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a lattice parameter

A area of an electrode

Ay area on the CRT display

A(K) aperture function

Alk) backscattering amplitude

A, area scanned on the sample
magnetic field

c lattice parameter

¢ spring constant of the cantilever

¢ elastic constant

Cy capacitance of the empty cell used for transfer function measurement,
Co = ¢pAld.

Cin capacities

Ca double-layer capacitance

G sensitivity constant derived from the Sauerbrey relationship

¢ concentration of species j

¢ bulk concentration of species |

Cs spherical abberation coefficient

d distance

d resonator thickness

d separation between two parallel electrode in an
impedance measurement

d thickness

D Debye-Waller factor

D; diffusion coefficient of species j

D(K) transmission function of the detector

Dy, dissipation coefficient corresponding to the energy losses
during oscillation

E photoelectron energy

E polarization of the emitted light

E voltage or electric potential

AE Stark shift

£y accelerating voltage

E, threshold energy

E» half-wave potential (in voltammetry)

k), biexciton binding energy

E; initial potential

E, peak potential

AEp | Ep* - Ept|in CV

Eon potential where / = /,/2 in LSV or CV

r clectric field

F faraday constant, F = 96.485 Clequiv

F net force

Af lens defocus

Af measured frequency change
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fo frequency of a quartz resonator prior to a mass change

F'(d) force gradient

F(k). structure amplitude

fis) scattering factor

FT[V,(b)]  Fourier transform of the crystal potential

Fz attractive force

G reciprocal lattice vector

h piezoelectric stress constant

H total Hamiltonian

! transmitted intensity

) tunneling current

1, incident beam intensity

To(x) intensity distribution of the incident probe

1(A) integrated intensity of the low-loss region including
the zero-loss peak for an energy window A

Iy faraday current

Infs) power scattered per unit solid angle in the direction defined by s

I peak current

i current during reversal step

Ik total integrated SE intensity

(X image intensity

J coordination shell index

)i imaginary unit, j = (-1)!

J net electronic angular momentum

Jo exchange current density

i exchange energy constants

Jn Bessel functions of order n.

k electron wave-vector

k spring constant

K anisotropy energy

K wavevector of the scattered wave
Ky cut-off wave-vector

K, wavevector of the incident wave

k° standard heterogeneous rate constant

ky Fermi wave vector

I length

L average escape-depth

L total orbital angular momentum

Ly thickness of a Nernst diffusion layer

m electron mass

M magnetization

M magnification

Am mass change

M, () modulus function, M (o) = [¢(w)]

MW apparent molar mass (g mol™")

M, tunneling matrix element

n density

" number of electrons involved in an electrochemical process
N number of identical atoms in the same coordination shell

P momentum
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propagation function

associated Legendre function

depolarization factors for the three axes A, B, C of the nanorod
withA>B=C

charge

phase grating function of the slice

charge due to double layer charging

Fourier transform of the object transmission function
transmission function of the object

distance between absorbing and neighbor atoms

gas constant

radius

resistance

bulk resistance of a electrolyte

resistance to charge transfer at electrolyte-electrode interfaces
radius

distance between atom m and atom n

steady state mass-transfer resistance

total spin angular momentum

amplitude reduction factor due to many-body effects
spin operator of i'" electron

time

absolute temperature

material thickness

energy relaxation

dephasing time

Curie temperature

transfer function of the microscope

inverse Fourier transform of 7(K)

amplitude distribution of the incident probe
reciprocal space vector

tunneling voltage

acceleration voltage

linear potential scan rate

electron velocity

volume

molar volume

hickness-projected potential of the crystal

distance between tip and sample

beam position

rms atomic displacement

impact parameter

Y(w)=[Z(»)]"", admittance function

displacement of the cantilever and piezo

charge carried by species i signed units of electronic charge
Warburg impedance

impedance function

angle

parameters

anodic and cathodic charge transfer coefficient
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p asymmetry parameter for a one-electron process
(k) EXAFS oscillations

7(K) aberration function of the objective lens

2(T) magnetic susceptibility

7(ot) tabulated number

A defocus value

) temporal phase angle between the charging current

and the total current
&p absolute permettivity (or the permittivity of free space)
dielectric constant
to dielectric constant of quartz
relative permittivity of a material
&’ dielectric constant

.,

&(wm) dielectric function

¢ tilt angle between y and sample plane

¢ total photoelectron phase shift

e/ workfunction

o(k) total phase shift

o(r) electronic ground state wave function

d(x) projected specimen potential along the incident beam direction

7 wavelength

4(k) photoelectron mean free path

I absorption coefficient

7 paramagnetic atom

1 transition dipole vector

Mo atomic absorption coefficient

jun Bohr magneton

WE) absorption coefficient associated with a particular edge

AE) change in the atomic absorption across the edge

1 (E) absorption coefficient of an isolated gold atom

Hiixe. exciton dipole moment

J109) shear modulus of AT-cut quartz

I net surface dipole moment

v, transverse velocity of sound in AT-cut quartz (3.34 x 10*m s'])

0 angle between emission polarization and projection of  onto the sample
plane

0 scattering angle

0 temporal phase angle

Oy Bragg diffraction angle

Po density of quartz

Py density of states of sample

ps(z.E) local density of states of the sample

oy density of states of tip

a atomic scattering cross-section

a interaction constant

o total Debye-Waller factor (including static and dynamic contributions)

Tiel ionic conductivity (2 'em ') of an electrolyte

aA(AfS) energy and angular integrated ionization cross-section

Cext total extinction coefficient

T forward step duration time in a double-step experiment
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current pulse relaxation

cathode-ray-tube
cetyltrimethylammonium bromide
cetyltrimethylammonium chloride
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cyclic voltammetry

dynamic-angle spinning
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Debye function analysis

double-rotation
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energy dispersive x-ray spectroscopy
energy-loss spectroscopy

electric force microscopy
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FE-TEM
FFM
FLDOS
FM
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GITT
GMR
HAADF
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HRTEM
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IR

IS
LABF
LB
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LO
LSV
LTS
LT-STM
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field-emission transmission electron microscopy
frictional force microscopy

local density of states near the Fermi energy
frequency modulation

force modulation microscopy
full-width-at-half-maximum

galvanostatic intermittent titration technique
giant magnetoresistance

high-angle annular dark-field

highest occupied molecular orbital

highly oriented pyrolytic graphite

high resolution transmission electron microscopy
icosahedron

infrared spectroscopy

impedance spectroscopy

large angle bright-field

Langmuir-Blodgett

Brazilian National Synchrotron Laboratory
longitudinal-optical

linear sweep voltammetry

local tunneling spectroscopy
low-temperature scanning tunneling microscopy
lowest unoccupied molecular orbital

magic angle spinning

multiple expansion cluster source

magnetic force microscopy

microscope for imaging, diffraction, and analysis of surfaces
mixed ionic-electronic conductor
multiply-twinned particles

nanocrystal arrays

nanocrystal superlattices

nuclear magnetic resonance

napthoquinone

near-field scanning optical microscopy
open-circuit voltage

optical density

octadecylphosphonate

phase-contrast transfer function

parallel electron energy-loss spectroscopy
photoluminescence

phase object approximation

polystyrene

position-sensitive detector
poly(styrenephosphonate diethyl ester)
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poly(2-vinylpyridine)

quartz crystal microbalance

quartz crystal nanobalance

quantum-dot quantum-well

quantum dots
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reference electrode

rotational-echo double resonance
ring-opening metathesis polymerization
self-assembly

scanning Auger microscopy
self-assembled monolayers

small-angle elastic x-ray scattering
scanning capacitance microscopy
secondary electron

scanning electron microscopy with polarization analysis
spin-echo double resonance

lower case Secondary electron spectroscopy
single-electron-tunneling

scanning force microscopy

scanning near-field optical microscopy
single-pulse

scanning probe microscopes

surface plasmons

scanning transmission electron microscopy
scanning tunneling microscopy
scanning tunneling spectroscopy
2,5”’-bis(acetylthio)—5,2',5’,2”-terthienyl
thin annular detector

thin annular detector for bright-field
thin annular detector for dark-field
transmission electron microscopy
thermal diffuse scattering

truncated octahedral

thiophenol

ultrahigh vacuum

valence band

virtual objective aperture

working electrode

weak scattering object approximation
x-ray absorption near edge structure
x-ray absorption spectroscopy

x-ray energy-dispersive spectroscopy
x-ray photoelectron spectroscopy

x-ray diffraction
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1 Nanomaterials for Nanoscience and
Nanotechnology

Zhong Lin Wang

Technology in the twenty first century requires the miniaturization of devices into
nanometer sizes while their ultimate performance is dramatically enhanced. This
raises many issues regarding to new materials for achieving specific functionality and
selectivity. Nanophase and nanostructured materials, a new branch of materials
research, are attracting a great deal of attention because of their potential applications
in areas such as electronics [1], optics [2], catalysis [3]. ceramics [4]. magnetic data
storage [5, 6], and nanocomposites. The unique properties and the improved perfor-
mances of nanomaterials are determined by their sizes, surface structures and inter-
particle interactions. The role played by particle size is comparable, in some cases, to
the particle chemical composition, adding another flexible parameter for designing
and controlling their behavior. To fully understand the impacts of nanomaterials in
nanoscience and nanotechnology and answer the question of why nanomaterials is so
special, this chapter reviews some of the unique properties of nanomaterials, aiming
at elucidating their distinct characteristics.

1.1 Why nanomaterials?

Nanomaterials are classified into nanostructured matcrials and nanophase/nano-
particle materials. The former refer to condensed bulk materials that are made of
grains with grain sizes in the nanometer size range, while the latter are usually the dis-
persive nanoparticles. The nanometer size here covers a wide range which can be as
large as 100-200 nm. To distinguish nanomaterials from bulk, it is vitally important to
demonstrate the unique properties of nanomaterials and their prospective impacts in
science and technology.

1.1.1 Transition from fundamental elements to solid states

Nanomaterials are a bridge that links single elements with single crystalline bulk
structures. Quantum mechanics has successfully described the electronic structures of
single elements and single crystalline bulks. The well established bonding. such as ion-
ic, covalent, metallic and secondary, are the basis of solid state structure. The theory
for transition in energy levels from discrete for fundamental elements to continuous
bands for bulk is the basis of many electronic properties. This is an outstanding ques-
tion in basic science. Thus, a thorough understanding on the structure of nanocrystals
can provide deep insight in the structural evolution from single atoms to crystalline
solids.



2 Wang

Nucleation and growth are two important processes in synthesizing thin solid films.
Nucleation is a process in which an aggregation of atoms is formed, and is the first
step of phase transformation. The growth of nuclei results in the formation of large
crystalline particles. Therefore, study of nanocrystals and its size-dependent structures
and properties is a key in understanding the nucleation and growth of crystals.

1.1.2 Quantum confinement

A specific parameter introduced by nanomaterials is the surface/interface-to-vol-
ume ratio. A high percentage of surface atoms introduces many size-dependent
phenomena. The finite size of the particle confines the spatial distribution of the
electrons, leading to the quantized energy levels due to size effect. This quantum
confinement has applications in semiconductors, optoelectronics and non-linear
optics. Nanocrystals provide an ideal system for understanding quantum effects in a
nanostructured system, which could lead to major discoveries in solid state physics.

The spherical-like shape of nanocrystals produces surface stress (positive or nega-
tive), resulting in lattice relaxation (expansion or contraction) and change in lattice
constant [7]. It is known that the electron energy band structure and bandgap are sen-
sitive to lattice constant. The lattice relaxation introduced by nanocrystal size could
affect its electronic properties.

I.1.3 Size and shape dependent catalytic properties

The most important application of nanocrystals has been in catalysis. A larger per-
centage of surface atoms greatly increases surface activities. The unique surface struc-
ture, electronic states and largely exposed surface area are required for stimulating
and promoting chemical reactions. The size-dependent catalytic properties of nano-
crystals have been widely studied, while investigations on the shape (facet)-dependent
catalytic behavior are cumbersome. The recent success in synthesizing shape-con-
trolled nanocrystals, such as the ones dominated by {100}. {111} [8] and even {110}
facets [9]. is a step forward in this field.

I.1.4 Novel mechanical properties

It is known that mechanical properties of a solid depend strongly on the density of
dislocations, interface-to-volume ratio and grain size. An enhancement in damping
capacity of a nanostructured solid may be associated with grain-boundary sliding [10]
or with energy dissipation mechanism localized at interfaces [11] A decrease in grain
size significantly affects the yield strength and hardness [12]. The grain boundary
structure, boundary angle, boundary sliding and movement of dislocations are impor-
tant factors that determine the mechanical properties of the nanostructured materials.
One of the most important applications of nanostructured materials is in superplasti-
city, the capability of a polycrystalline material to undergo extensive tensible defor-
mation without necking or fracture. Grain boundary diffusion and sliding are the two
key requirements for superplasticity.



