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| 'Quantum Crystals: Theory of the Phonon Spectrum

Heinz Horner*

Institut fur Festkorperforschung
Kernforchungsanlage Jiilich, Jillich, West Germany

Introduction

Quanturn crystals are crystals with large zero-point motions, caused by a light
mass and a weak interaction of the lattice particles. Among these are the solid phases
of the quantum liquids *“He and 3*He, molecular hydrogen, and solid neon. The
existence of large zero-point motions can cause striking effects, e.g., the existence of
a sizable nuclear exchange interaction in *He or a wavelike propagation of vacancies
or isotopic impurities.

In this paper I explore the lattice dynamic aspects of quantum crystals. We are
actually investigating strong anharmonicities which could be found in other crystals
as well as near melting or neat structural phase transitions. It turns out, however,
that the anharmonicities in a quantum crystal can be much stronger than, for instance,
those in one of the heavier rare gas crystals near melting.

A rather interesting aspect has come up quite recently. Inelastic neutron scat-
tering experiments in both the solid! and the liquid? have revealed striking similarities,

‘and we might ask the question: Does the solid show liquidlike behavior? or is it the
other way around?* .

Let me list the problems which have to be faced if a microscopic theory is in-
tended. First, we note an expansion of the lattice due to the zero-point motions in
much the same way as ordinary thermal expansion due to thermal vibrations. This
expansion can actually be so large that even the next-neighbor distan:e would be
beyond the inflection point of the interaction potential. If we try to start our theory
with the harmo:iic approximation, we end up with imaginary frequencies —in other
words, with an unstable crystal. This difficulty has, however, been overcome by the
renormalized harmonic approximation® in which the harmonic coupling constants
are averaged over the zero-point motions.

This brings another difficulty. The zero-point motions are actually large enough
that there is a fair chance that two lattice particles can approach each other within
the hard-core radius. This means short-range correlations have to be an essential
part of our theory. There are actually several ways to accomplish this: for instance,
Jastrow factors® or one or the other forms of a scattering matrix.” For the moment,’
however, we adopt a slightly more general point of view.®

* Partially supported by U.S. Atomic Energy Commission at Brookhaven National Laboratory, Summer
1972.



Heinz Horner

Renormalized Phonon Theory

Let me go through the essential steps of the theory without goinginto too much
detail. Assume the crystal is under the influence of some external forces f; representing
the external pressure or some small disturbance, eventually time dependent. The
equation of motion of the position operator x; of any particular particle is then

62
m g Xi= Z VV(x; — x;) + f; (1)
where m is the mass and V(r) is the interaction of the lattice particles. Let
d;(0) = {x(8) > . v4

be the expectation value of x;, i.e., the average position of particle i, in the presence
of the external force, then

2

-m E;d,-(t) = K;(t) + f:(¢) 3
where . ‘
K@) = Z' (VY —x) ) = Z/ ds".‘hj(") VWr) 0]
j j

is the average internal force on particle i due to the presence of the particles labeled
by j # i. It has been expressed by the pair correlation function for a distinct pair of
particles

g9ij0) = CO(r —x; + x5} ()

where again the expectation value is in the presence of the external forces. Therefore,
g;; might be time dependent. In the absence of time-dependent external forces, the
left-hand side .of Eq. (3) actually vanishes and we recover an expressmn for the
equation of state.

One quantity of primary interest is the displacement correlation function .

D;;(t,¢') = &d;(t)/of;(t')
= {xi0) x;(6) ) — <xi(0)) {x4(t)> (6)

It describes how a disturbance of;(t') propagates through the crystal causing a
change &d;(t) of the expectation value of the position of particle i at time ¢. Since
such a disturbance propagates as a phonon, at least in a harmonic crystal; this
quantity is called the phonon propagator. It also contains information about equilib-
rium properties ; for instance, D;;(0,0) gives the mean square fluctuations of particle
i around its equilibrium position described by d,.

Let me return for a moment to the pair correlation function g;;(r), which is one
of the crucial quantities to calculate. We aiready have several pieces of information,
for instance : (1) It has to be normalized to unity ; (2) the first moment gives the average
distance between particle i and j, which is also given by d; — d; ; (3) its second moment
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gives the mean square fluctuations of this distance, which can also be expressed by
D;(00); (4) its asymptotic form at small distances is that of the scattering problem
of a pair of particles interacting with the true two-particle interaction. These pieces
of information actually turn out to be sufficient to determine g;;(r) for given d; and
Dij‘

Let me now come back to the displacement correlation function. Using Egs. (6)
and (3), we can find an equation of motion having in mind that g;;(r), and with it
K;(?), is a function of d;(¢) and D;(t,t’) . :

" ' .
—mes D;(t,t') =16,;6(t —~ ) + Z,: J' dt M (t7) Dy;(at) (N

where.we have introduced the self-energy
M,;(tt') = OK(8)/0d;(t' )] ox ®

We have for the moment considered D;;(t,t') as a function of d;(t) and the derivative
has to be taken with respect to the explicit dependence of g;;(r) as well as with respect
to the implicit dependence through the width given by D;;.

In physical terms the self-energy, a generalization of the dynamic matrix, is
given by the change in the internal force on a particular particle, provided the equilib-
rium positions of some other particles are changed. The simplest assumption we can
make about g,;(r) is that it is some function g(r — d;(¢) + d;(¢)). Inserting this in
Egs. (4) and (8) and integrating by parts, the self-energy would simply be the second
derivative of the interaction averaged over the pair distribution function. In the
limit where g(r) — (r) we recover, obviously, the harmonic approximation. In the
case of quantum crystals, however, this averaging yields real phonon frequencies.

In general, the functional dependence of g;;(r) on d;(¢) is more complicated, and
even for fixed widths this means neglecting the implicit dependence through the
D,;; it changes its shape for varying d;(t) as shown in Fig. 1.
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Fig. 1. Pair distribution function for three mean interparticle
distances, indicated by arrows. Also shown is the interatomic
potential for helium.
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The way to proceed in a calculation would be to find a form for g;; such that

the conditions mentioned above are met and to calculate g;;(r) and Dy;(t) self- con-
sistently.

Residua! Anharmonicities

From this scheme, neglecting the dependence of ¢:;(r) on D;; in calculating the
scll-energy, we obtain phonons without damping. Furthermore, the phonon, in this
approximation, is a pure displacement motion.

1f we include the dependence of g;;(r) on D;; in lowest order, we obtain the bubble
diagram (Fig. 2a) well known from ordinary anharmonic theory. The difference is,
however, that the harmonic phonon frequencies in the intermediate lines are replaced
by anharmonic ones, and the third-order coupling constants are replaced by
renormalized vertices in very much the same way as the dynamic matrix was replaced
by the renormalized harmonic vertex discussed above. As is well known, this diagram
is responsible for phonon damping and for an additional anharmonic shift in the
frequency. '

We might take a slightly different point of view and say the third-order coupling
constant represents a coupling between the one-phonon process (Fig. 2b) and the
two-phonon process (Fig. 2c). This latter has a broad frequency distribution extend-
ing out to twice the maximum phonon frequency. This means that in the presence of
this coupling the frequency distribution of the displacement response function now
has not only a more or less sharp peak at the shifted phonon frequency, but in addition
a tail ranging up to twice the maximum frequency and resembling the two-phonon
frequency distribution. This is shown in Fig. 3 by the dashed lines.

The existence of this tail tells us that the true elementary excitation, represented
by the sharp structure only, is no longer a pure displacement motioh in the presence
of the coupling. If we make a simple picture of a quantum solid where each particle
has a Gaussian wave function near its lattice site, then a phonon in the dabsence of
the coupling would be a collective oscillation of the rigid wave functions. In the
presence of the.coupling the wave functions also change their width in such a way
that they narrow if neighboring particles move toward each other ana widen if
they move apart. This means that the actual elementary excitation is in general a
coupled displacement and width fluctuation motion.

o———o (b) (Tow—o (o)
Q (c) o—a > (f)
Fig. 2. (a} Bubble diagram contributing to phonon damp-

ing. (b-g) Diagrams for neutron scattering. (b) Bare
@ (d) B @ -N{ g) single-phonon scattering $(Q, @); (c-d) multiphonon

processes S (Q, w); (e-g) Interference terms S;,, (Q, w).
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Fig. 3. Contributions to S(Q, w) for two equivalent Q (see
caption to Fig. 2))

Neutron Scattering

As is well known,!° the neutron scattering cross section in a crystal, in second
Born approximation, is proportional to the dynamic scattering function

1
SQw) = —exp[-2W(Q)]
x Jdt exp(— iwt)z exp [iQ-(R; — R;)
x exp[iQ-u()]exp[—iQ-u;(0)] » 9

where exp[ —2W(Q)] =| (exp(iQ-u;) > |> is the Debye-Waller factor. The
double bracket stands for the cumulant of the corresponding expectation value plus
one responsible for Bragg scattering. The usual way to evaluate the cumulant is



