S
1.20 | Language experience

1.23 | Schedule constraint

1.23 | Data base size

1.32 | Turnaround time

1.34]Vmual machine experience

1.49 | Virtual machine volatility

1.49 | Software tools

1.51 | Madern programming practices

Software cost driver attribute

| 56 | Storage constraint

1.57 | Applications experience

1.66 | Timing constraint

1.87 | Required reliability

2.36 | Product complexity

Personnel/team capability 418 l
1 i 1 I | 1 L L | 1 | J
1.00 1.50 2.00 250 3.00 3.50 4.00

Software productivity range

f SOFTWARE
| ENGINEERING
1 ECONOMICS

N

.

Barry W. Boehm

Director, Soﬂware Research nd Technology
TRW, Inc.

e 1 e 1 e T e e U -uﬁz‘:m:n:n::c

SOFTWARE '
ENGINEERING
ECONOMICS

Prentice-Hall, Inc., Englewood ¢liffs, New Jersey 07632

Library of Congress Cataloging in Publication Data

BOEHM, BARRY W. (date}
Software engineering economics.

{Prentice-Hall advances in computing science and
technology series}

Bibliography: p.

Includes index.

1. Electronic digital computers—Programming—

ic aspects. 2. El ic digital

Programming—Economic aspects—Case studies. 1. Title.
11 Series.
QAT76.6.B618 001.64°25'0681 81-13889
ISBN 0-13-822122-7 AACR2

© 1981 by Prentice-Hall, Inc., Englewood Cliffs, N.J. 07632

All rights reserved. No part of this book .
may be reproduced in any form or by any means
without permission in writing from the publisher.

Editorial/Production Supervision

and Interior Design: Lynn S. Frankel
Cover Design: Carol Zawislak
Manufacturing Buyer: Gordon Osbourne

Prentice-Hall Advances
in Computing Sci and Technology Series
Raymond T. Yeh, editor

Printed in the United States of America

10 9 87 6 5 43 21
ISBN 0-13-822122-7

Prentice-Hall International, Inc., London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall of Canada, Ltd., Toronto
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Preatice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books Limited, Wellington, New Zealand

| HK RNK MK NK HK ¢ MICORK M

PREFACE

A course in engineering economics has become a fairly standard component of
the hardware engineer’s education. So far, the opportunities for software engineers
to take a similar course tailored to software engineering economics have been rare.
As a result, I think most software engineers miss out on & chance to acquire and
use a number of significant economic concepts, techniques, and facts which can play
a vital part in their future careers—and a vital part in making our software casier
to live with and more worthwhile.

Not surprisingly, then, the major objective of this book is to provide a basis
for a software engineering economics course, intended to be taken at the college
senior/first-year graduate level. This objective has led to two subsidiary objec-
tives:

1. To make the book easy for students to learn from;

2. To make the book easy for professors to teach from.

1 have also tried to make the book serve a third objective:
3. To provide help for working professionals in the field.

XX

Since these aims are sometimes at variance with each other, I have added notes to
the student, professor, and practicing software engineer as a starting point for dealing
with the contents of the book.

The basic structure of the book is shown in Figure A. Part I contains introductory
material which provides a context, motivation, and framework of software engineering
goals for the material to follow. Parts II and IIT cover two complementary topics:
a quantitative model of the software life-cycle in Part II, and the fundamentals of
engineering economics as they apply to software projects in Part III. Part IV then
provides the detailed techniques for software life-cycle cost estimation which underlie
the simpler cost.models in Part I, and which further support the software engineering
economic analysis techniques in Part IIL

Figure A also shows the primary questions addressed in each pari of the book.
Thus, for example, Part [V addresses not only questions of software cost estimation
and understanding software cost-influence factors, but also such questions as, “How
can we use this understanding to improve our visibility and control of software projects,
and to improve software productivity?”

Figure B shows how each part of the book is organized into components and
individual chapters. This figure is reproduced at the beginning of each major compo-
nent (Part openings) of the book. For example, Figure B indicates the successive
levels of detail provided in the hierarchical software cost estimation model called
COCOMO, for COnstructive COst MOdel. The top level of the hierarchy is Basic
COCOMO, a simple formula estimating the cost of a software project solely as a
function of its size in delivered source instructions, presented in Chapters 5, 6, and
7. The next level of the hierarchy is Intermediate COCOMO, presented in Chapters.
8 and 9. It estimates the cost of a software project as a function of size and a
number of other software cost driver attributes, such as personnel experience and
capabilities, computer hardware constraints, and degree of use of modern programming
practices. The mgst accurate and detailed level of the hierarchy is Detailed COCOMO,
presented in Chapter 23 with elaborations in Chapters 24 through 27. It uses the
cost driver attributes to estimate the software product’s costs by individual phase,
subsystem, and module.

The term “constructive” used to describe COCOMO derives from the detailed
explanations in Chapters 24-27 of how the various software cost driver attributes
influence the amount of effort required to complete each phase of the software life-
cycle. The model not only provides estimating formulas, but it also provides the
best explanation possible for why the model gives the results it does. The detailed
material in Chapters 24-31 also discusses the frontiers of our knowledge of software
life-cycle cost estimation, and provides an extensive agenda of suggestions for further
research which can extend our knowledge of the software life-cycle and its economic
properties. '

For providing me with encouragement, insights, and data, I feel deeply indebted
to many people. I wish I could name them all.

At TRW, I have benefited from a great deal of management insight and support
from Simon Ramo, C. W. (Bill) Besserer, Bob Williams, and Ed Goldberg, and a wealth
of technical information and insight from Tom Bauer, Mike Cozzens, Myron Lipow,
Fred Manthey, Nancy Mikula, Eldred Neison, Ron Osborne, and Tom Thayer; from

PREFACE

I INTRODUCTION

. Why is a mastery of software
engineering economics important ?

« How does it fit within the overall
software engineering framework ?

THE SOFTWARE LIFE-CYCLE:
A QUANTITATIVE MODEL

What are the major phases and activities
invalved in the software life cycle ?

How much time and cost do they

consume on a typical project ?

What primary factors influence software
cost, and how can we use our knowledge
of these factors to estimate software costs ?

f.

FUNDAMENTALS OF
SOFTWARE ENGINEERING ECONOMICS

How can we use the estimates of
software and other computer system
costs to help us make decisions about
information system development ?
What economic techniques—cost-benefit
analysis, margina! analysis, present-value
analysis, risk analysis, etc. —can help us
make these decisions in the right ways ?

life cycle ?

IV. THE ART OF SOFTWARE COST ESTIMATION

© What alternative methods are available for software cost estimation ?

. How do we combine these alternative methods into the best approach
for a given software cost estimating activity ?

. What do we know in detail about the way in which different factors
influence the cost and nature of a software project throughout its

. How can we use this understanding to improve our visibility and control
of software projects, and to improve software productivity ?

FIGURE A Book Structure—Major questions addressed .

xxii

<

1. INTRODUCTION
1. Case Study 1:. Scientific American
2. Case Study 2: Urban School System
3. The goals of software engineering
<> <>
1. THE SOFTWARE LIFE-CYCLE: 1. FUNDAMENTALS OF SOFTWARE
A QUANTITATIVE MODEL N ENGINEERING ECONOMICS
. 4. The software life-cycle: HI A, Cost-Effectiveness Analysis
phases and activities
5. The basic COCOMO model 10. Performance models and
6. The basic COCOMO model: costeffectiveness models
d 11. Production functions: economies of scale
evelopment modes 12. Choosin alternatives:
7. The basic COCOMO model: . deci _gamof;g " atives:
activity distribution ecision criteria
8. The intermediate COCOMO model: HIB. Multiple-Goal Decision Analysis
product level estimates N .
9. intermediate COCOMO: 14 Presentvi. tore pendisure nd income
component level estimation 15, Figures of merit
16. Goals as constraints
17. Systems analysis and constrained optimization
18. Coping with unreconcilable and unquantifiable
goals
I C. Dealing with Uncertainties, Risk, and the Value
of Information
19. Coping with uncertainties: risk analysis
20. Statistical decision theory: the value of information

| !

v
v

21
22

v

w
30
3t
32

. Alternative software cost estimation methods

23.
24.
25.
2.
27
28.
29,

33

. THE ART OF SOFTWARE COST ESTIMATION
A. Software Cost Estimation Methods and Procedures
. Seven basic steps in software cost estimation

B. The Detailed COCOMO Model

Detailed COCOMO: summary and operational description
Detailed COCOMO cost drivers: product attributes
Detailed COCOMO cost drivers: computer attributes
Detailed COCOMO cost drivers: personnel attributes
Detailed COCOMO cost drivers: project attributes
Factors not included in COCOMO

COCOMO evaluation

C. Software Cost Estimation and Life-Cycle Management

. Software maintenance cost estimation
. Software life-cycle cost estimation

. Software project planning and control
Improving software productivity

FIGURE B Book structure—Parts and chapters

ex-TRW’ers Bert Abramson, Tom Bell, John Brown, Kurt Fischer, Bob Page, and
Win Royce; and particularly from Ray Wolverton.

Within the field of quantitative software analysis, I have had many enjoyable,
stimulating, and valuable exchanges with Prof. Vic Basili of the University of Mary-
land, Dr. Les Belady of IBM, Tom DeMarco, Tom Gilb, the late Prof. Maurice
Halstead of Purdue University, Capers Jones of ITT, Prof. Manny Lehman of Imperial
College, London, Dick Nelson of RADC, Bob Park of RCA, Dr. Montgomery Phister,
Jr., Larry Putnam of Quantitative Software Management, Inc., and Claude Walston
of IBM.

In other areas, I feel fortunate to have learned much from discussions with
Dr. Gerald Weinberg of Ethnotech, on software psychology; with Dr. Dave Parnas
of the Naval Research Labs and IBM, Dr. Harlan Mills of IBM, and Prof. Tony
Hoare of Oxford University on software methodology; and from numerous informal
tennis-court seminars on economics and statistics from Dr. Charles Wolf of Rand
and Prof. Car! Morris of the University of Texas.

In preparing this book, I must first acknowledge the essential contributions of
Karl Karlstrom of Prentice-Hall and particularly Prof. Richard Hamming of the
U.S. Navy Postgraduate School, who more or less goaded me into writiag it. My
secretaries, Merilyn Gripenwaldt and Kay Clyne, have been exceptionally supportive
and helpful. Ms. Lynn Frankel of Prentice-Hall has made the book a great deal
better as its editor. I received many valuable suggestions from the reviewers of the
manuscript, particularly Prof. Lee Cooprider of USC, Prof. Richard Fairley of Colo-
rado State University, Prof. Ellis Horowitz of USC, Brian Kernighan of Bell Labs,
Prof. Tim Standish of University of California, Irvine, and David Weiss of the Nawval
Research Labs.

Finally, for the many necessarily anonymous contributors of software data, a
special note of thanks and a wish that they could be recognized directly as well.
And I owe my family more than 1 could ever express in words.

A NOTE TO THE STUDENT

There is a good chance that, within a few years, you will find. yourself together in
a room with a group of people who will be deciding how much time and money
you should get to do a significant new software job. Perhaps one or two of the
people in the room will know software well, but most of them will not. They will
be higher-level managers, business analysts, marketing specialists, product-line plan-
ners, and the like. Generally, they will discuss issues and make decisions in terms
of such concepts as marginal return on investment, cost-benefit ratio, present value,
and risk exposure.

There will also be a number of highly interested people who won’t be in the
room. These include the people who will be working for you or with you on the
software job, and the people who will have to use the software that your team is

_ going to produce. Whether they know it or not, their fate over the next few months
or years will depend a good deal on how well you and the non-software people in
the room can produce a realistic decision on the appropriate scope, budget, and
schedule for your software job.

Preface XXiii

xxlv.

The non-software people in the room won’t be able to do this by themselves;.
they won’t have the feel for the technical software tradeoffs that you do. So it will
be extremely important for you to be able to communicate with them, and understand
the economic concepts that underlie the ways they have learned to think and to
make decisions. If you can do this, you will have a chance to change what js ofien
an adversary relationship between software people and business-oriented pegple into
a relationship of mutual understanding, commitment, and trust.

In this book, I have tried to provide you with the essential concepts and techniques
you will need to be able to think in economic terms as well as to think in programming
terms. Besides the practical utility of these concepts, I hope you will find them as
stimulating as I'have in providing a new perspective on our field of computers and
information processing. I've found them very helpful in illuminating such questions
as:

® Why does information have value?)

® Why do people commission software products?

® How do people decide what information processing products they want?
® Why is the software life-cycle organized the way it is?

And, as with other pursuits, the better we can understand why the software engineering
field exists, the better we will become in prdcticing it.

A NOTE TO THE PROFESSOR

In this note—well, actually, with this note and the material in the book—I hope to
convince you of three things:

1. Softwsgre engineering economics is a stimulating and satisfying topic to teach
and study.

2. This book can be used successfully either for a one-quarter or one-semester
course on software engineering economics, or as a secondary text for more
general software engineering courses.

3. Software engineering economics is a significant and fruitful research area.

First, I think you will find software engineering economics an enjoyable and
rewarding subject to teach. The basic relationships in microeconomics form a nice,
clean, mathematical discipline. The material on risk and the value of information
provides a stimulating perspective on why so many people feel they need the computers,
software, and processed information our field produces. And the material on factors
influencing software costs helps to explain a good many current software engineering
guidelines and their impact on the software life-cycle.

Further, I don’t think that one has to immerse oneself in industrial practice
and jargon to find relevant examples and applications of software engineering econom-
ics. When I was at USC, 1 was impressed with the wide variety of computer and
software applications being developed around the university, and—particularly ‘in

PREFACE

these days of tight university budgets—the degree of concern with computer and
software costs. Accordingly, I have tried to keep the book free of industrial jargon,
and to include a good many university-oriented questions and examples in order to
keep the material in a familiar context.

The fundamental material in the book can be covered fairly well in a one-quarter
or one-seméster course. The primary learning objectives I have used in teaching
such a course are to enable the student to:

¢ Identify the factors mogt stronglil influencing software costs, and use these to deter-
mine the estimated costs of a software project.

o Understand the fundamental concepts of microeconomics as they apply to software
engineering. .

e Apply economic analysis techniques to software engineering decision situations.

An outline for a fairly ambitious one-quarter course 1 have given using the
book is provided below: .

Week Book Chapters Topics

1 14 . The Software Life-Cycle: An Economic Perspective
2 5-6 Simple Software Cost Models
34 7-9 Intermediate-Level Software Cost Models: Factors In-
fluencing Software Costs
5 10-12 Cost Effectiveness Analysis: Production Functions,
E ies of Scale, Choosing Among Alternatives
6 . — Review, Midterm Exam
7 13-15 Multiple-Goal Decision Analysis: Net Value, Present
.) Value, Figures of Merit
8 16-18 Multiple-Goal Decision Analysis: Constraints, Sys-
. tems Analysis, Unquantifiable Goals
9 19-20 : Risk, Uncertainty, and the Value of information
10 21-22 Practical Software Cost Estimation Techniques
11 31-32 CaseSmdy:SoM’ch&O;deCodAndyslsmd
Control
12 — Final Exam

For the first time teaching a software engineering economics course, the above volume
of material is probably better suited to a one-semester course. A satisfactory one-
quarter course could cover only the material through Chapter 18, and still satisfy
the basic learning objectives reasonably well.

Such a course can be taught at either an upper-level undergraduate or-a first-
year graduate level. The only prerequisites are a general familiarity with the program-
ming process (the equivalent of about two years’ worth of computer science courses)
and a familiarity with the basics of differential calculus. For exercising the software
cost estimation models, a hand calculator with exponentials (an XY key) is strongly
recommended, although I have included curves which allow the student to work
the models without a calculator, but with much less accuracy and facility.

Preface XXV

xxvi

Finally, 1 hope you’ll get far enough into the subject of software engineering
economics to become intrigued with some of the fundamental research questions it
raises about the nature of the software development process, such as

® Why does software development cost as much as it does?

® What factors make the cost of software go up or down, and how do they interact?
® What activities consume most .of the cost?

® How can new software techniques reduce software cost?

In Part IV of this book, I have presented and analyzed a data base representing
the costs and development attributes of 63 software projects, in an attempt to answer
the question:

. “How can we explain this project data in-d way that will help future projects
estimate and understand their software costs?”
The resulting set of cost models presented in the book represents a first step toward
answering this question, but a tremendous amount of valuable research still remains
to be done. A number of significant new insights can be achieved simply by further
analysis of the existing 63-project data base. And a great deal more insight can be
achieved through collection and analysis of further observational and experimental
data. Most of the chapters in Fart IV contain a final section on “Topics for Further
Research” indicating some of the most promising tirections we can go in illuminating
the fundamental questions above. I hope you or your students will give them a try.

A NOTE TO THE PRACTICING SOFTWARE ENGINEER

During your software engineering experience, I would imagine that you have evolved
a number of personal guidelines for estimating software costs and for dealing with
software product and project decisions. I think yow'll find this book helpful in cali-
brating your own rules of thumb with other people’s experiences, and in providing
you with some additional useful techniques for dealing with software cost estimation
and software engineering decisions. I hope, also, as you go through the book, you
can enjoy an experience as stimulating and rewarding as mine has been, as I began

to see how various, seemingly unrelated techniques and decision guidelines I had -

been using in practice were actually parts of a unified framework of economic princi-
ples.

Depending on your primary interests and needs for information, you may wish
to concentrate on selected portions of this book rather than read it from cover to
cover. For some of the likely interests you may have, here are the most appropriate
parts of the book to read.

® If you are pnmanly interested in improving your (organization’s) ability to estimate
software development costs, your best bet is to begm with Chapters 21 and 22

PREFACE

on software cost estimation techniques, followed by Chapters 4-9 on the software
life-cycle and on the Basic and Intermediate COCOMO models.
* If you are further interested in estimating maintenance and other software-related
costs, read Chapters 30 and 31. :
* If you are further interested in implementing a detailed software cost estimation
model and tailoring it to your organization’s experience, read Chapters 23 and
29. -
¢ If you are primarily interested in the effect of a part}cular software attribute (such
as project personnel capability, use of modern programming practices, or language
level) on software costs, read the appropriate section in Chapters 24-28.
o If you are primarily interested in improving your ability to perform software eco-
nomic decision analyses, read Chapters 10-18.
® If you are primarily interested in software project planning and control techniques,
read Section 31.6 and Chapter 32.

However, even if you are primarily interested in a particular topic, I would
especially recommend your reading the introductory material in Chapters 1-3 and
Chapter 33 on improving software productivity. These chapters provide a context
and an approach for realizing a more effective, satisfying, and productive environment
within which to practice your software engincering activities.

Preface Xxvii

INTRODUCTION
* Case Study 1: Scientific American
Case Study 2: Urban School System
The goals of software engineering

WN=

<

Z

THE SOFTWARE LIFE-CYCLE:
A QUANTITATIVE MODEL

The software life-cycle:
phases and activities
The basic COCOMO model
The basic COCOMO model:
development modes
The basic COCOMO model:
activity distribution

The intermediate COCOMO model:

product level estimates
Intermediate COCOMO:
component level estimation

|

III. FUNDAMENTALS OF SOFTWARE
ENGINEERING ECONOMICS

Il A. Cost-Effectiveness Analysis

10. Performance models and
cost-effectiveness models
11. Production functions: economies of scale
12. Choosing among alternatives:
decision criteria

III B. Multiple-Goal Decision Analysis

13. Net value and marginal analysis

14. Present vs. future expenditure and income

15. Figures of merit 3

16. Goals as constraints

17. Systems analysis and constrained optimization

18. Coping with unreconcilable and unquantifiable
goals

111 C. Dealing with Uncertainties, Risk, and the Value
of Information

19. Coping with uncertainties: risk analysis
20. Statistical decision theory: the value of information

IV. THE ART OF SOFTWARE COST ESTIMATION
IV A. Software Cost Estimation Methods and Procedures

21. Seven basic steps in software cost estimation
22. Alternative software cost estimation methods

IV B. The Detailed COCOMO Model

23. Detailed COCOMO: summary and operational description
24. Detailed COCOMO cost drivers: product attributes

25. Detailed COCOMO cost drivers: computer attributes

26. Detailed COCOMO cost drivers: personnel attributes

27. Detailed COCOMO cost drivers: project attributes

28. Factors not included in COCOMO

29. COCOMO evaluation

IV C. Software Cost Estimation and Life-Cycle Management

30. Software maintenance cost estimation

31. Software life-cycle cost estimation .
32. Software project planning and control

33. Improving software productivity

I R I A KA KT KD e I

CONTENTS

PREFACE xix

PART I INTRODUCTION: MOTIVATION AND CONTEXT 1

Chapter 1 Case Study 1: Scientific American Subscription
Processing 3

1.1 The Old System 3

1.2 The Programming Solution: Top-Down Stepwise Refinement - 4
1.3 The Programming Solution: Results 5

1.4 The Economic-Programming Approach 6

vil

1.5 Results of the Economic-Programming Approach 7
1.6 General Discussion 8
1.7 Questions 8

hapter 2 Case Study 2: An Urban School Attendance
System

2.1 Programming Aspects 10
2.2 Economic Aspects 10

2.3 Human Relations Aspects 11
2.4 Lessons Learned 11

2.5 General Discussion 12

2.6 Questions 13

Chapter 3 The Goals of Software Engineering

3.1 Introduction 14

3.2 Software Engineering: A Definition 16

3.3 Software Trends: Cost 17

3.4 Software Trends: Social Impact 18

3.5 The Plurality of Goals 20 ’

3.6 An Example: Weinberg’s Experiment 20

3.7 The Plurality of Software Engineering Means 21
3.8 The Software Engineering Goal Structure 23

3.9 The GOALS Approach to Software Engineering 23
3.10 Questions 26

PART Il THE SOFTWARE LIFE-CYCLE: A QUANTITATIVE
MODEL

Chapter 4 The Software Life-Cycle: Phases and Activities

4.1 Introduction 35

4.2 The Waterfall Model 35

4.3 Economic Rationale for the Waterfall Model 38
4.4 Refinements of the Waterfall Model 41

4.5 Detailed Life-Cycle Phase Definitions 46

viii CONTENTS

4.6
4.7

49

Chapter 5

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

Chapter 6

6.1
6.2
6.3
6.4
6.5
6.6

Chapter 7

7.1
7.2
7.3
7.4
7.5
1.6
7.7

Detailed Phase/Activity Definitions 46

The Software Work Breakdown Structure (WBS) 47
Software Maintenance 54

Questions 55

The Basic COCOMO Model 57

Introduction 57

Definitions and Assumptions 58

Development Effort and Schedule 61

Phase Distribution 64

Nominal Project Profiles 65

The Rayleigh Distribution 67

Interpolation 69

Basic Software Maintenance Effort Estimation 71
Questions 71

The Basic COCOMO Model: Development Modes 74

Introduction 74

Basic Effort and Schedule Equations 75

The Three COCOMO Modes of Software Development 78
Discussion of the Basic COCOMO Effort and Schedule Equations 83
Phase Distribution of Effort and Schedule 89

Questions 94

The Basic COCOMO Model: Activity Distribution 97

Introduction 97

Activity Distribution by Phase 98

Basic COCOMO Case Study: The Hunt National Bank EFT System 103
Deriving Basic Project Organization Charts 104

Discussion of Basic COCOMO Phase and Activity Distributions 110
Limitations of Basic COCOMO 111

Questions 111

Contents iX

Chapter 8

8.1
8.2
8.3
84
8.5
8.6
8.7
8.8
8.9
8.10

Chapter 9

9.1
9.2
9.3
9.4

9.5
9.6

PART Il

PART IIIA

The Intermediate COCOMO Model: Product .
Level Estimates e 114

Introduction 114

Intermediate COCOMO: Software Development Effort Estimation 117
A Pricing Example: Microprocessor Communications Software 125

A Management Example: Reduced Cost-to-Complete 127

Adjusted Estimate of Annual Maintenance Effort 129

Example: Microprocessor Communications Software Maintenance 130
Interpolation and Extrapolation 132

Estimating the Effects of Adapting Existing Software 133

Discussion of the Intermediate COCOMO Effort Equations 138
Questions 141

Intermediate COCOMO: Component Level
Estimation 145

Introduction 145

The Component Level Estimating Form (CLEF) 146

Using the CLEF with Adapted Software 151

Transaction Processing System (TPS) Example: Basic Development
Estimate 153

TPS Component Level Maintenance Estxmate and Phase Distribution 156
Questions - 160

FUNDAMENTALS OF SOFTWARE ENGINEERING
ECONOMICS ' v 165

COST-EFFECTIVENESS ANALYSIS 169

Chapter 10 Performance Models and Cost-Effectiveness

10.1
v 102
© 103
10.4
10.5

Models 170

Performance Models 170
Optimal Performance 173
Sensitivity Analysis 176
Cost-Effectiveness Models *~ 178
Questions 181

X CONTENTS

