Computer Science and Applied Mathematics

OPERATING
SYSTEMS

Dionysios C. Tsichritzis
Philip A. Bernstein

O QDL

OPERATING -
SYSTEMS

/

Dionysios C. Tsichritzis and Philip A. Bernstein

University of Toronto

RS L

ACADEMIC PRESS New York and London
A Subsidiary of Hamn Brace ‘j]q‘i'anovich, Publishers

FTOET 57

i

CoPyRIGHT © 1974, B‘YIACAD‘EMIC l)RZSS, Inc.
ALL RIGHTS®’RESERVED. C

NO PART OF THIS PUBLICATION' MAY BE REPRODUCED OR
T, iSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC
C. MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY
INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT
PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS, INC.
111 Fifth Avenue, New York, New York 10003

United Kingdom Edition published by

ACADEMIC PRESS, INC. (LONDON) LTD.
24/28 Oval Road. London NW1

Library of Congress Cataloging in Publication Data

Tsichritzis, Dionysios C
Operating systems.

(Computer science and applied mathematics)

Bibliography: p.

1. Electronic digital computers. - . 1. . Bernstein,
Philip A., joint author. Il Title,
QA76.5.T738 001.6'44'04. - +- - 73-18959
ISBN 0-12-701750-X w7

PRINTED IN THE UNITED STATES OF AMERICA

- !,' ,!/)7 i
/2 ,]’ 4 !!

PREFACE

11 sais)ad, 3% Famy
Thé concept of an operating system is difficult to define precisely. AR
The word “system” is used with a m '%ﬁf.of meanings in both com- R ot
puter science and engineering, ancil ‘the word “operating” does not add
much gqﬁt‘ext. Traditionally, users have wanted nfa@'l&ﬁigfrxhich are differ-
ent from those which the hardware provides.” To solve this problem,
a set of programs is usually written which translates the hardware
capabilities into facilities which satisfy user requirements. Thi
programs is referred to as an opergting system. At this point, we will
not attempt. to further nCla?l_;ify or confuse the term. In Chapter 1 we
present our "view of what constitutes an operating system. We ‘hope
that by the end of the book the reader will be able to recognize an
operating system when he sees one. Crekssnaiayy. V’)\ﬁ' A
Most users do not need a thorough, ynderst 'nd%‘ of the operating ~
system within which their pr%) A gﬁrﬂ%ﬁ%ﬁ’aﬂ l)g-sﬁave to a _i%e 24 7E
the constraints- which the. system imppses, ‘such as ,memoryv'gz i@ﬁ %
size or job@nﬁ‘ language. An: og%'u } the Fortran programmer does .75k
not have to understand all the details of the Fortran ci%gﬁr ‘which

he uses. There is general agreement, however, that an ex 3 operat-
ing system principles is a necessary background for a er scien-
tist.” The purpose of this book is.to. provide that necessary background

B

x PREFACE - .

P A

to_the reader. We do not attempt to deﬁne a general methodology for

demgnmg operatmg systems. Rather, we try to present in a coislse and

|.;nc1d manner the fundamental concepts and principles which ‘govern
“ Dehavior of operating systems. = ., 0-HD Vol Ep

We have tried to keep our notation as con51stent as possible with
the literature.. In the case of hardware this has been difficult to do,
since manufacturers frequently use con§;§tmg definitions, When in
doubt, we have yielded to the force of large’numbers and have adopted =
IBM’s notata We have not used any particular programming language
to describe &fr a1go ithms, taking a good deal of hberty with control
structures and basxcﬁéperators where &pg;p&{;lat Coi’nmohly used pro-
gramming languages, such as PL/I, are ¢ Hie €6 the for descrip-
tive purposes while more appropriate progrgmmmg languages, such as
PASCAL, are not widely known.) %}g{gs ;}n notation are clearly defined
in the sections which introduce them. ® s

This book is primarily intended as a text for a one-Semester course
directed toward fourth-year undergraduates and first-year graduate stu-
dents, similar to the eourse 14 outlined by ACM Curriculum ’68. Such
a course has been taught at the University of Toronto with about a
hundred students per year since 1969. The course (and the book) has
been developed according to the recommendations of the COSINE task
force on operating systems [Denning et al., 1971]. We strongly recom-
mend the report of the task force as a guideline to the lecturer who
plans to institute a course on operating systems.

The students taking the course in our university-have had a course
on data structures and a course on language and compiler design. This
background is not absolutely necessary, but it does give the students
some matl%y in the area of systems programming. We did not make
any stron sumptions about the background of the students for whom
the book is mten%e'zfl "We only presume, some experience in computer
science. Specifically, it is helpful if the students have written some long
programs and have some idea of 'the problems encountered in interfacing%n
with computer systems, such as fighting with job control language re-
strictions.. It is also important that the reader have some knowledge
of lists and queues. This material, which is outlined in Appendix I,
can be presented in an early tutorial section for those students whose
background is weak:

Many issues regarding the structure of operating systems are well-
understood. The . problems of managing processes, .processors, and -
memory, which are covered in Part I, have found extensive treatment
in the literature for some time. Although there are still many open ques-
tions, these areas can be discussed in a reasonably neat way. Unfor-

'PREFACE xi

tunately, not all the issues are quite so elegant. Part II deals with subject
matter whose formal development is still in its incipient stages. In-
put-output, files, security, protection, design methods, reliability, per-
formance evaluation, and implementation methods are all important as-
pects of operating systems. Despite the rather ad hoc flavor of many
of the techniques associated with these topics, we feel they are neverthe-
less relevant and should be part of any introductory presentation of
operating system principles.

Some of the basic concepts of operating systems come rather late
in the book, such as virtual machines in Chapter 8. Our experience
is that students find these concepts hard to appreciate before they have
enough knowledge to relate them to examples in operating systems,
Although some of the early material can be made more elegant using
these concepts, we feel it may be too confusing in an introductory
book. : v

There are many papers in the literature treating analytical problems
of operating systems. Such work has generated important results which
often give much insight into operating system behavior. We have tried
to avoid most of these analytical results for two reasons. First, the results
are more related to branches of applied mathematics than to the world
of operating systems. Second, this material is more appropriate for a
separate graduate course on modeling and analysis of operating systems
than for an introductory course which emphasizes basic concepts. Theo-
retical work is well documented throughout the book; the annotated
bibliography can serve as a guide to interested readers. We did, however,
choose to make one exception. In Appendix II there is a short survey
of computational structures, material relating directly to Chapter 2. Since
most of the references for this subject are not widely available, we
thought that it would be worthwhile to add a short discussion for the
interested reader. ‘

ACKNOWLEDGMENTS

Many of the ideas discussed in this book are the result of work done
by the Project SUE group:]J. W. Atwood, B. L. Clark, M. S. Grushcow,
R. C. Holt, J. J. Horning, K. C. Sevcik, and D. C. Tsichritzis. Project
members have influenced not only the material but also the spirit: of
the book. We very gratefully acknowledge their vast contributions and
their continuous encouragement. .

Many local students and faculty members have given us considerable
help in editing early versions of the chapters. Their comments are re-
sponsible for many merits of the final manuscript. In particular, we
would like -to thank A. J. Ballard (Chapters 8 and. 9 and Appendix
II), C. C. Gotlieb (Chapter 7), R. C. Holt (Chapter 8), J.]. Horning
(Chapters 1 and 2), R. N. S. Horspool (Chapter 4 and Problem Sets),
E. Lazowska (Chapters 4 and 5),]. Metzger (Chapter 9), K. C. Sevcik
(Chapters 3, 7, and 10), and F. Tompa (Chapters 4-8). The Annotated
References are based on an earlier version by R. Bunt. We would also
like to thank B. Liskov for her assistance in clearing up many foggy-
points in our description of the Venus Operating System in Chapter
10. Overall comments on a late version.of the manuscript' by B. W.
Kernighan were quite helpful in locating and correcting a number of
weak sections.

t

Xiv ACKNOWLEDGMENTS

Special thanks go to our friend and associate J. R. Swenson whose
careful reading of the final draft led to many changes on both a technical
and pedagogical level. In particular, many of his ideas on memory man-
agement had a considerable influence on the organization and content
of Chapters 4-6. : , _ ,

We are also indebted to many other colleagues, too numerous to
mention by name, for exciting and informative discussions on various
aspects of operating systems principles.

Finally, we would also like to thank M. Oldham, V. Shum, and P.
Steele for clerical assistance rendered during various stages of the

writing.

NOTES TO THE INSTRUCTOR

In parallel with the lectures, we have found that tutorial sections
which cover a particular system in some detail are quite helpful in
showing students how the ideas of the course fit together. In Chapter
10 we present two examples of operating systems. Further examples
can be found in the books by Hoare and Perrot [1972] and Sayers
[1971]. We recommend these discussions be held early in the term in
order to motivate the material. Most students, especially undergraduates,
have very little exposure to real operating systems. They can hardly
be expected to be enthusiastic about solutions to problems which they
do not appreciate.

The material in the book is complemented by problems at the end
of the chapters, which serve many useful purposes. First; they elaborate
on points which receive only cursory treatment in the text. Second,
they help relate some abstract concepts to the real world of operating
systems. Third, they point to papers in the literature for further reading.
Many of the problems are necessarily open ended; that is, they have
no single correct answer. Such problems are meant to provoke students
to consider different alternatives. These problems can be used as topics
for discussion sessions as well as for homework assignments. o

The requirements of .the course as given at the University of Toronto
are as follows:

Xv

xvi NOTES TO THE INSTRUCTOR

1. an examination in class to verify whether the students follow the
course lectures;

2. a long take-home assignment with more substantial, thought-provok-
ing problems which the students can develop in depth;

3. a project which brings the students closer to the real world .of
operating systems. .

If the class is small, several short assignments may be substituted for
the exam. Problems for both the test and assignment(s) can be taken
from the chapter problems.

We will' elaborate on the project requirement, because it presents
a serious challenge to both the instructor and the students. It is not
easy to design, supervise, and evaluate one hundred projects per year.
We have tried several approaches.

1. An essay surveying some aspect of operating systems. In the prob-
lem sets we incorporate suggestions for essay topics. Essays from past
years at the University of Toronto have been retained and put on reserve
in the library for the benefit of future students. We have found essays
to be partlcularly useful the first few years the course is given. They
require a minimum of supervision, and they generate a nice local library
on subjects which are too obscure to be included in the course lectures.
In particular, developing a collection of descnptxons of popular operating -
systems can be quite valuable. After the course is given several times,
it is difficult to avoid duplicating- topics. At this point, emphasis can
be placed on other types of projects. However, essays should always
remain as an alternative for some types of students, such as part-time
students who are good programmers but do not have much exposure
to the literature.

2. A joint effort in evaluating some aspects of the des1gn or implemen-
tation ‘of operating systems. The Rosetta Stone project, originally pro-
posed by W. Wulf, for evaluation of system programming languages
is an example of this type of activity [Wulf et al., 1972]. A set of standard
problems, such as process synchronization and memory management
algorithms, are programmed by many students in two or three languagef
In addition to the programs, students are asked for comments comparing
the different languages. We have tried this type of project with limited
success. The main problem is that it takes a good deal of maturity
to evaluate languages. Since most students do not do much evaluating,
the main value of the project for them is in learning a few new languages
and in solving several small problems. We feel that this project, although

NOTES TO THE INSTRUCTOR xvii

worthwhile, is probably better suited to a course in software engineering
or systems programming than one in operating systems.

3. A “toy” operating system using a pedagogical, simulated hardware
environment. In Appendix III we outline the basic issues in designing
and supervising such a project. The students, working in teams of two
or three, simulate a simple .machine and then ‘write a small operating
system for it. We have tried this project repeatedly with great success.
It can be somewhat expensive in computer time, but the students get
some real experience in how complex systems are constructed. As a
side benefit, the students get a taste of real programming problems
by having to build a relatively large program in a team. They have
to deal with project management, which has been the nemesis of more
than one operating system design. At the University of Toronto we
are currently using a toy operating system assignment which was de-
signed by R. C. Holt for use with the TOPPS programming language.
[Holt and Kinread, 1972]. The TOPPS system [Czarnik et al, 1973]
can be run under any system which supports the XPL compiler writing
system [McKeeman et al., 1970]. Hopefully, a distribution tape and
documentation will be available in the near future for universities which
would like to try the project.

4. A programming project for a minicomputer in an environment of
a software laboratory. This type of project can be very exciting, but
it presumes-the presence of a highly accessible minicomputer system.
If the proper facilities are available, a number of interesting software
packages would make good term projects, such as a simple executive, '
a spooling system, or a simple file system. There are several reports
describing such an environment, for example Corbin et al. [1971] and
Marshland and Tartar [1973]. In our university this approach will be
adopted for an advanced course on operating 'systems. However, the
supervision of a large number of projects of this type can be a problem.

5. A real contribution to the university computer center or to industry.
We have a cooperative agreement with our computer center by which
ten to fifteen students work on assignments proposed, supervised, eval-
uated, and ultimately used by computer center personnel. Both the center
and the students are very enthusiastic, but we doubt that the number °
of participating students can be increased without serious organizational
difficulties. To be successful, each student requirés close supervision,
and the number of available supervisors is limited. This project is par-
tlcularly well suited to students who have little practical experience.
Studefits with industrial experience generally do not choose to write
one more systems program. For the same reason that a real programmmg

xviii NOTES TO THE INSTRUCTOR

assignment is a thrill for an inexperienced student, a survey type of
essay is very beneficial for an experienced systems programmer.

Availability of facilities will be the primary influence on which projects
are most suitable for a given school. If there are any questions about
the specifics of a given project, we will be happy to assist in any way
we can. :

Preface

CONTENTS

Acknowledgments

Notes to the Instructor

PART I. PRINCIPLES

Chapter 1. Operating System Functions and Concepts

1.1
1.2
13
14
1.5

Introduction
Operating Systems
Resource Allocation
The Supervisor
Conclusion
Problems

Chapter 2. Processes

2.1
2.2

Introduction
Process Definition

10
14

17

19

21

vi

2.3
2.4
2.5
2.6

e d
-

CONTENTS

Process Implementation

Process Communication

Low-Level Sy mchronization Primitives
High-Level Syn(hmmzatmn anmvu
Deadlocks

Problems

Chapter 3. Processor Allocation

3.1
3.2
3.3
34
3.5

Introduction

Multiprogramming

Multiprogramming Scheduling Methods
Multilevel Scheduling

Final Remarks

Problems

Chapter 4. Memory Management

4.1
4.2
4.3
44
45
4.6
47
48
49

Memory Management Functions

Linking Methods

Storage Allocation

Overlaying

Job Swapping

Segmentation

Paging

Segmentation with Paging

Linking Using Segmentation with Pagmg
Problems

Chapter 5. Virtual Memory

Introduction
Hardware Devices for Virtual Memory

Allocation Strategies in Segmentation and Paging

Analysis of Paging Systems
Final Remarks
Problems

PART II. TECHNIQUES

Chapter 6. 1/0 and Files

6.1
6.2

Introduction
I/0 System

23
26
30
38
15
49

~

52
54
56
64
(315}
657

69
72
74
76
78

84
88
91
94

123
129

6.3
6.4
6.5
6.6
6.7
6.8

CONTENTS

Basic File System

Logical File System

Access Methods

Data Base Management Systems
Example of a Simple File System
Conclusion

Problems

Chapter 7. Protection

7.1
72
7.3
7.4
7.5
76
7.7

Introduction

Domains and Capabilities
Describing the Protection Status
Protection Implementation
Capability Passing and Format
Security

Conclusion

Problems

Chapter 8. Design

8.1
8.2
8.3
8.4
8.5

Introduction

Design Methodology
A Design Approach
Project Management
Concluding Remarks
Problems

Chapter 9. Implementation

9.1
9.2
9.3
94
9.5
9.6

Introduction

Choice of Implementation Language
Program Engineering

Program Verification

Performance Evaluation

Conclusion -

Problems

Chapter 10. Examples of Systems

10.1
10.2
10.3
104

Introduction

The SUE System

The Venus Operating System
Other Systems

Problems

vii

132
134
137
140
141
144
145

148
151
153
155
158
161
166
166

169
170
183
186
189
190

192
194
197
202
208
217

218

220
221

239

. 240

viii

CONTENTS

Appendix I. Data Structures

L1
L2
1.3
14
L5
1.6
L7
1.8

Definition of Terms -
Sequential Allocation of Lists
Linked Lists

Management of Linked Lxsts
Stacks

Queues

Dequeues

Tables

- Appendix II. Computational Structures

11.1
I1.2
1.3
114
IL.5

Introduction

Petri Nets

Computatjonal Schemata

A Model for the Deadlock Problem
Conclusion

Appendix III. A Toy Operating System

III.1
111.2
II1.3
I11.4

Introduction

Simulated Hardware

The Toy Operating System
Conclusion

Annotated References

Index

241
242
243
244
246

247
248

249
249

259
261

262

- 264

267

289

PART |

. PRINCIPLES

n. $RU
The first five chapters of this book discuss the allocatlon of the basic
w Zpresources of a computer system, name g@processors and memory. Chap-
.ter 1 provides a general overvxqw hat operating systems do and
how they are usually structured. Chapter 2 introduces the primary con-
cept of process as a means for understanding the interactions among
. active computations in a computer system. Chapter 3 uses proc -

to show how a single processor.can be allocated to several mdep&:::/
computations. Chapters 4 and 5 cover the allocation of main memory
and ways of extending main memory using peripheral storage devices.

Methods of managing processes, processors, and memory have found
extensive treatment in the literature. The fundamental issues are well
understood. Therefore, the main problem is to present the material in
a technically sound and pedagogically lucid manner.

1
SO04L797

