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PREFACE

A MR e e AR

Fabricating state-of-the-art integrated circuits is a joint endeavor between chemists,
chemical engineers, electrical engineers, materials scientists, and physicists. Each
group’s expertise is not broad enough to appreciate all the interdisciplinary issues in
the microelectronics industry. For example, electrical engineers and physicists,
though familiar with semiconducting materials and devices, are not exposed to de-
fects in solids or crystal growth. This book builds bridges across various disciplines.
We begin with the physics of semiconductors and devices, and follow with the
growth and processing of semiconductors. We emphasize how defects arise during
growth and processing and what effects these defects have on the device behavior.
This approach will help prepare students for the eclectic microelectronics industry.

In planning this book, we asked ourselves the following question: What is a
suitable background for a student intending to join the microelectronics industry? It
became apparent that chemists, chemical engineers, and materials scientists need
exposure to the physics of semiconductors and principles of semiconducting de-
vices, so0 we decided to discuss these topics in Chapters | and 2. Even though mate-
rials scientists are familiar with defects in solids, they do not learn specific charac-
teristics of defects in semiconductors. We cover these characteristics in Chapter 3,
which also includes the necessary background on various types of defects for stu-
dents from other disciplines. Since real materials contain defects and since semi-
conducting behavior is affected by impurities, evaluation of semiconductors is es-
sential. Therefore, we cover structural, chemical, and electrical evaluations of
semiconductors in Chapter 4. To illustrate the salient features of each technique and
its limitations, we have included one or two examples in each case. Furthermore,
semiconducting devices require doped single crystals because grain boundaries act
as carrier recombination centers. We cover crystal growth in Chapter 5. In particu-
lar, we emphasize the reduction of dislocation densities in as-grown crystals, the
precipitation of oxygen in Czochralski silicon, and the formation of impurity stria-
tions. For efficient operation, most devices require epitaxial growth, a topic we
cover in Chapter 6, along with the introduction of defects during epitaxy and
heteroepitaxy.

To convert the crystal into a device requires several fabrication steps. These
steps include oxidation, diffusion, ion implantation, metallization, lithography, and
etching. The growth of a thermal oxide on silicon forms the backbone of ULSI tech-
nology. We cover oxide growth kinetics, thermodynamics, structure and oxidation-
induced stacking faults in Chapter 7. The fabrication of several devices requires a
local change in carrier concentration and conductivity type using diffusion and ion
implantation. We cover these processes in Chapters 8 and 9. External and inter-
device communication requires metal contacts and interconnects. We consider the
techniques available for depositing contacts and interconnects and other relevant is-
sues in Chapter 10. Circuit fabrication requires transferring a circuit pattern on a
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wafer using lithography and etching. We discuss the principles of these two tech-
nologies and their limitations in Chapter 11. In Chapter 12, we cover some of the fu-
ture challenges in growth and processing of semiconductors.

To flesh out the concepts being developed, we have provided problems and
their solutions within each chapter, as well as problem material at the end of each
chapter. Furthermore, the approach underlying this book has been tested at Carnegie
Mellon University and San Jose University, and the student response has been very
encouraging.

The authors are gratetul to Professor D. W. Greve, Professor M. E. McHenry,
and Professor H. Temkin for their teedback on some of the chapters. To assess the
student’s reaction, some of the chapters were critiqued by Sanjoy, Sunit, and Ashish
Mahajan, and their contribution is much appreciated. The authors are also very
much obliged to Mrs. Valerie Thompson for her impressive word processing effort
and to Mr. Kelly Young for his meticulous illustrations. Finally, they are very grate-
tul to their families for their support and patience through this arduous endeavor.

S. Mahajan
K. S. Sree Harsha
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CHAPTER 1

s

Semiconductors: An Introduction

This chapter develops an introductory framework for understanding the behavior of
semiconductors. It introduces the concepts of band gaps and charge carriers in semi-
conductors, that is, electrons and holes, discusses the changes in carrier concentra-
tion due to the addition of dopants, and correlates the conductivity of a semicon-
ductor with the mobilities of the carriers. These concepts underlie the operation of
semiconducting devices covered in Chapter 2.

L1
BEHAVIOR OF FREE ELECTRONS

We show later in this chapter that the conduction in semiconductors occurs by the mi-
gration of two types of charge carriers, one of them being electrons. The presence of
two types of carriers produces interesting effects in semiconductors. Therefore, we
first discuss the properties of free electrons, that is, electrons that exist outside a
solid—and progressively add more realism to this model so that it represents a semi-
conductor.

1.1.1 Particle-Wave Duality

Free electrons exhibit particle-wave duality. Figure 1.1 shows a setup to demonstrate
the particle-like behavior. The electrons from a hot cathode overcome the surface
potential barrier when a suitable potential is applied between the cathode and an
anode. The anode has a pinhole that collimates the free-electron beam emitted from
the cathode. When this beam hits a target metal, it ejects core-shell electrons from
the atoms. An outer-shell electron rapidly fills the resulting vacancy in the core shell.
The difference in the energies between the two electronic levels is given off as an
X-ray photon. This behavior is consistent with the particle-like nature of electrons.
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Anode with a Pinhole

/ X-Rays
\ <«—— Polycrystalline

________________ >» Metal

Electrons /

X-Rays

Hot Filament Cathode

FIGURE 1.1
Schematic of a setup that can demonstrate the particle-like behavior of free electrons.

Now consider the setup shown in Figure 1.2. The electron beam defined by mag-
netic lenses traverses a very thin, single crystal sample and is Bragg diffracted. The
diffraction produces a large number of diffraction spots on a fluorescent screen as
shown in Figure 1.2. The pattern 1s best understood if the electrons behave as waves.

The equivalence between the particle- and wavelike behaviors of free electrons
is provided by the Planck and de Broglie relations. According to Planck, electron
energy E is related to its frequency v by

V= - 1.1
h (1.1)
where h is Planck’s constant. This relation is applicable to all types of electromag-
netic radiation. On the other hand, de Broglie hypothesized that the wavelength A of
a wave associated with an electron is related to its momentum p by

h
A= (1.2)

p
Every particle can exhibit the particle- and wavelike behaviors. Whether the
wavelike nature of a particle is experimentally discernible depends on the wave-

Fluorescent Screen

Diffracti
Anode with a Pinhole ifiraction Spot

...\

® ¢ o

Hot Filament Cathode .
Magnetic Lenses

\ Diffraction Pattern

Single Crystal Sample

FIGURE 1.2
Schematic of a setup that can demonstrate the wave-like behavior of free electrons.
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length of the wave associated with the particle relative to the dimension of the ex-
periment. For electrons the mass is extremely small (9.11 X 107%! kg). Therefore,
for reasonable values of velocities, as shown in Example 1.1, the values of mo-
mentum are fairly small, resulting in associated wavelengths of waves that can be
discerned by their diffraction from a grating consisting of lattice planes within a
crystal.

EXAMPLE [.1. Electrons are excited from a hot wire cathode at a potential of 100 kV.
Calculate the wavelength of the electrons.

Solution

1
E = the kinetic energy of the accelerated electrons = 3 mv?

100 keV
=16 X107"],

It

E = 1 mv? is reasonable because E is much less than the rest energy
mc? (500 keV), where c is the velocity of light. For higher energies you need
to use the relativistic formulas.

p = momentum of the electrons = +/2mE, where m is the mass of the
electron (9.11 x 1073 kg).
Thus P =+v2x9.11 x 1073 x 1.6 x [0~ kg-m/sec

= 1.7 x 107%* kg-m/sec.

According to de Broglie

A=

- N—-u

Substituting for pand h = 6.6 X 107** J sec, we obtain

6.6 x 10734

Waves having the preceding wavelength can be diffracted from various lattice planes
within silicon and gallium arsenide whose lattice parameters are 0.543 and 0.565 nm.
Diffraction occurs because the electron wavelength is considerably smaller than the
separations between different gratings formed by different crystal planes.

1.1.2 Uncertainty Principle

We cannot describe the events involving atomic particles with absolute precision.
Instead, we must think of the average values of position, momentum, and energy of
a particle such as an electron. According to Heisenberg, the uncertainties in the mea-
surements of position Ax and momentum Ap are related by the uncertainty relation

(Ax)(Ap) = A, (1.3)



