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Foreword

This book grew out of the lecture notes of a course which I gave at Yale
University in the Fall semester, 1972. Exercises were added and the text was
rewritten in 1975 and 1976. The first four chapters in their present form were
used in a éourse at Ohio State University in the Fall quarter, 1975.

The first six chapters can be read, in conjunction with appenaices 1-3, by
anyone who is familiar with the most basic material covered in standard under-
graduate courses in linear algebra and abstract algebra. Some complex analysis
(meromorphic functions, series and products of functions) is required for chapters
7 and 8. Specific references are given.

The level of exposition rises as the book progresses. In chapter 2, for
example, the degree of & field extension is defined, while in chapter I it is
assumed that the reader knows Galois theory. The idea is to make it possible for
someone with little experience to begin reading the book without daifficulty and
to be lured into reading further, consulting the appendices for background matefial
when necessary.

I have atfempted to present the mathematics in a straightforward, "down to
earth” manner that would be accessible to the inexperienced reader but hopefuliy
still interesting to the more sophisticated. Thus I have avoided local methods
with no apparent disadvantages except possibly in exercises 20-21 of chapter 3
and exercises 19-22 of chapter 4. Even there I feel that it is worthwhile to have

available "direct" proofs such as I present. Any awkwardness therein can be taken



viia

by the reader as motivation to learn about localization. At the same time, it is
assumed that the reader is reasonably adept at filling in details of arguments. In
many places details are left as exercises, often with elaborate hints. The purpose
of this is to make the proofs cleaner and easier to read, and to promote involvement
on the part of the reader.

Major topics are ﬁresdﬁted in the exercises: fractional ideals and the
different in chapter 3, ra.mifica.tion groups and the Kroneckef-nger Theorem in
chapter 4, fundamental units in non-totally real cubic fields ig chapter 5,
cyclotomic class numbe?s and units in chapter 7. Many other results appear in
step-by-step exercise form. Among these are the determination of the algebraic
integers in pure cubic fields (chapter\2), the proof that prime divisors of the
relative different are ramified over the ground field (chapter 4), and the Frobenius
Density Theorem (chapter 7).

I have taken the liberty to introduce some new terminology ('"number ring" for
the ring of algebraic integers in a number field), a notational reform (||I| for
the index of an ideal I in a number ring, rather than the more cumbersome N(I) ),
and the concept of polar density,.which seems tb be the "right" density for sets
of primes in a number field. Notice, for example, how easily one obtains Theorem
43 and its corollaries.

Chapter 8 represents a departure from tradition in several ways. The
distribution of primes is handled in an abstract context (Theorem 48) and without
the complex 1qgarithm. The main facts of class- field theory are stated without
proof (but, I hope, with ample motivation) and without fractional ideals. Results
on the distribution of primes are then derived from these facts. It is hoped that
this chapter will be of same help to the reader who goes on to study class field

theory.

Daniel A. Marcus
Columbus, Ohio
June, 1977
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Chapter 1
A special case of Fermat’'s conjecture

Algebraic number theory is essentially the study of number fields, which are
the finite extensions of the field € of rational numbers. Such fields can be
useful in solving problems which at first appear to involve only rational numbers.

Consider, for example, this problem:

Find all primitive Pythagorean triples: 1i.e., integer solutions

of x2 + y2 = 22 having no common factor.

Assuming that we have such a triple and considering the equation mod L, we
£ind immediately that z must be odd. This will be used later. Now comes the
introduction of a number field (namely @[i] = {a + bi: a,b € Q}) into the problem:

if we factor the left side of the equation we obtain

(x + yi)(x - yi) = 2°

and thus we have a multiplicative problem in the ring of. Ga.ussia.n integers

Z{i] = (a + bi: a,b € Z} . It is well known (’see exercise 7 at the end of this
chapter) that Z{i] 1is a unique factorization domain: every nonzero Gaussian
integer can be expressed in a unique way (up to order and unit factors) as a
product of Gaussian primes. We will use this fact to show that x + yi has the
form ud2 for some Gaussian integer « and some Gaussian integer wnit u. If

we then write @ =m + ni and observe that the only units in Z[i] are + 1 and



+ 1 (see exercise 2), we obtain

(x,y) = (+(° - n°), + 2mn)

i(’“2 + n2) .

|3
W

It is obviously necessary that ;n and n be relatively prime and not both odd
(otherwise x, y, and 2z would have a factor in common) and it is easy to seé that
a primitive Pythagorean triple results from gny such choice of m and n, and a
choice of signs. Furthérmore it is clear that nothing is lost if we take only
positive m and n.

Thus the problem will be solved if we can show that for any primitive solution,
x + yl has the form ua2 . To do this, it is enough to show that if # is a
Gaussian prime dividing x + yi, then in fact T divides x + yi an even number
of times: i lx + yi and Tfe+1 +x_+ yl for some even e . Since
(x + yi)(x - yi) = 22 ~and T obviously divides 2= an even number of times
(twice as many times as it divides z), we need only show that T4x - yi.

Thus, supposing that T divides both x + yi and x - yi, we want a
contradiction. Adding, we get TT|2x . Also we have Tl|z . .But 2x and z are
relatively prime integers (recall that 2z is odd, ahd if x and z had a non-
trivial factor in common, then so would x, y, and z). So there exist integers
m and n such that 2xm + zn = 1. But then T'(Il in 2Z[i] . This is
impossible since T is a prime,i not a unit.

Thus by working in the field Q[i] we have determined all primit;‘.ve
Pythagorean triples.

| Since this was so successful, let us try to apply the same idea to the
equation X"+ yn =20 for n >2. Fermat, in his famous marginal note, claimed
that he had a proof that there are no solutions in nonzero:integers when n > 2.
This is kncwnl as "Fermat's last theorem" or more accurately, since no proof is
known by anyone preséntly alive, "Fermat's conjecture."”
' Using our result on primitive Pythagorean triples, we can show that Fermat

was right for n = 4 and hence (automatically) also for any multiple of 4. (See



exercise 15.) It is therefore sufficient to consider only the case in which n is
an odd prime p, since if no solutions exist when n = p then no solutions exist
when n is a ;zxtﬂ.tiple of p. Thus the problem is to show that if p 1is an odd
prime, then & + y‘p = zP has no solution in nonzero integers x, y, z .

Suppose, for some odd prime p, there is a solution x,y,z € Zz - {0}.
Clearly we may assume that x, y, z have no ccm;non factor (divide it out if there
is one). We want a contradiction. It is convenient to separate the argument into
two cases: either p divides none of x, y, z (case 1), or else p divides
exactly one of them (case 2). (If p divided more than one then it would divigde
all three, which is impossible.)

We will consider only case 1. It 1s easy to show that x3 + y3 = z3 has no
case 1 solutions: If x, y, and z are not multiples of 3, then in fact
x4 y3 # 2 (mod 9) since each of these cubes is =1+ 1 (mod 9).

Now assume p ™ 3; X, y, and z are not multiples of p; and x* + yP = 2°.

Factoring the left side, we obtain

. ) ) .
(1) (x + ¥)(x + yo)(x + yoo) .o (x4 yoP 71 = 2P

. B 2mi/p °
where w is the pth root of unity e . (To see why this is true, note that

s

1, w, wa, can, @ "1 are the p roots of the polynomial tP - 1, hence we have

the identity
(2) tP oL = (6 -1)(t - 0t - o) eee (5-dPT),

from which (1) follows by substituting the number _-y_:_c' for the variasble t.)
Thus we have a multiplicative problem in the number field €[w], and in fact
*
in the subring Z(w]. Kummer attempted to prove Fermat's conjecture by

" assuming, that the unique factorization property of Z and Z[i] generalizes to

olu]

[}

-2 . «
{ao+a.lm+ +a.p_2mp :aiGQ vi} ;

Z[w)

)

-2
(&0+51‘D+---+ap_2mp. .a.iE Z vi}.



the ring Z[w]. lhfortungtely it does not. For example if p = 23, then not
all members of Z[w] factor uniquely into irreducible eiements: i.e., elements
a € Z[w] which are not units and such that whenever « = py, either g or vy
is a unit (see exercise 20).  In other words, Z[w] is not a unique factorization
domain (UFD) for p =23. It is, however, a UFD for all primes less than 23.
For these primes Xummer's argument 1s valid, showing that =« + y'p = 2z has no
case 1 solutions.

The argument can be organized as follows: Assuming that %Z[w] is a UFD,
it can be shown that x + yw has the form uof for some « € Z{w] and some .
unit u € Z[w]. It can tl;en be shown that the equation x + .yw = ud® » with
x and y not divisible by p, implies that x =y (mod p). (See ;axercises
16 -28 for the details.) Similarly, writing P+ (-2)? = («y)®, we obtain

x = -z (mod p) . But then
2xP 2 xP 4+ yP = 2P = P (mod p) ,

implying that p|3xp « Since p+x and p # 3, this is & contradiction. Thus
case 1 of Fermat's conjecture can be established for all primes p for which
Z{w] is a UFD.

What can be done for other primes? Unique factorization in Z[w] was needed
only for the purpose of deducing x + yw = uc® from equation (1); might it not
be possible to deduce this in some other way? The answer is yes for certain values
of p, including for example p = 23 . This results from Dedekind's amazing
discovery of the correct generalization o\f unique factorization: although the
e}ements of Z{w] may not factor uniquely into irreducible elements, the ideals
in this ring always factor uniquely into prime ideals. Using this, it is not hard
to show that the principal ideal (x + yw) 1is the pth power of some ideal I (see
exercises 19 and 20). For certain p, called ;'regular" primes (defined below), it

then follows that I must itself be a principal ideal, say (x), so that

(x + yw) = IP = ()P = (@P)



and thus aéa.in we have X + yw = uc? for some unit u . As before, this implies
x =y (mod p) and a contradiction follows. Thus case 1 of Fermat’s conjecture
can be established for all regular primes, ﬁhich we now define.

There is an equivalence relation ~ on the set of ideals of Z[w], defined

a8 follows: for ideals A and B

A~B iff QA= BB for some O, B € Z[w].

(Verify that this is an equivalence relation.)

It turns out (see chapter 5) that there are only finitely many equivalence classes
of ideals under ~. The number of classes is called the class number of the ring

Z(w] , and is denoted by the letter h. Thus h 1is a function of p.
DEFINITION: A prime p is regular iff p4h.

To explain why I (in the equation (x + yw) = IF) must be principal. whenever .
p is a regular prime, we note first that the ideal classes can be multiplied in
the obvious way: the product of two ideal classeé is obteined by s<electing an
ideal from each; multiplying them; and taking the ideal class which contains the
product ideal. This is well-defined: The resulting ideal class does not depend
on the particular ideals chosen, but only on the two original ideal classes (prove
this). Multiplied in this way, the ideal classes actually form a group. The
identity element is the class Co consisting of all principal ideals (which really
is a class; see exercise 31). The existence of inverses will be established in
chapter 3. Thus the ideal classes form a finite abelian group, called the ideal
class group. If p is regular then clearly this group contains no element of
order p, and if follows that if IP is I;rincipal then so is I: Iet C be
the ideal class containing I ; then c® is the class containing o , which is

CO . Since C is the identity in the ideal class group and C cannot have order

[¢]
P, it follows that C = CO , which shows that I is principal.

As we noted before, this leads to a contradiction, showing that xP + yP = 7P



has no case 1 solutions (i.e., solutions for which p*:qz) when p 1is a regular
prime. It is also possible, although somewhat more difficult, to show that no case
2 solutions exist for regular primes. (For this we refer the reader to Borevich
and Shafarevich's Number Theory, p. 378-381.) Thus Fermat's conjecture can be
proved for all regular primes p, hence for all integers n which have at least
_ one regular prime factor. Unfortunstely irregular primes exist (e.g. 37, 59, 67).
In fact there are infinitely many. On the other hand, it is notl known if there are
infinitely many regular primes.

In any case our attempt to prove Fermat's conjecture leads us to_ consider
various questions about the ring Z[w)] : What are the units in this ring? What
are the irreducible elements? Do elements factor uniquely? If not, what
can we say about the factorization of ideals into prime ideals? How many ideal
classes are there?.

The investigation of such problems forms a large portion of classical algebraic
number atheory. More accurately, these questions are asked in suiarings of arbitrary
number fiélds, not just Q[w]. In every number field there is a ring, analogous

to Z[w], for which there are interesting answers.

EXERCISES
. : . L . 2 2
1-9: Define N: Z[i]l > Z by N(a + bi) =a” + b .

1. Verify that for all a,p € Z[i], N(ag) = N(o)N(B), either by direct
computation or by using the fact that N(a + bi) = (a + bi)(a - bi) .

Conclude that if aly in %Z[i}, then N(@)|N(y) in =Z.

2. let a € Z[i). Show that o is a unit iff N(a) = 1. Conclude that the

only units are + 1 and +1i.

3. Let a € Z[i].. Show that if N(@) is a prime in Z then a is

irreducible in Z[i]. Show that the same conclusion holds if o) = p2 ,

where p 1is a prime in %Z, p =3 (mod k).



4. Show that 1 - i is irreducible in Z[i] and that 2 = u(l - 1)2 for some

unit u.

5. Notice that (2 + i)(2 - i) =5 = (1 + 2i)(X - 2i). How is this consistent

with unique factorization?

6. Show that every nonzero, non-unit Gaussian integer « is a product of

irreducible elements, by induction on N{Q) .

7. Show thet Z[i] is a principal ideal domain (PID); i.e., every ideal I
is principal. {As shown in Appendix 1, this implies that %[i] is a UFD.)
Suggestion: Take o € I - (0} such that N(a) is minimized, and consider
the multiplies vyoa, v € Z[i]; show that these are the vertices of an
infinite family of squares which fill up the complex plane. (For example,
one of the squares has vertices O, a, ix, a.nci (1 + i)x; 8&ll others are
translates of this c;ne.) Obviously I contains all vy ; show by a
geometric argument that if I contained anything else then minimality of

N{a) would be contradicted.

8. We ﬁll use unique facto:rization in Z{i] +to prove that every prime
p=1(mod 4) is a sum of two squares. '
(a) Use the fact that the multiplicative group Z: of integers mod p
is cyclic to show that if p =1 (mod 4) then n® = -1 (mod p)

for some n € %Z.

(b) Prove that p cennot be irreducible in Z[i]. (Hint:

p|n2 +1=1{(n+i)n -1).)
{c) Prove that p is a sum of two squares. (Himt: (b) shows that
p = (a+bi){c + di) with neither factor & unit. Take norms.)
9. Describe all irreducible elements in %[i].

10-10: Iet w=e2™/3__1 512:3:1. Define N: Z[w] >~ Z by

o

N(a + bw) = a° - ab + b~ .



10.

11.

13.

1h.

15.

Show that if a + bw 1is written in the form u + vi, where u and v are

2
real, thep N(a + bw) = u + v2 .

Show that for all «,p € Z[w], Nag) = N(a)N(B'), either by direct
computation or by using exercise 10. Conclude that if otly in Z{w],

then N(x)|N(y) in Z.

et @ € Z{w]. Show that o is a unit iff N(a)

i

1, and find all units

in Z{w]. (Thexje are six of them.)

Show that 1 - w 1is irreducible in Z[w], and that 3 = u(l - m)2 for

some unit u.

Modify exercise 7 to show that Z[w] is-a PID, hence a UFD. Here the
squares are replaced by parallelograms; one of them has vertices 0, a, wa,
(w+ 1)a, and all others are translates of this one. Use exercise 10 for

the geometric argument at the end.

Here is & proof of Fermat's conjecture for n =k

) /
If xl‘L + y“L = zh has a solution in positive integers, then

so does xl+ + yl‘L = w2 . let x, y, v be & solution with smallest
2
possible w. Then x7, y2, w is a primitive Pythagorean triple.

Assuming (without loss of generality) that x 1is odd, we can write

2 2 2 2 2 2

with' m and n relatively prime positive integers, not both odd.

(a) Show that

with r and s relatively prime positive integers, not both odd.

{b) Show that r s, and m are pairwise relatively prime. Using

2 : 2
¥y = Lrsm, conclude that r, s, and m are all squares, say a°, b2,

a.nd. 02 .



(¢) Show that za.11L + bu = c2 , and that this contradicts minimality of w.

16 -28: Let p be an odd prime, w = e2TT1/p.

16. Show that

1-0)2-d) . @-2PH=p

by considering equation (2).

17. Suppose that %Z[w] is a UFD and T1|x + yw. Show that T does not divide
any of the other factors ;an the left side of equation (1) by showing that
if it did, then T would divide both 2z and yp (Hint: use 16); but z-
and yp are relatively prime (assuming case 1), hence zm + ypn =1 for

some m,n € Z . How is this a contradiction?

18. Use 17 to show that if Z[w] is a UFD then . x + yw = ud, o € z[w],

u,a uwit in Zlw].

19. Dropping the assumption that Z[m}' is & UFD but using the fact that ideals
factor uniquely (up to order) into prime ideals, show that the principal ideal
(x + yo) has no prime ideal factor in common with any of the other principal

ideals on the left side of the equation
-l :
(1) (x+ y)(x + yo) .. (x+ P 77) = (2)P

in which all factors are interpreted as principal ideals. (Hint: modify the
proof of exercise 17 appropriately, using the fact that.if A is an ideal

dividing another ideal B , then A DB.)
20. Use 19 to show that (x + yw) = I® for some ideal I.
21. ©Show that every member of §[w] is uniquely representable in the form
8y + 8w+ a2w2 + e +.ap_2wp_2, 8, €Q vi

by showing that w' is a root of the polynomial



21.

22.

23.

2k,

25.

10

(continued)

£t) =P L 4P 2 L it

and that f£(t) 1is irreducible over §. (Hint: It is ehough to show that
£(t + 1) 1is 1rre.iucibie, which can be established by Eisenstein's criterion

(appendix 1). It helps to notice that £(t + 1) = ((t + 1)® - 1)/t.)

Use 21 to show that if o« € Z[w] and pla , then (writing

-2
A=yt BU+ .. + B oF ,aiez)e.lla

P-2 1
Define congruence mod p for B,y € Z[w] as follows:

are divisible by p.

g =y (modp) i€f P -y =28p for some 5 € Zlw] .
(Equivalently, this is congruence mod the principal ideal pZ{w].)

Show that if B =y (mod p), then B =y (mod p) where the bar denotes

complex conjugation.

show that (B + ¥)P = gP + yP (mod p) and generalize this to sums of

arbitrarily many terms by induction.

Show that V a € Z[w], o is congruent (mod p) to same a € Z.

(Hint: write o in terms of w and use 2L.)

26 ~28: Now assume p > 5. We will show that if x + ywu = ur® (mod P,

26.

a € Zlw}, u a unit in Z[w], x and y integers not divisible by

il

p, then x =y (mod p)}. For this we will need the following result,

proved by Kummer, on the units of Z[w]:

TEMMA: If u is a unit in Z{w] and U is its complex conjugate,
then u/u is a power of . (For the proof, see chapter 2,

exercise 12.)
Show that x + yw = uaf (mod p) implies

x +yo = (x+ yw'l)wk {moa p)
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26. (continued)
for some k € Z. (Use the Lemma on units and exercises 23 and 25, Note

that © = wt.)

27. Use exercise 22 to show that a contradiction results unless k =1 (mod p) .

(Recall that plxy, p>5, and u:P-1+uyp-2+...+w+1=O.)

28. Finally, show x =y (mod p) .

- 2T /23 .

29. let Verify that the product

; Y ’
(l+w2+m++w5+m6+mlo+wu)(l+m+w5+m6+m7+m9+wn)

is divisible by 2 in  Zlw)}, although neither factor is. It can be shown
(see chapter 3, exercise 17) that ‘2 is an irreducible element in Z[w] ;

it follows that Z[w} cannot be a UFD.
30-32: R 1is an integral domain (commutative ring with 1 and no zero divisorq).

30. Show that two ideals in R are isomorphic as R~modules iff they are in the

same ideal class.

31. Show that if A is an ideal in R and if «A is principal for some
@ €R, then A is principal. Conclude that the principal ideals form an

ideal class.

32. Show that the ideal classes in R form a group iff for every ideal” A there

is an ideal B such that AB 1is principal.



