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Preface

The ICN-UCLA conference on Molecular Mechanisms in the Control of
Gene Expression, organized through the Molecular Biology Institute of UCLA,
was held in Keystone, Colorado, March 21 to 26, 1976. The year preceding the
meeting brought major advances in our understanding of the action of
repressors on specific nucleotide sequences in DNA, of how DNA and histones
are intertwined in eucaryotic chromosomes, and in the development of new
techniques, restriction and cloning, seemingly able to lift genes from complex
genomes. These three topics and the increasingly revealing studies on control of
gene expression in both multicellular organisms and microbial systems provided
the major substance for the conference and these proceedings.

The success of a meeting is largely dependent on those who speak. We
sincerely thank all those who accepted our invitations, both those included in
this volume and those who are not. We include the speakers in plenary sessions,
those who took part in the roundtable discussions, and the participants who
made poster presentations. We are also thankful to the session chairmen for
their help and counsel. For this we particularly thank A. Worcel, M. Ptashne, B.
Magasanik, J. Sambrook, B. McCarthy, G. Felsenfeld, and H. Boyer. We thank
as well W. Gilbert, R. Burgess, B. Forget, B. Polisky, R. Meagher, and P. Leder
for conducting roundtable sessions. We are also grateful to D. Hogness for his
special conference address, and to B. Lewin for his willingness to write the
conference summary.

We thank F. Stusser and C. Winter and their associates for their hard work
in putting the conference together. We also thank ICN Pharmaceuticals, Inc.,
for their support of this conference series and the National Science Foundation
for a grant that paid for a portion of the expenses for this conference. We
specifically acknowledge L. Berlowitz of NSF for his interest. Finally, we thank
a number of people who helped either with the conference or with this volume.
These include P. Sullivan, L. Spector, J. Abcarian, M. Cleary, C. Landel, J.
Grunstein, E. Chang, S. Suggs, J. Isaacson, B. Carlson, and L. Lasky, and the
staffs at Wilshire West Travel, the Keystone Conference Center, and the Key-
stone Center for Continuing Education.

Donald P. Nierlich -
William J. Rutter
C. Fred Fox

Xi
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THE STRUCTURE OF CHROMATIN AND ITS RECONSTRUCTION
G. Felsenfeld, R. D. Camerini-Otero and B. Sollner-Webb

National Institute of Arthritis, Metabolism
and Digestive Diseases
National Institutes of Health
Bethesda, Maryland 20014

ABSTRACT. It is now generally accepted that most the DNA

and histones of chromatin are organized into subunits, called
nu bodies or nucleosomes, each containing about 190 base
pairs of DNA and approximately an equal weight of histone
(1-4). The existence of such subunits has been demonstrated
by partial staphylococcal nuclease digestion of nuclei,

which results in liberation of nucleosome monomers and
oligomers.

Further nuclease digestion of nucleosomes or of purified
chromatin results in attack on the nucleosome structure it-
self, yielding a discrete set of double-stranded DNA
fragments ranging in size from about 160 to 40 base pairs
(5). Similar sets of fragments can also be generated by
digestion of nucleoprotein reconstituted from DNA and
chromatin total histones. We have systematically examined
the nuclease digestion patterns of DNA-histone reconstitutes
containing all possible combinations of the histones H2A,
H2B, H3 and H4. We find that single histones, and most
combinations of histone pairs, do not give rise to discrete
DNA fragments. The histone pair H3/H4 appears to be
essential to generation of the characteristic chromatin
digest pattern. Use of other probes of structure, such as
DNase I and trypsin, confirms this conclusion. We are able
to show that the H3/H4 pair stabilizes DNA segments that are
almost as long as the nucleosome '"core", and we conclude
that the DNA of the nucleosome is to a large extent organized
by this arginine-rich histone pair.

Chemical probes are a common tool of the physical
chemist for the study of macromolecular organization.
We have employed chemical probe methods for the study
of chromatin structure. The most widely used of these
probes is the enzyme staphylococcal nuclease, which makes
double-strand cuts across DNA. The action of this enzyme
on the DNA of nuclei is well known: It leads to the
generation of a series of nucleoprotein particles of dis-
crete sizes, containing DNA fragments of discrete lengths
that are multiples of a fundamental subunit about 200 base
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pairs in length (3). This is one of the major pieces of
evidence for the organization of the bulk of chromatin in
the form of nucleosomes or v-bodies (1,2,6,7).

A typical progression of events when nuclei are digested
with staphylococcal nuclease is shown in Fig. 1. At early
times in the digestion, the DNA demonstrates characteristic
behavior described above. With increasing digestion,
increasing amounts of monomer DNA (Band 1, 190 base pairs
in length) are generated. The next step involves removal
of about another 50 base pairs of DNA to produce a fragment
(Band 1A) 140 base pairs long. This fragment appears as a
relatively sharp and kinetically stable band on DNA electro-
phoretic gels. We and others have suggested that this
corresponds to a nucleosome '"core'" particle, and that the
50 base pair segment between cores is more accessible to
nuclease (4,8). This isolated nucleosome core lacks Hl and
also largely lacks H5 (8,9).

The reaction does not stop with generation of this
nucleosome core. The nuclease next attacks the DNA within
the core, giving rise to a series of double stranded DNA
fragments ranging in size from 140 base pairs to 40 base
pairs (5,10). When these fragments first appear, they are
exact multiples of ten base pairs in length; as digestion
proceeds, each fragment loses two base pairs. Finally,
some of the fragments lose an additional two base pairs
just before the digestion reaction stops, at the point
where half of the DNA has been hydrolyzed to acid soluble
products.

The regularly spaced array of DNA electrophoretic
bands certainly reflects some aspect of the regularity of
nucleosome structure. In the approach we discuss here,
however, we will simply use the appearance of such bands
as an indicator of the presence of some nucleosome-like
structural components. We can then ask the question:
which histones are required to generate the observed pattern
of nuclease digestion? Implicit in the question is the
idea that histones that do generate such a pattern must
also play an important role in nucleosome structure forma-
tion.

To answer this question, we have reconstituted DNA
with essentially all possible combinations of histones H2A,
H2B, H3 and H4. We find that the generation of strong
discrete DNA bands in staphylococcal nuclease digests
depends upon the presence of both arginine-rich histones,
H3 and H4, and they alone with DNA are able to create much
of this structure (10). All combinations of histones in
which H3 or H4 is missing give rise to no discrete
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Fig. 1. Kinetics of nuclear digestion. Duck reticulo-
cyte nuclei and duck reticulocyte chromatin were digested
with 1-60 ug/ml of staphylococcal nuclease for 10 min to 1 hr
in 1 mM Tris (pH 8)-0.1 mM CaCl; at 1 mg of DNA/ml. The
fraction of the DNA soluble in 0.8M perchloric acid-0.8M
NaCl was measured. The isolated DNA was run on a 4% poly-
acrylamide slab gel, stained, and photographed. Negatives
were scanned with a Joyce-Loebl microdensitometer. These
scans have been shown to be linear in DNA concentration.
Migration is from left to right. From bottom to top are:
nuclear digests at 2, 4, 9, 18, 32, and 47% (limit digest),
and a chromatin digest at 48% acid-soluble DNA (limit
digest). From (4).
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fragments, with the exception that the histone combination
H2A/H2B/H4 is observed to give fragments with low efficiency.

We have used a number of other probes to investigate
the role of the individual histones in nucleosome structure
formation. Pancreatic DNase digestion of nuclei or chromatin
gives rise to a series of single-stranded DNA fragments
that are multiples of 10 nucleotides in length (11). Re-
constituted nucleohistone behaves similarly. We find that
partial reconstitutes also give the regular band pattern,
provided that both H3 and H4 are present (12).

The proteolytic enzyme, trypsin, can also be used as a
probe of histone organization in chromatin. It has been
shown (13) that the core histones of intact chromatin are
largely resistant to trypsin attack: about 20 amino acids
from the N~termini of these histones are susceptible to
digestion, leaving a set of well-defined resistant poly-
peptide products. Individual histones in solution or
bound to DNA are not at all resistant to trypsin attack.

We find once again that the presence of both H3 and H4 in
reconstitutes is essential to the regeneration of trypsin-
resistant histone structure (12).

Finally, we have examined the kinetics of staphylo~-
coccal nuclease digestion of various reconstitutes. We
find that the kinetic constants fall into two classes: all
reconstitutes lacking H3 or H4 (with the exception of
H2A/H2B/H4, the anomalous combination discussed earlier)
are digested at a rate like that of DNA. All reconstitutes
containing both H3 and H4 are digested at a rate like that
of intact chromatin (12).

All of these results very strongly suggest that histones
H3 and H4 together play a principal role in organizing the
nucleosome, and that they are essential to that organization.
In contrast, the slightly lysine-rich histones, H2A and
H2B, appear to augment the stability of the nucleosome but
are not in themselves capable of generating those elements
of structure that are sensed by the probes we have used.

These nuclease and protease probes are, of course,
chosen to detect aspects of gross chromatin structure.
During the past several years our laboratory has also been
concerned with the relationship between the structure and
transcriptional function of chromatin. From the point of
view of the chemist, studies of the interaction between
chromatin and DNA-dependent RNA polymerase can also be
viewed as chemical probe experiments. Since we do not
know the relationship between in vitro transcription and
the in vivo process, this is perhaps the most realistic way
to view in vitro transcription studies.
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When E. coli RNA polymerase is allowed to transcribe
chromatin from duck reticulocytes, it is found that the
number of initiation sites available is about one per cent
of the number available in protein-free DNA (14). It has
been known for some time (15,16) that the transcript from
reticulocyte chromatin is enriched in sequences that anneal
to cDNA complementary to globin mRNA. The measured abundance
of globin RNA sequences in the transcript is about one
part in 104. Recently, Dr. Michael Zasloff in our laboratory
has confirmed this result using UTP substituted with Hg in
the 5 position (17) in the in vitro transcription system.
The advantage of this technique is that it permits sepa-
ration of the newly synthesized transcript from any con-
taminating endogenous message, and simplifies the assay
considerably. Viewed strictly as a chemical probe, RNA
polymerase can tell us a great deal about the organization
of chromatin in the neighborhood of genes active in trans-—
cription, and may make it possible to isolate those factors
responsible for the activity. Thus, chemical probe methods
may eventually lead us to an understanding of the real
mechanisms underlying this biological activity of chromatin.
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X-RAY DIFFRACTION FROM ISOLATED REPEAT UNITS
OF CHROMATIN
Stephen C. Harrison* and Roger D. Kornberg!

*Department of Biochemistry and Molecular Biology,
Harvard University, Cambridge, Mass. 02138 and

tDepartment of Biological Chemistry, Harvard Med-
ical School, 25 Shattuck St., Boston, Mass. 02115

ABSTRACT. The X-ray diffraction patterns of
whole chromatin in dilute solution and of isolated
repeat units are essentially the same.

Recent work has established a repeating
structure for the chromatin of eukaryotes. One
repeat comprises two each of the four main his-
tones surrounded by about 200 base pairs of DNA,
forming a beadlike object about 100A in diameter.
Such beads occur in close apposition along the
length of a chromatin fiber. The earliest indi-
cation of a repeating structure came from X-ray
diffraction patterns of concentrated gels of
chromatin (1-3), showing a series of rings at
spacings of about 110, 55, 37, 27A and beyond.
Wit§ the advent of the bead model, the ring at
110A was attributed to the center-to-center dis-
tance between beads along a fiber (4), but the
origin of the rest of the pattern remained
obscure.

An analysis of the diffraction from chro-
matin is complicated by the concentration
dependence (2) : solutions and dilute gels (up to
about 10%, w/w) give strong, diffuse scatter in
the center of fhe pattern with a shoulder at
about 55 to 60A, a clear ring at 378, and




