, 1978 A. Levy

Jerusalem
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Chapier 1
The Basic Notions

All branches of mathematics are developed, consciously or unconsciously, in set
theory or in some part of it. This gives the mathematician a very handy apparatus
right from the beginning. The most he usually has to do in order to have his basic
language ready is to describe the set theoretical notation he uses. In developing
set theory itself we have no such advantage and we must go through the labor of
setting up our set theoretical apparatus. This is a relatively long task. Even the
question. as to which objects to consider, only sets or also classes, is by no means
trivial, and its implications will be discussed here in detail. In addition, we shall
formulate the axioms of set theory; we shall show how the concepts of ordered
pair, relation and function, which are so basic in mathematics, can be developed
within set theory, and we shall study their most. basic properties. By the end of
this chapter we shall be just about ready to begin our real mathematical investi-
" gation of the universe of sets.

1. The Basic Language of Set Theory

In the present section and in Sections 3 and 4 we shal] thoroughly discuss the
language we are going to use for set theory. Usually when one studies a branch
of mathematics one is not concerned much with the question as to which exactly
is the language used in that branch. The reason why here we must look carefully
at the language lies in the difference between set theory and most other branches '
of mathematics. Most mathematical fields use a relatively “small” fragment of set
theory as their underlying theory, and rely on that fragment for the language, as
well as for the set theoretical facts. The source of the difficulty we have in set
theory with the language is the fact that not every collection of objects is a set
(something which will be discussed in detail in the next few sections), but we still
have to refer often to these collections, and we have to arrange the language so
that we shall be able to do it handily. This difficulty does not come up in the
fragments of set theory used for most mathematical theories, since those fragments
deal only with a very restricted family of collections of objects, and all these
collections are indeed sets.

Our present aim is to obtain for set theory a language which is sufficiently
rich and flexible for the practical development of set theory, and yet sufficiently
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simple so as not to stand in the way of metamathematical investigation of set theory.
For this purpose we start by choosing for set theory a very simple basic language.
The simplicity of this language will be a great advantage when we wish to discuss
set theory from a metamathematical point of view. The only objects of our set
theory will be sets. One could also consider atoms, i.e., objects which are not sets
and which serve as building blocks for sets, but they are not essential to what we
shall do and, therefore, will not be considered in the present book. As a consequence
of this decision, we view the sets as follows. We start with the null set 0, from it
we obtain the set {0}, from the two sets 0 and {0} we obtain the sets {0, {0}} and
{{0}} and so on. Much of set theory is concerned with what is meant by this
“and so on”

The language which we shall use for set theory will be the first-order predicate
calculus with equality. Why first-order ? Because a second-order or a higher-order
theory admits already a part of the set theory in using its higher order variables.
To see, for example, that second-order variables are essentially set variables let us
consider the following axiom of second-order logic: 34Vx(x € 4 <> &(x)), where
&(x) is, essefitially, any formula. This axiom is read: there exists a ser 4 such that
for every x, x is a member of A if and only if ®(x). It would, of course, change
nothing if we would choose another term instead of “‘set”, since “set’ is what we
mean anyway. When we develop a formal system of set theory it does not seem
right to handle sets in two or more parts of the language, i.e., by considering some
sets as first-order objects, while having around also second-order objects which
are sets. As a consequence of our decision we shall have, in principle, just one
kind of variable, lower case letters, which will vary over sets.

The reason why we take up first-order predicate calculus with equality is a
matter of convenience; by this we save the labor of defining equality and proving
all its properties; this burden is now assumed by the logic.

Our basic language consists now of all the expressions obtained from x = y
and x € y, where x and y are any variables, by the sentential connectives —(not),

— (if...then...), v (or), A (and), < (if and only if), and the quantifiers Ix
- (there exists an x) and Vx (for all x). These expressions will be called formulas. For
metamathematical purposes we can consider- the connectives — and v as the
only primitive connectives, and the other connectives will be considered as obtained
from the primitive connectives in the well known way (e.g., A Y is —~(—¢ v —y),
¢ — Y is ~¢ v i, etc.). For the same reason, we can consider 3 as the only primitive
quantifier and the quantifier V as defined by means of 3 by taking Vx¢ to be an
abbreviation of — 3x—¢. We shall also use the abbreviations x# y and x ¢ y for
—x=y and —x € y. We shall write 3! x¢, and read : there is exactly one x such that
@, for the formula 3yVx(x =y < @), where y is any variable which is not free in ¢.
Finally, we shall write (3x € y)¢ and (Vx € y)¢ for Ix(x € y A ¢) and Vx(x € y— é),
respectively, and read: “there is an x in y such that ¢™, and “for all x in y, ¢”".

By a free variable of a formula we mean, informally, a variable occurring in that
formula so that it can be given different values and the formula says something
concerning the values of the variable. E.g., x is a free variable in each of the
following formulas (which are not necessarily taken from set theory): x<3x,
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x%=y, x is a real number, sin x>, Vy(z<y— x<y). x is not a free variable in
the formulas Vx(x2>0), —3x(x € y), [} sin x dx<%. In the latter three formulas x
is an auxilliary variable which cannot be given a definite value and which can be
replaced throughout each formula by another variable, say z, without changing
the meaning of the formula. In these examples x is used as a bound variable. Note
that Vx(x2>0) says exactly ‘what Vz(z? =0) says, while sin x>3 1 does not say the
same thing as sin z> 1; in fact, for appropriate values of x and z sin x>} may be
true, while sin z>4 may be false. A variable may have both free and bound
occurrences in the same formula, even though one would usually try to avoid it;
e.g., in 7<z A 3z(z> x), the occurrences of z in 3z(z>x) are bound, while the
occurrence of z in 7 <z is free (since the quantifier 3z applies only to z > x).

A formula with free variables says something about the values of its free
variables. A formula without free variables makes a statement not about the value
of some particular variable, but about the universe which the language describes.
A formula of the latter kind is called a sentence. We shall also refer, mformally,
to formulas and sentences as statements.

Whenever we use a formula with free variables as an axiom or as a theorem we
mean to say that the formula holds for all possible values given to its free variables.
Thus, if we state a theorem 3z(z = xUy) we mean the same thing as VxVy3z(z = xuy).

By a theory we mean a set of formulas, which are called the axioms of the
theory. If T is a theory, we shall write T}-¢ for *“¢ is provable from 7.

When we refer to a formula as ¢(x) this does not mean that x is necessarily a
free variable of ¢(x) nor does it mean that ¢(x) has no free variables other than x;
it means that the interesting cases of what we shall say are those where x is indeed
a free variable of ¢(x). When we shall mention ¢(z) after we have first mentioned
&(x), then ¢(z) denotes the formula obtained from ¢(x) by substituting the variable
z for the free occurrences of x. (z may also be'a bound variable of ¢(x), and then
before we substitute z for the free occurrences of x we may have to replace the
bound occurrences of z by some other variable.)

2. The Axioms of Extensionality and Comprehension

By a set we mean a completely structure-free set, and therefore a set is determined
solely by its members. This leads us to the first axiom of set theory.

2.1 Axiom of Extensionality (Frege 1893). Vx(xey e x€2) — y=z.
In words: if y and z have the same members they are equal. The converse, that
‘equal objects have the same members, is a fogical truth.

2.2 The Existence of Sets. Now we face the question of finding or constructing
the sets. We want any collection whatsoever of objects, i.e., sets, to be a set. This
is not a precise idea and there&fore we cannot translate it into our language. We
must therefore be satisfied with a somewhat weaker stipulation. We shall require
that every collection of sets which is “specifiable” in our language is a set; i.e., for
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every statement of our language the collection of all objects which satisfy it is a

“set. We shall by no means assume that it is necessarily true that all sets are speci-
fiable; moreover, by introducing the axiom of choice we shall require the existence
of sets which are not necessarily specifiable. The requirement that all specifiable
collections are indeed sets is the following one. :

2.3 Axiom of Comprehension (Frege 1893). 3yVx(x € y «»¢(x)),

where ¢(x) is arty formula (of the language of sct theory) in which the variable y
is not free (since if y were free in ¢(x) this would cause a confusion of the y freein
&(x) with the y whose existence is claimed by the axiom). Our only reason in
writing ¢(x) instead of just ¢ is to draw attention to the fact that the “interesting”
_cases of this axiom schema are those for which the formula ¢ does actually contain
free occurrences of the variable x.

The axiom of comprehension is an axiom schema, i.e., it is not a single sentence
but an infinite set of sentences obtained by letting ¢ vary over all formulas. Any
single sentence obtained from 2.3 by choosing a particular formula for ¢ in 2.3
is said to be an instance of the axiom schema, and is also called “an axiom of
comprehension.” [ '

Those readers who were convinced by the axiom schema of comprehension
are now in for a shock; the axiom schema of comprehension is not consistent—*
Theorem 2.4 below is the negation of one of its instances.

2.4 Theorem (Russell’s antinomy—Russell 1903). —PVx(xey o x¢x).

Proof. Notice that this theorem is not just a theorem of set theory; it is a theorem _
of logic, since we do not use in its proof any axiom of set theory. We prove it by
contradiction. Suppose ¥ is a set such that Vx(x €y« x ¢ x), then, since what -
holds for every x holds in particular for y, we have ye y «» y ¢y, which is a con-
tradiction. [0 ‘

Russell’s antinomy is the simplest possible refutation of an instance of the
comprehension schema. We refer to a refutation of such an instance as an antinomy.
The first antinomy to be discovered is the Burali-Forti paradox discovered by
Cantor and by Burali-Forti in the 1890’s; it is given in 11.3.6 and I1.3.15. Some
variants of Russell’s antinomy are given in 2.5.

2.5 Exercise. Prove the negation of the jnstance of the axiom of comprehension
where ¢(x) is one of the following formulas: ’

(@) —Ju(xeunuex),

() —3uy.. Ju(xeuyAuyeuy A AUy_€u AU EX). O
2.6 How to Avoid the Antinomies. One can reac: to Russell’s antinomy in two
different ways. One way is to think again of what led us to the axiom of compre-
hension, and to decide that since a set is something like 0, {0}, {0, {0}}, etc., we
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* should not have come up with anything like the axiom of comprehension anyway.
According to this view, the axipm of comprehension is basically false, since it
re~-esents a mental act of ““collecting” all sets which satisfy ¢(x), and this cannot
be done since we can “collect” only those sets which have been “obtained” at
an “earlier” stage of the game. This point of view was suggested first by Russell
1903 as one of the ingredients of his theory of types. The othér possible reaction to
Russell’s antinomy is to continue believing in the essential truth of the axiom
schema of comprehension, viewing the Russell antinomy as a mere practical joke
played on mankind by the goddess of wisdom. According to this point of view the
axiom schema of comprehension is only in need of some tinkering to avoid the
antinomies; the guide on how to do it will be the doctrine of limitation of size. The
doctrine says that we should use the axiom schema of eomprehension only in
order to obtain new sets which are not too “large” compared to the sets whose
existence is assumed ‘in the construction. Also this doctrine, which is already
implicit in Cantor 1899, was formulated first by Russell 1906. In our framework
of set theory both approaches lead to the same result, and therefore there is no
mathematical need to' go through the arguments in favor of each one of them.
Motivations for the choice of the axioms, from both points of view, are presented
in the literature (see, e.g., Fraenkel, Bar-Hillel and Levy 1973 and Scott 1974)
and will hopefully be presented in a later book in this series dévoted to the axio-
matics of set theory. Here we shall mostly rely on the acceptance by the reader of
the axioms which we shall mtroducc as intuitively rw.sonablc axioms. (OO

Let us still notice one feature of the axiom of comprehension. After the failure
of the full axiom of comprehension, we cannot be sure that, given a formula ¢,
thereis a set y such that Vx(x €,y ¢(x)). However, if there is such a y it is unique,
as stated in the next theorem.

" 2.7 Proposition. If there is a y such that
Vx(x ey ¢(x))

then this y is wu'qué.

Proof. If y'’is also such, ie., Vx(xey' « ¢()é)), then we have, obﬁdusly, -
Vx(x ey’ xey), and by the axiom of extensionality, y'=y. [

3. Classés, Why and How

- As we shall come to see, the main act of generatxon of set theory is that objects are
collected to become a set, which is again an object which can be collected into a
new set. We saw above that, because of the antinomies, not every collection of
objects which can be specified in our language ¢an be collected to become a “‘new”
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object. This is by no means disastrous for mathematics, since, by means of ap-
propriate axioms which we shall introduce, we shall be able to show that suf-
ficiently many of the intuitive collections can indeed be taken as sets to satisfy
the mathematical needs. This will enable us to obtain sets such as the set of all
real numbers, the set of all countable ordinals, the set of all measures on some
given set, etc.

There are many things we can say about an.intuitive collection of objects
without assuming that the collection is an object itself. Let us see an example.
Suppose we want to say

Every non-void subset u of the collection of all sets x such that x ¢ x
has a member y such that y has no common member with the collection.

)

This can also be said as
(2) Vu(u#z0A (Vxeu)x¢ x - (Ayeu) (Vxey)xex).

Notice that (2) does not mention the collection mentioned in (1). We could decide
never to use (1) and always to use (2) instead; but, as we shall point out now, and
as will become even clearer to the reader as he goes on reading this book, this
would have required a considerable sacrifice of convenience. Sometimes we want
to say about many or all specifiable collections what we said in (1) about one
particular collection. We can proceed as in (2) but this requires using an infinite
family of formulas. This is illustrated by the following example. Suppose we want
to say that for every specifiable collection A4

3) Vu(u#O AuSA— (Ayeu)y¢ A) — A has at most 10 members.
We can say the same thing also by asserting that for all formulas ¢(x, x,, ..., x;)

Vx,. . VX [Viuu#0A (Vxe w)d(x, x,,....x,)—
4) Qyeuw)-¢(y, x,, ..., x,))—> there are at most
10 objects x such thar ¢(x, xy, ..., x,)].

To see that (3) and (4) say the same thing notice that the specifiable collections 4
are exactly those given as the collection of all objects x such that ¢(x, x,, ..., x,)
holds, for some formula ¢(x. x,, . . ., x,) and for some fixed values of x,, ..., x,.
Comparing (3) with (4) shows that (3) is not only shorter but also much easier to
comprehend than (4). Thus we see that it is a great advantage to be able to talk
about collections as if they were sets even though we know. as a result of Russell's
antinomy, that not all of them are sets. A uniform way of talking about/sets and
coliections has also the following advantage. We often come across collections
which, at a certain point in the discussion, we do not know whether they are sets or
not. Speaking about them in the same way as we speak about sets puts what we
say about them in a form which retains its convenience even after the collections
turn out to be sets.



