An advanced course

PBuiley K.G.Kulkarni
D.M.RBell B.lindsay
E.Bertino W Litwin

PBuneman G.Lohman
W PCockshott VY.Mosunago
K.).Chisholm (. Mohan

D.Daniels R.Morrison
PA.Dearnliey Plig
S.M.Deen E.A.0xbhorrow
W.A.Gray U.Schiel

L.M Hoas PSelinger

D.CHendry M.RShave
R.G.Johnson P Wilms
V.G.Kollias RVost

JS Knowles

Edited by PN Stocker,
PM.D.Gray and M.PAtkinson

Databases — Role and
Structure

AN ADVANCED COURSE

Edited by

P. M. STOCKER

School of Computing Studies and Accountancy, University of East Anglia
P. M. D. GRAY

Dept of Computing Science, Aberdeen University

M. P. ATKINSON
Dept of Computer Science, University of Edinburgh

has printed
ntimaously
since 1584.

CAMBRIDGE UNIVERSITY PRESS
Cambridge

London New York New Rochelle
Melbourne Sydney

Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 1RP

32 East 57th Street, New York, NY 10022, USA

296 Beaconsfield Parade, Middle Park, Melbourne 3206, Australia

© Cambridge University Press, 1984

First published 1984

Printed in Great Britain at the University Press, Cambridge
Library of Congress catalogue card no.: 84-5909

British Library Cataloguing in Publication Data
Databases—Role and Structure.

1. Data base management 2. File organization
{Computer science)

1. Stocker, P. M. Il. Gray, P. M. D.

1. Atkinson, M. P.

001.64'42 QA76.9.D3

ISBN 0-521-25430-2

CONTENTS

P.M. Stocker
P.M.D. Gray
M.P. Atkinson

Part I
P.M. Stocker

J.S. Knowles
D.M.R. Bell

P.M.D. Gray

P.A. Dearnley

S.M. Deen

S.M. Deen

reported by
P.M.D. Gray
W. Litwin

Part II

P.M. Stocker et al.

P. Selinger
R. Yost et al.
S.M. Deen

P.M.D. Gray

J.G. Kollias

Introduction’ by the Editors

Relational Tutorial

The CODASYL Model

The Functional Data Model Related to
the CODASYL Model

The Physical Design of Databases

The ANSI-SPARC Architecture and its
Implementation in PRECI.

Issues in Distributed Databases

The Successes and Failings of Modern
Database Systems

PROTEUS: A Heterogeneous Distributed
Database Project

The Impact of Site Autonomy on R%, a
Distributed Relational DBMS

PRECI*, a Project for Distributed
Databases

Implementing the Join Operation on a
CODASYL DBMS

A Generalised Model for the Selection
of Secondary Indices

13
19

57

81
93

105

115

126

151

177

185

207

=

o o

R =

Contents

Buneman

Atkinson et al.

. Atkinson
Kulkarni

. Knowles
. Hendry

Schiel

Can we Reconcile Programming Languages
and Databases?

Progress with Persistent Programming

Experimenting with the Functional Data
Model

A Tutorial Introduction to an SQL
Type Language

A Semantic Data Model and its Mapping
to an Internal Relational Model

vi

225

245
31

339

373

INTRODUCTION

OVERALL SUMMARY OF THE MATERIAL

Two database systems have firmly established themselves from the
early days of the subject: IMS and CODASYL. Both are systems which
connect data together into a single integrated structure, Both have
changed appreciably with the years; both have latterly been influenced
by more recent developments in relational systems and both have been
constrained by the form of their beginning and the requirement for
backward compatibility. This requirement to follow a smooth historical
path rather than to make a discontinuous change arises out of sheer
economic necessity. The immediate past contains a large investment,
the income from which cannot just be given up. Moreover, fresh capital
and labour with appropriate skills are scarce. Thus any account of
database systems concerned with interfacing and standardisation must
start from an acceptance that changes must be compatible with, and
provide a smooth development path from, the present situation
concerning database implementations in thousands of organisations.

CODASYL has many years of controlled development through
formalised standards. It is in fact a standard; particular
implementations by manufacturers have distinct names, IDS (Honeywell),
IDMS (Cullinane), DMS1100 (Univac) and form well-developed operational
systems. The development of CODASYL is briefly outlined in the article
by Knowles and Bell, 'The CODASYL Model'. The article is included
because it presents CODASYL up to the 1981 standard for the DDL (Data
Description Language) and DSDL (Data Storage Description Language). In

Stocker, Gray & Atkinson: Introduction

introducing the DSDL a significant step is taken towards the definition
of separated areas of the overall database structure, although the DSDL
is not yet part of the CODASYL standard. It is, perhaps, worth
elaborating this point further.

At the time of the early CODASYL standards the description of a
database was seen as consisting of two parts. The first was the data
definition language, which defined the structure which had been
provided to accommodate the data; the second was the data manipulation
language defining the way in which data could be inserted into the
structure, deleted from it, changed or retrieved.

In 1972 the ANSI/SP@RC Qonnittee produced a Report directed

towardsh_‘ﬁarti‘fikc;;ii;g»w:c'he database specification. This is discussed in
the paper: 'ANSI-SPARC Architecture and its Implementation in the PRECI
model' by S.M. Deen. The architecture proposes three levels of Data
Definition:
i) the Conceptual Level capturing the semantics of
the real-world model,
ii) the External Level capturing the views seen by the
user,
iii) the Internal Level capturing the essential nature
of the implementation at physical or near physical
level.

The early CODASYL DDL was a combination of (ii) and (iii), in
that the wuser (or at least the database programmer) saw a logical
structure which was in 1-1 correspondence with the physical structure.
The Conceptual Level is not present in CODASYL at the present time,
though CODASYL systems are usually supported by a Data Dictionary which
contains some aspects of a conceptual schema. The progression from DDL
into DDL plus DSDL achieves the separation of logical description and
physical description.

The Course contained a paper on Relational Systems corresponding
to Knowles' paper on CODASYL. This is omitted here because the
material is adequately covered, at much greater length, in a number of
easily available books. General observation from the Ilecture is
included here, however, because it is relevant to what follows.
Readers should also see the report of the tutorial lecture by Litwin,
'Successes and Failings of Modern Database Systems', for a different
look at the history of ANSI/SPARC and Relational Systems. Whilst
agreeing about, the key contributions of Relational Systems it takes a

Stocker, Gray & Atkinson: Introduction

more pessimistic and radical view about the usefulness of integrated
conceptual schemas.

Viewed in retrospect it can be seen that the primary impact of
the Relational Model was the use of relations to define the logical
content of a database and the use of relational algebra precisely to
specify queries, and it is probably these aspects which were the
inspirational force behind Codd's seminal paper. Important as these
are there are two other aspects which have had at least as important a
consequence on database development.

The first is that, unlike the CODASYL DML, relational
specification of the logical data says nothing concerning the proposed
form of implementation. Equally, the non-procedural form of relational
queries says nothing concerning the form and order of processing.
Early relational systems simply implemented physical structures which
were direct images of the logical ones. These implementations were
naturally inefficient and so supporting index structures were added.
These led to consideration of the choice of ways in which a relational
query might be processed, and hence the study of query optimisation and
automatic path selection, This in turn led to an interest in automatic
path selection in non-relational CODASYL systems. For that
optimisation to be possible the query must be specified in a
non-procedural manner, in order that the whole process required of the
CODASYL system is specified at the outset. Thus one reaches the
position where a query is expressed in relational terms but applied to
a CODASYL system, resulting in the possibility of automatic, optimised,
CODASYL DML generation. This is covered in Gray ('Implementing the
Join Operation on a CODASYL DBMS'). The second feature of relational
systems is that it is much easier to modify the data description, to
include new material in the database, than it is with CODASYL or IMS.
This is due to the fact that the CODASYL and IMS structures are linked
at DDL definition time, whereas in the relational system it is at query
process time.

The preceding two paragraphs stress that the important factors
are the complete non-procedural specification of the queries and the
run time structural binding. Because these two important advances
first developed in relational systems there is a tendency to attribute
them to the relational model only. Gray's work shows that given a
non-procedural query description, optimized, automatic query processing

is possible on a non-relational implemented structure linked at

Stocker, Gray & Atkinson: Introduction

definition time. Equally, one could define a database structure which
consisted of, say, hierarchic units rather than relations, with the
hierarachic units linked at query run time rather than at data
definition time. This would show many of the advantages associated
with relational systems.

It is clear from the foregoing that there should be a complete
distinction between the logical structure of the data and the
physically implemented structure. This has been appreciated for a
number of years, but there is no doubt that it is difficult fully to
establish this distinction. Undoubtedly one reason for this is that
the operational systems which are currently available do not permit any
more than nominal flexibility in achieving the separation.

At the present one can say that the statement 'the DDL is a logical
description' is approximately true for most systems. The virtual
record mechanism described in the DSDL (Knowles, 'The CODASYL Model")
provides facilities for one form of physical separation, but the DDL,

DSDL distinction is not yet implemented on available CODASYL systems.

The article by Stocker, ('Relational Tutorial') examines the
representation and definition of the mapping between a logical schema
and a physical schema for relational systems and with some reference to
the case where the physical schema is of a CODASYL or IMS nature. This
article is concerned with representation rather than optimisation. A
CODASYL schema may always be viewed as a complex stored join of a set
of relations. The article by Gray ('Implementing the Join Operation on
CODASYL DBMS'), is a detailed analysis of that particular issue, It
goes considerably further in that it is concerned with optimisation, to
find the best mechanism to actually realise the join which is latent in
the CODASYL data structure,

The most simple divergence between logical schema and physical
schema is the case where basically there is a one-to-one mapping
between them but the physical schema contains additional indexes to the
date. This affects automatic path selection in that the selector has
to decide which indexes to wuse and at what point in the sequence.
Earlier than this, however, at the last system definition point, the
database administrator (whether human or automated) must have taken the
decision concerning which indexes to maintain. The article by Kollias,
('A Generalised Model for the Selection of Secondary Indexes'),

describes a formal tool for the index selection problem.

Stocker, Gray & Atkinson: Introduction

So far, in this article, the database schemas have been discussed
in the rather old-fashioned form of logical and physical schema. The
logical schema discussed so far has been concerned with data rather
than with the semantics of data. This concept of a logical schema is
not so strong as that of the conceptual schema contained in the
ANSI/SPARC architecture. The article by Deen, ('ANSI/SPARC
Architecture and its Implementation in PRECI") describes this
architecture and there is no need further to discuss it here. It leads
the reader into three articles: Stocker et al (*(PROTEUS: A Search for
Standard Components in a Heterogeneous Distributed Database System'),
Schiel (‘The Semantic Data Model and its Mapping to an Internal
Relational Model'), and Gray ('The Functional Data Model related to the
CODASYL Model").

All four articles are concerned with the problem of the overall
database system. Three of them, those by Deen, Gray and Schiel,
contain instances of a conceptual schema in the ANSI/SPARC sense. That
of Deen is the closest to the preceding discussion and is concerned
with incorporating semantics into a schema which at the same time
relates to the near implementation schemas of existing database
systems. Gray's paper concerns the functional data model, discussed
later in this Introduction in more detail, particularly in connection
with the relationship between database languages and programming
languages.

The functional data model comprises both data description
language and data manipulation language in a compact and integrated
manner, Just as in earlier articles, where the mappings from
relational data description and query languages to the corresponding
CODASYL were considered, so it is possible to consider mapping from a
functional language into both, though semantic meaning may be lost.
The paper by Gray is concerned with such mappings.

Conceptual schemas (like programming languages) must meet a
variety of needs for an even greater variety of individuals. As with
programming languages much depends upon personal task and environment.
The functional language is sparse with few constructs; the conceptual
schema of Schiel represents an alternative view, being rich in
alternative constructs. Schiel's article contains details of a
complete mapping system, from conceptual schema to logical
spécification of the data storage implementation.

The fourth article by Stocker et al is discussed later in

Stocker, Gray & Atkinson: Introduction

connection with the implementation of a distributed database system,
It suffices here to note that the earlier portion is also concerned
with the conceptual schema, but, in that case, a target schema is
provided into which a functional or 'rich' schema can be mapped. Thus
the PROTEUS system described there is uncommitted to a particular
conceptual schema, freedom of choice remaining with the distributed
nodes. Deen's paper is also concerned with a complete implementation,
PRECI, and, as will be discussed later, a distributed version of it,
PRECI*,

An important theme in the conference was the influence of the new
experimental distributed architectures on the old debate about
centralisation and decentralisation. = We have seen how the ANSI/SPARC
model calls for a unifying conceptual schema whilst the relational
model is more neutral on this matter.

The tutorial paper by Deen ('Issues in Distributed Databases"),
discusses the centralisation issue under various headings: control,
heterogeneity or homogeneity, integrity and wuser views. It shows the
different options that can be taken and is a useful introduction to the
four other papers.

The paper by Gray and Litwin, ('The Successes and Failings of
Modern Database Systems') is most radical, calling for the
establishment of a multi-database where each node controls its own
data, using its own DBMS and its own DML. However, each database must
provide a view to others via a common, non-procedural language, of
those items which it is prepared to share. It also advocates the
handling of bibliographic text and graphic images across the net, which
current data models inhibit.

The paper by Stocker et al, describing the Proteus system, is
also concerned with linking heterogeneous systems. It is concerned to
establish standard internal languages for the transmission both of
schemas and queries. The schema of each database can be expressed in
an ACS (Abstract Conceptual Schema) which is represented by a number of
meta-relations. These include information on the compatibility (or
comparability) of data items values and also on integrity constraints.
The standard internal languages are extensible to allow the
representation of integrity constraints and of queries whose external
source forms are complex expressions (e.g. as used in DAPLEX (The
Functional Data Model and the Data Language DAPLEX, D.W. Shipman, ACM
Transactions of Database Systems, Vol. 6, No. I, March, 1981). Each

Stocker, Gray & Atkinson: Introduction

site has to provide a mapping from its own schema and query language,
and implementations are in hand for Functional, Relational and CODASYL
systems. Given this facility it is possible to set up a global schema
at a central site, which can be used in the process of expanding a
network query into queries against local schemas and in combining the
results.

However, this is not essential and any site can request a schema
from another site for two-way communication. The current system is
only for global queries and avoids the problems of concurrency and
internodal consistency.

The paper on R* by Selinger et al (‘The Impact of Site Autonomy
on R* A Distributed Relational DBMS') addresses the problem of
internodal consistency in a way which preserves site autonomy - the
essence of a decentralised system. The crucial principle is that no
site should have to consult another site about what it does with its
own data. Any change that is made is marked by a change of version
number and thus any site which requests an action based on an
out-of-date version may be asked to form a new plan and try again. The
only problem that arises is on commitment of a transaction involving
several sites. Site autonomy allows a local site to back out
unilaterally and so jeopardise inter-site consistency. The system is
homogeneous. All sites use the R* DBMS software and so there is
automatically a standard schema language and a standard query language
(based on SQL). The paper discusses the interesting question of the
use of 'system-wide names' so that queries can explicitly refer to data
at other sites (there is no global schema). Names used in the SQL
language may be bound to different system-wide names on recompilation
by using different catalogues.

The paper on PRECI* by Deen ('PRECI* a Project for Distributed
Databases') describes a system which has the greatest potential for
centralisation of the four systems discussed. It is based on the
ANSI/SPARC concept at two levels (local and global). The external
schemas of the individual nodes appear as ‘'partition schemas' which
play the role of nodal storage schemas to an overall ‘Federated
Canonical Schema' (FCS) at the global level. At the local level each
node has its own three-level schema. The FCS uses the same notation as
PRECI to describe the database as a number of relations. A 'Mapping
Division' states which attributes in relations at different nodes are

compatible and what data conversion should be performed to make them

Stocker, Gray & Atkinson: Introduction

comparable, Allowance is made for replicating data at several nodes
and the problems of maintaining internodal consistency are discussed.

These four papers show a range of approaches. In each one the
pressure for decentralisation and site autonomy is argued, but is
conceded to a different extent. In all cases the principle of
logical/physical data independence is built in and all systems use a
relational (non-procedural) data manipulation language. The principles
of commitment, locking and recovery at individual nodes, seem to be
widely agreed but there are problems with maintaining both internodal
consistency and full site autonomy.

The theme of data models and database construction running
through this earlier part of the course addresses the organisation and
storage of data. There is little point in storing data without
arrangements to use it. These arrangements typically depend on a
language to manipulate and extract data pertinent to some query or
investigation. In many cases the language will also contain facilities
for amending the data.

Strictly speaking, all the languages which enable such operations
are programming languages, but it has become conventional to use the
term query languages for those that are limited to extraction and
simple derivation data. In fact, many available query languages also
have update facilities and so should be called data manipulation
languages. Two approaches to presenting these facilities exist, in one
a language, usually interactive, stands alone, and is referred to as an
interactive query language. The other approach is to embed the
database language in some other general purpose programming language.
In this case it is usually referred to as a data manipulation language
or sub-language. Knowles gives examples of such a language in his
tutorial chapter on 'The CODASYL Model' standard, when he presents its
DML.

Both these approaches to providing languages for utilising the
data in databases have been demonstrated to be workable, both are often
provided in commercially marketed DBMS and are widely used as
mechanisms for opereating on the data in databases. The query
languages are perhaps less well established in practical use, but there
are dramatic examples of their effectiveness. In spite of this neither
method can be considered ideal. With query languages the compromise
between ease of learning the language and what can be achieved using

the language has not been fully explored. Developments in this area

Stocker, Gray & Atkinson: Introduction

are a mixture of detailed improvements to the consistency and stylé of
the language, to its support environment and to its functionality.

The presentation by Knowles and Hendry is a good example of such
development. They describe a language, RASQL, which provides a query
language for RAPPORT databases. The language they have implemented is
very similar to that provided in many other databases, particularly the
SQL of SYSTEM-R. However, they show how parameterisation, naming of
sub-queries and a good query Ilanguage support environment, can enhance
the capabilities of such languages.

Such work does not address the function served by the embedded
languages. Embedding is valuable when a complex computation is to be
performed on the data. In many applications, such as computer-aided
design, the entire use of the data falls into this category. In many
applications data is always used via large and often complex programs,
either to provide tailored interfaces, specific checking or
sophisticated derivation of data. Almost all collections of data
require some programs to be written to use the data. One can envisage
extending the query languages to take over more of this role or of
improving the programming language interface to stored data.

The final days of the Course considered this issue in some
detail, as it is an area of practical importance which is often
neglected. Two chapters deal with an approach based on the Functional
Data Model. Gray gives an introduction to the notational form of an
elaboration of this model developed by Shipman called DAPLEX, and shows
how it relates to the more familiar CODASYL model. DAPLEX organises
its data in terms of entities or objects, and functions over these
objects. A function yielding an object performs the same role as a
data item in CODASYL or an attribute in the relational model. But in
the functional model it is not necessary for the data designer to
provide functions (attributes) which act as unique identifiers, since
the objects themselves are values. In DAPLEX sets of such values are
allowed, the results of multivalued functions which can be used to
model one-to-many and many-to-many relationships, and which are
analogous to the owner-member sets of CODASYL. A useful feature of
DAPLEX is property inheritance. Objects may be arranged in hierarchies
of types, so that an instance of a sub-type inherits all the properties
of the corresponding instances of its super-types. This, and the
direct use of objects as values, captures common semantics of data
which have to be explicitly added to the relational and CODASYL

Stocker, Gray & Atkinson: Introduction

models.
The DAPLEX language was designed as an extension to a general

purpose programming language such as COBOL or ADA. The article by
Atkinson and Kulkarni reports a different utilisation of the DAPLEX
idea. They describe an implementation of a language like DAPLEX and
discuss how it might be consistently extended to provide a complete
general purpose language with all the functions required for managing
long-term data. They suggest that the view mechanism can be used in
the traditional way for information hiding and protection, with greater
flexibility than Shipman identified. But they also note that if the
total language is designed with consistent rules, then the normal
declaration mechanisms used in conjunction with views provide
additional functionality. Such declarations allow the evolution of
data types, equivalent to editing schemas or metadata; they allow the
use of the view as the unit of transaction; provide a way of defining
the context of an experiment on the data and provide a notation for
describing federated databases. These extensions to the functionality
of the language are still the topic of research and experiment.

The chapter by Buneman also considers the functional mode! of
computation. This model is attractive as a basis for integrating
databases and programming languages cleanly, something which has proved
difficult with the relational and CODASYL models. Work on applicative
languages demonstrates that a wide variety of programs can be concisely
and elegantly represented as functions. Collections of data can also
be viewed as stored functions. The same notation can be used to
describe both. All queries and data derivations can then be
represented as the evaluation of a function. Buneman describes FQL, a
functional query language with simple semantics. It is a good
candidate as an intermediate query language, decoupling external
languages designed to meet particular consumer needs from the
idiosyncrasies of particular data models and database management
systems. Buneman has shown that it can be implemented against
relational and CODASYL datasbases, and that, by utilising the technique
known as lazy evaluation, the implementations can be efficient.

The following chapter by Atkinson and Kulkarni has already been
mentioned. But it is placed here as it is considered another
experiment in the search for a consistent and simple way of merging
programming languages and databases. There is still much research to

be done; for example, no language yet gives satisfactory concurrent

10

Stocker, Gray & Atkinson: Introduction

access to data of any type and any persistence.

Thus the book takes the reader from an up-to-date report on
current practice in using and building databases, through the topics
which are well established but not yet widely applied, to an
identification of research problems it is hoped will challenge some of
its readers.

1

