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Preface

This book originated from notes to accompany a course on Computer
Architecture given at Massey University. At the time, the only texts available
to be used for such a course were collections of papers describing many
different computers or delving deeply into the logical design of one particular
machine. Computer Architecture courses tend to be case studies looking at
various machines at a not-too-deep level in order to find the best illustra-
tion for each topic of discussion. Such an approach is unfortunate because
the student does not get to see how a computer architecture integrates
the facilities it requires tc accomplish a variety of purposes. However, the
opposite approach of working through the complete description, usually the
machine manual, of one computer leaves the student with detailed know-
ledge of one architecture but with no understanding of its rationale, its
adequacy or the alternatives. One resolution of these two extremes is the
approach taken here of discussing the principles behind computer architec-
ture and at the same time developing a description of one example in detail.

In order to really understand a computer’s architecture in detail, if you
did not actually design it, you need to have access to field engineering descrip-
tions, even logic diagrams, to make up for the lack of detail in programmer-
oriented machine reference manuals—the low level documents are also a
great source of clues as to the designer’s real intentions. Having the computer
available for student use makes the course more real and provides exercises
such as examining the code produced by compilers. The choice of example
computer was thus limited to those at hand, and, of those available, the
largest and most modern was the Burroughs B6700.

The availability of the B6700 as an example was extremely fortunate
because, at the time, it was the only general purpose computer about which
one could say that it was clearly designed with its applications in mind.
The B6700 is an extremely interesting, though complex, machine and, truth
to tell, there would not be much point in writing a book of this nature
without a machine like the B6700 to describe. The B6700 can serve as an
example of one solution to many architectural problems but there are, of
course, other alternative solutions. Where the alternatives are significant the



vi PREFACE

approach taken here is to mention them but to not, usually, discuss them
in detail and instead refer the reader to other sources. Note that the B6700
available for study was a small uniprocessor; details of the larger “recon-
figuration systems” and the B7700 have been extracted solely from their
reference manuals. .

Every computer architecture is the concrete realization of a conceptual
model of the computational process. Different computers embody quite
different models which are not always easy to relate, especially in the case
of the more complex, higher level computers. The main challenge when
describing computers in a more general fashion than a case study is to
“build”’ up a model that subsumes the examples being described so that they
can be compared fairly and their inadequacies and strong points brought to
light. In this book the first part of each chapter and section is spent in
building a general model in terms of which the B6700 is then described. The
model developed is definitely not that underlying the B6700 although very
much based on the B6700’s model (the B6700 model is described in the
early papers on the machine and in Organick’s monograph). One danger in
.developing a general model is that integration and generalization of the
concepts behind different computers soon develops into research and specula-
tion. An attempt has been made here to not go too far into the unknown
although, admittedly, the model at times goes beyond what is widely
accepted.

The level of this book reflects the particular mix of courses to which our
students had previously been subjected. Most had looked at the detailed
organization of a small computer and were also familiar with both high and
low level programming. The text consequently assumes a reasonably high

level of knowledge; however, there has been no hesitation in going right .

back to basics in order to clarify a principle. Although the level is mixed,
the text should be of use to all computer professionals interested in computer
architecture. The emphasis on details of the B6700/B7700 should make the
book of particular interest to the users of such systems and to others who
are intrigued by Burroughs’ mysteries.

The Burroughs B6700/7700 has already been the subject of one mono-
graph, that of E. I. Organick entitled “Computer System Architecture”. It
should be made clear that this book and Organick’s are quite different in
their scope. Organick’s book is oriented towards the operating system of
the B6700 whereas here it is the hardware architecture which is the main
topic. Of course there is some overlap where the hardware which supports
the operating system is described, but even then the approach taken here is
one of the B6700 illustrating more general principles rather than bemg
described solely for its own sake.

I would like to thank those who, directly or indirectly, assisted in this book’s
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development. In particular; the students at Massey University who suffered
through the courses where the book’s material was gradually made intelligible;
colleagues in the Computer Science Department, especially Mr L. K. Thomas;
the Massey University Computer Unit, Professor G. Tate director, for pro-
viding access to their B6700; Burroughs Corporation (New Zealand) for
allowing me to peruse detailed B6700 documentation; for assistance in review-
ing—Dr H. C. Johnston, Professor C. A. R. Hoare and Mr R. D. Merrell;
Mrs Verna Mullin for a sterling job of typing; finally, my wife and family
for their patience and encouragement.

Palo Alto R. W. DORAN

January 1979
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I. The General Purpose Computer

Modern general purpose computer systems have become so complex that they
are beyond the understanding of any one person. Although overall compre-
hension is impractical, it is still possible to come to grips with a computer at its
architectural level. ‘A computer’s architecture is the interface between the
designers of its hardware and software and is, after all, specifically intended to
be fully understood by both teams of engineérs. Unfortunately, the documen-
tation provided with most systems does not facilitate understanding because,
while it is exhaustive in detail, it is purely descriptive and lacking in rationale.
It is the intention here to take one particular example computer and to set the
matter to rights by describing it in such a manner that the reader can reach an
understanding of what the computer’s architecture is and why it is like it is.
As each successive aspect of the computer is described, we need, at the same
time, to develop a model of what any general purpose compuiter is trying to
accomplish in such circumstances. Before we can begin, we need, then, to have
a feeling for what a computer is doing overall; indeed, to understand just what
a computer is. In this introduction we will set the context for the later
description by discussing just what “‘general purpose computer” means
nowadays. ' '
The epithet “‘general purpose” applied to computers has become so
common that it is almost used automatically. However, here it is used with
purpose and with a meaning which will be precisely defined. In fact, ‘‘general
purpose” means different things to different people, but its imprecision ap-
pears slight when compared to the meanings associated with “‘computer” itself.
The most widely held concept of what a computer is has not remained
constant but has changed over the years. Sometimes a change of viewpoint has
come suddenly, as with the celebrated erratum for a computer manual in
1957—"Wherever the term ‘computer’ or ‘digital computer’ appears through-
‘out the text, replace it by the term ‘Data Processor’.” [1). Usually, however,
the changes are gradual and concepts merge into one another, it being quite
reasonable to consider computers from more than one viewpoint at the same
time. However, when changes of viewpoint do occur there is a significant
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resulting impact on computer architecture itself. This is because a new aspect
of the computer systern assumes dominance and a major alteration to the
system in order to make it fit in with the new view does not appear quite so
radical or unreasonable as it may have done from the old viewpoint.

Computers as seen by users and as seen from an overall systems viewpoint
present different appearances. In the following two sections we will consider
first the user’s view and then the modern system view. After this discussion of
principle the last section of the chapter will consider the practical matter of the
computer that we are going to discuss in detail.

I.1. THE USER’S VIEWPOINT

Although the total image of what a computer should be is compounded from
the views seen by a whole range of users, there are cases where the view of one
group of users is the.dominant concept behind the computer’s architecture. In
these cases the computer is designed as if it were to be used permanently for the
one particular purpose. Other applications may be recognized but these are
accommodated by slight modifications or extensions rather than by a radical
alteration of the architecture. We will consider below a number of these views
that can be clearly isolated. They are, for emphasis, expressed in an extreme
form, although few people would hold such singleminded opinions.

I.1.1. THE CALCULATOR

The oldest view of a computer is that it is a device for performing any
numerical calculation; indeed, the term computer or computor was applied
originally to any human calculator. Babbage’s proposed analytic engine was
designed specifically to perform arithmetic and it appears that Babbage knew
that his machine could be programmed to perform any numerical task [2].
Most of the early model computer designs were also made from this viewpoint
as is shown in the following extracts from the seminal 1946 report of Burks,
Goldstine and von Neumann, which described a device which was to be the
paradigm of the computer for many years and has come to be called the von
Neumann machine’[3]:

“In as much as the completed device will be a general purpose computing
machine it should contain main organs relating to arithmetic, memory
storage, control and connection with the human operator.

“In as much as the device is to be a computing machine there must be an
arithmetic organ in it which can perform certain of the elementary
arithmetic operations”.
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The above quotations introduce and effectively define the term *‘general
purpose” as applied to computers, clearly assigning it the meaning of
numerical calculator. This interpretation is confirmed by other early writings.

The first American computers had their origins in projects requiring vast
amounts of calculation where the idea of a computer as a calculator was most
natural. Nowadays most computers are used for commercial applications and
computing professionals no longer consider their general purpose computers
to be primarily calculating machines. There are computers designed for that
purpose, such as great array processors like Illiac 1V and small pocket
computers more usually called programmable calculators, but these are
considered to be very special purpose machines. Outside of the computing
field, however, the public still has the simple view of a computer as a
calculator.

Although we no longer think of a computer as primarily a calculator, this
view still has the most profound influence on computer architecture. The
majority of modern computers have been designed as if they were to be used as
calculators, though it is recognized, implicit in the term ‘‘non-numeric
computation”, that some calculations will involve other than numbers. That
this is true can be seen by inspecting manuals describing a computer to low
level programmers. The important part of the machine is the central
processor, other devices such as those for input and output are complications
of detail and are left to the later chapters of the manual. The machine is
defined by what the central processor can do. ‘

Within the central processor of a computer-as-calculator each instruction is
regarded as performing one complete step in a calculation. Each instruction is
independent of others in the machine’s repertoire and its effect is a mean-
ingful, complete operation. There are many styles of instruction set possible
(e.g. 1,2,3 or 4 addresses}) but the format of the instruction always includes a
unique operation code which defines the operation to be performed. Thus,
apart from some preliminary details of the processor’s organization, the
description of the processor takes on the form of a list of instructions, giving
for each its operation code and a description of what it does. Although, over
the years, computers based on this line of reasoning have been augmented
with special devices in order to make them more effective, the closed
instruction form has remained in most machines and even the few that have
not been designed from the calculator viewpoint are for the most part still
described as if they were.

. I.1.2. THE UNIVERSAL MACHINE

Although the development and production of modern computers has been
in the main an American activity, many of the fundamental ideas of computer
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science have arisen outside the United States. Britain has been a major source
of innovative ideas in computer architecture—after all, the whole subject was
started by Babbage and the first modern computers to actyally work were
at Manchester and Cambridge. In modern times, perhaps the most important
and definitely the most.creative thinker in the computing field was the British

. mathematician A. M. Turing. In a paper published in 1946 Turing explored
the limits of computation by defining and investigating the properties of a
class of abstract machines which have now come to be called “Turing
machines”. Turing showed that it was possible to define a universal machine
which could simulate the behavior of any other machine, i.e. a single univer-
sa] machine could be constructed which could perform any mechanical
algorithm.

Soon after the first modern computers were placed in operation it became
accepted in the computing community that these machines were, in facf,
universal. This is' demonstrated by such names-as UNIVAC (universal
automatic computer) and DEUCE (digital electronic universal calculating
engine). The term ‘“‘general purpose”, which always implied ‘‘universal”
because a machine which can perform any numerical algorithm is certainly
universal, became synonymous with the more general term. Throughout the
fifties and sixties ‘‘general purpose” as applied to computers meant
“universal” and it still has that connotation to some people today.

As well as being a theoretical genius, Turing was extremely interested in
practical computing, particularly in non-numeric applications, for he was
involved in using electronic computing equipiment for cryptanalysis during the
Second World War. In late 1945 Turing embarked on a project to produce a
computer at the British National Physical Laboratory. Turing thought of his

~ machine, although mainly to be used for numeric calculations, as being
universal right from the start. In his first proposal of 1945 he lists chess and a
variety of other possible applications [4]. In the following quote from his
proposal he explains in simple terms how this can be:

*“... There will positively be no internal alterations to be made even if we
wish suddenly to switch from calculating to energy levels of the neon atom
to the enumeration of groups of order 720. It may appear somewhat
puzzling that this can be done. How can one expect a machine to do all this
multitudinous variety of things? The answer is that we should consider the
machine as doing something quite simple, namely carrying out orders given
to it in a standard form which it is able to understand”.

Turing, because of his background in theory and non-numeric data
processing (i.e. his involvement with wartime cryptanalysis), took a very
different approach to the design of ACE (automatic computing engine) as his
. machine was called. He tried to design a universal machine by implementing a
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very basic architecture and providing application-oriented instruction sets as
collections of subroutines. Now, although there is no direct connection,
because Turing’s work was largely ignored, this is just the approach taken
with many modern computers where there is, “underneath’ the outer
computer seen by the programmers, a micro-machine or inner computer,
which emulates the actions of the outer machine.

The essential features of a modern inner computer and Turing’s 1945 design
are much the same. An inner computer is extremely specidl purpose, being
designed specifically for the limited application of emulation. As with the von
Neumann machine the emphasis is on the central processor but an inner
computer is designed at a lower level. The micro-programmer of such a
machine sees a group of functional units each capable of performing some
operation on data. The main purpose of instructions is to move data from unit
to unit so that the correct sequence of operations is carried out. Instructions
are not usually complete in themselves and many may have to be executed to

" perform a useful step in a calculation. Often the instructions contain fields of

parameter bits each of which selects one option for controlling a particular
unit. At one extreme, taken by Turing in his fifth design for ACE [5]}, it is
possible to do away with instruction operation codes altogether, an in-
struction being solely for moving data from a source to a destination with
the units and registers connected by data buses (a scheme used in earlier
calculators such as the Harvard Mk 1 [6]).

One unfortunate misinterpretation of “‘general purpose” as universal is that
a general purpose computer can do any calculation practically. No one would
state such a blunder openly but it does seem to be a prevalent attitude and is
partially responsible for the continuance of the von Neumann plus index
registers model of a computer. It is hard to justify altering a computer’s
architecture when the feature desired can always be provided by software,
particularly so at the design stage where the cost of the hardware to implement
the feature is known, but its worth and the cost of software implementation
are not so clear.

1.1.3. THE DATA PROCESSOR

The notion that a computer is fundamentally a data processing device cime

* with the realization that commerce was to be the largest market for

computers. Computers, starting with the UNIVAC and IBM 702 in the
United States, and LEO in Britain, began to be designed specifically for the
automation of business accounting.

The use of computers in business followed the techniques already evolved
for unit record accounting equipment. The initial emphasis in data processor
design was to increase the speed of the peripheral devices at handling unit
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recdrds so that the fast electronic central processors could be used efficiently.
As was stated in a paper introducing the IBM 702 [7]:

“The characteristic of the 702 that soon becomés evident is its speed,
particularly the speed of its input and output”.

From the data processing viewpoint the peripherals are the really important
devices and the flow of data through the machine the important concept: any
computation is subsidiary and somewhat incidental to the machine’s main
purpose. The acceptance, though not necessarily the initial impetus, for many
features of input/output was a result of data processing. Immediate examples
are the use of buffers, I/O completion interrupts, and, eventually independent
I/O processors. The central processor was not greatly influenced at all, the
instruction set being slightly extended to deal with characters and to perform
decimal arithmetic. These extra features were enough, however, for manufac-
turers to begin to market two lines of computers, commercial and scientific,
the latter featuring binary arithmetic, maybe even ﬂoating-point hardware,
but omitting decimal operations.

Later, computers designed for business started to develop in their own
directions. The accumulator, which was included in the first data processors
(the IBM 702 had a varying length accumulator up to 510 decimal digits
long!), was eventually omitted with some machines, starting with the IBM
1401, which had character-addressed memories and instructions which
referred to two or more variable-length fields of characters. There are many
computers currently in use which are clearly of this special data processing
type but most manufacturers have replaced them with series of machines
(typified by the IBM System 360) which include both the commercial and
scientific features. Most of these latter series include within their instruction
sets a few extra instructions to help data processing, e.g. for translation and
for editing in COBOL.

An interesting sidetrack in computer architecture was provided by the
extreme data processing viewpoint of a computer as a “‘stream machine”. The
processor was viewed as a device which accepts input streams of characters
and manipulates these to produce a continuous stream of output. This was
implemented in the “Harvest” version of the IBM Stretch computer and as
one of the two modes of operation of the Burroughs B5000 [8]. The idea was
summed up in the paper describing the Harvest system:

“The streaming mode is primarily a design attitude whose aim is to select
bytes from memory according to some preassigned pattern and to keep a
steady stream of such selected bytes flowing through a designated process or
transformation and thence back to memory™.

The concept seems to have died out, perhaps because it is stretching a point
too far.
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I.1.4. THE ALGORITHM EXECUTOR

It is implicit in the universality of a computer that it can be used to execute a
wide variety of algorithms. However, the early concepts of a computer, as we
have just seen, concentrated on the implementation of the basic steps of
algorithms rather than on the overall form of programs or programming
languages. The influence of programs on computer architecture did start very
early with the introduction of instructions to facilitate subroutine linkage
(first suggested in Turing’s 1945 proposal) but, as far as the main manufac-
turers of computers were concerned, progress came to an equally early halt. In
fact, most computer architectures nowadays incorporate few concessions to
programmability, presumably because computers are. not designed by
programmers and at the time when most of the current lines of computers
were conceived (in the early sixties) the importance of software was not fully
realized.

The first computer in which high level programming languages were
recognized as a significant component of the hardware/software system was
the Burroughs B5000 [9]. One of the B5000’s modes of operation was
unashamedly designed to assist in the running of Algol programs, the other,
the “streaming mode’ mentioned above, was intended for string and data
processing, in particular to assist with COBOL and compilation in general.
The B5000 could fairly be termed an *Algol” machine, although many other
factors were taken into consideration in its design. The desxgn process was
outlined in a 1961 paper [10]:

“As an example, for a computer to process applications expressible in the
Algol 60 language, the system model group would interpret the language,
specify a hardware representation and necessary language supplements,
define speed or cost objects and the ‘use image’ the machine is to present”.

A certain clue that the designers of a computer have had programming in
mind is the appearance of instructions which are not complete in themselves
but must work in concert with other instructions. For example, subroutine
return must be preceded by subroutine entry, and the “add” instruction of a
zero address machine must be preceded by instructions setting up the
operands. One may also find instructions implementing quite complicated but
often used subalgorithms. However, the form of a machine language program
has otherwise been little changed even in computers designed expressly for

~ high level languages. Programs are still represented as sets of subroutines each

of which is a linear list of instructions, though explicit recognition of the
structure within a routine has appeared recently [11]..

Programming has also had little effect on the input/output side of machines,
perhaps because high level languages have not themselves converged on an
accepted approach to the process. However, there have been instructions
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included in some computers to help with the basic operations of scanning,
formating and editing involved with 1/O.

The majority of changes in computer architecture which can be attributed
to the influence of programming languages have thus been made to central
processors. The most significant influence is that many computers have been
designed to make use of stacks for arithmetic, for subroutine linkage and for
data storage. In these architectures the stack is regarded usually as an
addendum to a more conventional architecture, but some have gone so far as
to make the stack the fundamental feature of the machine. In the latter
machines the von Neumann general registers and accumulators are replaced

by registers for very specific purposes associated with the stack ; in fact, there is

no longer much resemblance to earlier architectures at all [12].

Since the software explosion of the late sixties, it has become apparent that
the cost of software is the major expense in the development of a computer
system. The importance of programs and programming implies that com-
puters in future must be modified to help make the programmer’s job easy;
consequently, we can expect the view of the computer as an algorithm
executor to' become all-pervasive. It is significant that nearly all the non-
imitative, larger computer lines announced since the mid-sixties have used
stacks in one form or another. -

I.1.5. THE COMPUTING UTILITY

This view of a computer’s function is at a higher level than the previous, and is
much more the attitude of an outside user. In its most blatant form, this view
holds a computer system to be a source of a mysterious computational or
control power. ‘ '

Combputers were put to work controlling real time devices very early [13]
and it was not long before such use affected computer architecture. The
artifice of a program interrupt was introduced in the UNIVAC 1103A
expressly to assist with control. As was stated in a paper describing the feature
[14]: »

“The way Mr. Turner intended to run his machine, and in fact does run it,
the wind tunnel has first claim on the services of the UNIVAC Scientific”.

Of course, simple peripheral devices need to be controlled in real time and
the interrupt concept spread to computers in general. In fact, the DYSEAC
computer introduced interrupts for I/O completion fomewhat earlier (though
not called interrupts) [15].

Timesharing, where a computer’s time is divided among several different
users each of whom has the impression of using a dedicated machine,
naturally invokes the image of computation power being shared. Coupled



