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Preface

“Creative thinking in science is mainly concerned with searching for fresh

meaningful combinations of old pieces of information.”
W. 1. B. Beveridge

“Novelties come from previously unseen association of old material. To create is to

re-combine.”
Frangois Jacob

On May 11-12 1998, the Israeli scientific community staged a very special event cel-
ebrating both the 20th anniversary of the Wolf Prize and the 50th anniversary of the
State of Israel. The scientific program of that event included many lectures by Wolf
Prize Laureates in all five scientific disciplines of the Prize: Agriculture, Chemistry,
Mathematics, Medicine and Physics. This program, which was sponsored by Novar-
tis AG, highlighted a revolutionary trend that characterizes science at the turn of the
20th century - the unification and integration of science.

Historically, divisions of the sciences evolved with the establishment of European
universities during the Late Middle Ages. The medieval perception made clear dis-
tinctions between theology and physics, and even between terrestrial and celestial
physics. Furthermore, it separated the mathematical sciences from natural philoso-
phy and metaphysics. Institutional divisions separated the elevated sciences (which
were based on philosophical principles) from the intellectually inferior arts (which
were based on the various domains of craftsmanship). Interestingly, mathematics
was considered at that time to be a craft and therefore unfit for explaining natural
phenomena.

During the Renaissance and particularly during the Scientific Revolution of the
17th century, attempts were continuously made to shake this old perception. Many
outstanding pioneers, including Copernicus, Kepler, Galileo, Bacon, Harvey, Des-
cartes, Boyle, Newton, and Hooke, creatively endeavored to establish new theoretical
and methodological links between previously separated scientific domains. Galileo
took mathematics seriously and connected it with metaphysics; Bacon called the
philosophers to come out of their libraries to the real world and learn from other
disciplines. Promulgating the new “experimental philosophy”, Boyle probably estab-
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lished the most sophisticated laboratory in Europe. Craftsmen, meanwhile, started
reading philosophical books and made their own contributions to science.

Interestingly, and probably not surprisingly, most of these geniuses operated out-
side the academic divisions of the university. Yet, the establishment of the modern
universities at the beginning of the 19th century was again accompanied by the
ordering, classification and partitioning of science. Understandably, the structure of
universities around the world reflects their need to maintain comprehensive teach-
ing programs and cover the entire base of scientific knowledge. Thus, the universi-
ties’” commitment to provide scientific education has led to compartmentalization,
hierarchy and even the formation of barriers between well-defined scientific disci-
plines, such as mathematics, physics, chemistry, biology and medicine, each of
which is further divided into subcategories and subsections.

Now, at the turn of the 20th century we are witnessing a profound movement to
change the traditional scientific arrangement that was so well preserved by our uni-
versities for almost 200 years. The current scientific revolution is reminiscent of the
one that occurred at the beginning of the 17th century. As the contemporary explo-
sion of information can cause further specialization and partitioning of scientific
disciplines, integration of science sounds counterintuitive. Yet, the increased societal
demand for novel technologies challenges the scientific community and pushes
towards collaboration and cross-fertilization between seemingly remote scientific
domains. There is now an interesting tendency to establish new academic as well as
industrial institutions that break the walls between traditional disciplines and
encourage creativity, brainstorming and heterogeneous teamwork in research.

Originally, we planned to publish a single volume compilation of scientific contri-
butions that covers a wide range of active disciplines, entitled “Science for the 21st
century”. Publisher’s preferences, however, lead us to arrange the material in the
form of a three-volume set. While this first volume is dedicated to the chemical
sciences, the second volume will focus on the life sciences and the third will deal
with physics and the mathematical sciences.

The astounding history of science and technology of the 20th century testifies for
the highly unpredictable nature of scientific developments. It is essentially impossi-
ble, and would be quite arrogant on our part, to make any prediction of which scien-
tific disciplines will prevail in the future and therefore merit greater attention today.
Consequently, this compilation represents a broad-scope sampling, but certainly not
comprehensive coverage, of all scientific domains. All chapters are written by scien-
tists who are well known in their fields and include their scientific achievements
and a personal view of the perspectives and prospects in these fields. We hope that
readers will have the opportunity to encounter new ideas and will be exposed to sub-
jects well beyond that of their own scientific disciplines. However, our most impor-
tant task is to provide the readers, now and in the future, with the “taste” and “fla-
vor” of the science at the turn of the millennium.

August 2000 Ehud Keinan
Israel Schechter
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1
Some Reflections on Chemistry — Molecular, Supramolecular

and Beyond”

Jean Marie Lehn

1.1
From Structure to Information. The Challenge of Instructed Chemistry

In chemistry, as in other areas, the language of information is extending that of con-
stitution and structure as the field develops towards more and more complex archi-
tectures and behaviors. And supramolecular chemistry is paving the way towards
comprehending chemistry as an information science. In the one hundred years since
1894, molecular recognition has evolved from Emil Fischer’s “Lock and Key” image
of the age of mechanics towards the information paradigm of the age of electronics
and communication. This change in paradigm will profoundly influence our percep-
tion of chemistry, how we think about it, how we perform it. Instructed chemistry
extends from selectivity in the synthesis and reactivity of molecular structures to the
organization and function of complex supramolecular entities. The latter rely on
sets of instructed components capable of performing on mixtures specific opera-
tions that will lead to the desired substances and properties by the action of built-in
self-processes.

Supramolecular chemistry has started and developed as defined by its basic
object: the chemistry of the species generated by non-covalent interactions. Through
recognition and self-processes it has led to the concepts of (passive and active) infor-
mation and of programmed systems, becoming progressively the chemistry of mo-
lecular information, its storage at the molecular level, its retrieval, transfer and pro-
cessing at the supramolecular level.

*) The present text is an adapted version of
Chapter 10 in : ].-M. Lehn, Supramolecular
Chemistry — Concepts and Perspectives, 1995,
VCH, Weinheim.
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1 Some Reflections on Chemistry — Molecular, Supramolecular

The outlook of supramolecular chemistry is towards a general science of informed
matter, bringing forward in chemistry the third component of the basic trilogy mat-
ter~energy-information.

Chemical systems may store information either in an analogical fashion, in the
structural features (size, shape, nature and disposition of interaction sites, etc.) of a
molecule or a supermolecule, or in a digital fashion, in the different states or con-
nectivities of a chemical entity. The evaluation of the information content of a molec-
ular recognition process based on structural sensing in receptor/substrate pairs
requires an assessment of the relevant molecular characteristics. Recognition is not
an absolute but a relative notion. It results from the structural (and eventually dyna-
mical) information stored in the partners and is defined by the fidelity of its reading,
which rests on the difference in free energy of interaction between states, represent-
ed by different receptor/substrate combinations. It is thus not a yes/no process but
is relative to a threshold level separating states and making them distinct. It depends
on free energy and consequently on temperature. The parameter kT could be a pos-
sible reference quantity against which to evaluate threshold values, differences
between states and reading accuracy. Both analogical and digital processing of
chemical information depend on such factors.

Digital storage and retrieval of chemical information is found in the nucleic acids
where the basic digital operation is a two state 2/3 process (2 versus 3 hydrogen bonds in
AT and G:C base pairs respectively) corresponding to the usual 0/1 commutation of
electronic computers. It may also be envisaged for multisite receptors or multiredox sys-
tems possessing distinct states of site occupation or of oxidation.

A system of intriguing potential is represented by recently described inorganic
superstructures where metal ions are arranged in grid-like arrays. These resemble
grids based on quantum dots that are of much interest in microelectronics. They
may be considered to consist of ion dots of still smaller size than quantum dots and
do not necessitate microfabrication but form spontaneously by self-assembly. Such
architectures may foreshadow muiltistate digital supramolecular chips for informa-
tion storage in and retrieval from inscribed patterns that might be light or electri-
cally addressable. For instance, the use of techniques of STM or AFM type to induce
redox changes at specific locations in a single unit would then correspond to a sort
of single electronics at ion dots. The grid-type arrangements also pose the intriguing
question of performing matrix algebra operations on these inorganic superstruc-
tures. Extension into three dimensions through stacks of grids would lead to layered
arrays in foliated spaces.

Molecular and supramolecular devices incorporated into ultra-micro-circuits rep-
resent potential hardware components of eventual systems that might qualify as mo-
lecular computers, whose highly integrated architecture and operation would not be
of the von Neumann type. On the biological side, the fabrication of components for
sensory and motor protheses could be considered. All these entities may result from
the self-assembly of suitably instructed subunits so that computing via self-assembly
may be envisaged.

One may note that folding and structure generation in biological macromolecules
could occur through parallel search with formation of local arrangements which
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then interact with each other giving larger structured areas which will in turn inter-
act, and so on, in a convergent fashion until the final superstructure is reached. For
instance, protein folding, as a self-organizing process, would present characteristics
of parallel computing.

Entities resulting from self-assembly and self-organization of a number of compo-
nents may undergo self-correction and adaptation. This might also explain why large
multisite protein architectures are formed by the association of several smaller pro-
tein subunits rather than from a single long polypeptide.

Beyond programmed chemical systems, the next step in complexity consists in the
design of chemical “learning” systems, systems that are not just instructed but can be
trained, that possess self-modification ability and adaptability in response to external
stimuli. This opens perspectives towards systems that would undergo evolution, i.e.
progressive change of internal structure under the pressure of environmental fac-
tors. It implies also the passage from closed systems to open systems that are con-
nected spatially and temporally to their surroundings.

1.2
Steps Towards Complexity

The progression from elementary particles to the nucleus, the atom, the molecule,
the supermolecule and the supramolecular assembly represents steps up the ladder
of complexity. Particles interact to form atoms, atoms to form molecules, molecules
to form supermolecules and supramolecular assemblies, etc. At each level novel
teatures appear that did not exist at a lower one. Thus a major line of development
of chemistry is towards complex systems and the emergence of complexity.

Very active research has been devoted to the development of complexity measures
that would allow the quantitative characterization of a complex system. In the pres-
ent context, complexity is not just described by the number of states, the multiplicity
of a system, as defined in information science, or by the characteristics of the graphs
representing a molecule or an assembly of molecules, or by structural complexity.
Complexity implies and results from multiple components and interactions between
them with integration, i.e. long range correlation, coupling and feedback. It is inter-
action between components that makes the whole more than the sum of the parts
and leads to collective properties. Thus, the complexity of an organized system
involves three basic features:

Complexity = (Multiplicity) (Interaction) (Integration) = MI2

The species and properties defining a given level of complexity result from and
may be explained on the basis of the species belonging to the level below and of
their multibody interaction, e.g. supramolecular entities in terms of molecules, cells
in terms of supramolecular entities, tissues in terms of cells, organisms in terms of
tissues and so on up to the complexity of behavior of societies and ecosystems. For
example, in the self-assembly of a virus shell, local information in the subunits is
sufficient to “tell” the proteins where to bind in order to generate the final polypro-
teinic association, thus going up a step in complexity from the molecular unit to the
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supramolecular architecture. Ultimately one will have to go ever deeper and wider
so as to link the structures and functions from the atom to the organism, along a
hierarchy of levels defining the architecture of complexity.

The novel features that appear at each level of complexity and characterize it do
not and even cannot conceptually exist at the level below but may be explained in
terms of MI2, from the simplest particle to the highly complex multibody, multi-
interactive societies of living organisms. Such an attitude is not reductionist, it is
not a reduction of a level to the lower one(s) but an integration, connecting a level to
the other ones by integrating species and interactions to describe and explain
increasing complexity of behavior.

A simple but telling illustration is for instance the boiling point of a liquid. A
single molecule of water has no boiling point, the concept of boiling itself does not,
cannot even, exist for it. Only for a population of interacting water molecules is
there such a thing as a boiling point, or a freezing point, or any other collective prop-
erty.

A corollary is the question of how many individuals it takes to form a collectivity
and to display the collective properties: how many molecules of water to have a boil-
ing point, how many atoms to form a metal, how many components to display a
phase transition? Or, how do boiling point, metallic properties, phase transition etc.
depend on and vary with the number of components and the nature of their interac-
tion(s)? In principle any finite number of components leads to a collective behavior
that is only an approximation, however close it may well be, an asymptotic approach
to the “true” value of a given property for an infinite number of units.

The path from the simple to the complex in behavioral space corresponds to that
from the single to the collective and from the individual to the society in population
space. A sum of individuals becomes a collectivity when there are interactions and
at each level novel interactions appear leading to higher complexity. With respect to
molecular chemistry, one may consider supramolecular chemistry as a sort of mo-
lecular sociology.

The global behavior of condensed matter may be described by phenomenological
physical laws. An understanding of these macroscopic events will ultimately require
their explanation in terms of the underlying molecular and supramolecular features,
i.e. in terms of the chemical nature of the microscopic components and of their
interactions. For instance, how is viscosity or a phase change related to the constitut-
ing molecules? How do individual partners synergetically cooperate to produce
macroscopic spatial, temporal or functional features, inducing a transition from
chaos to order through self-organisation? How does turbulent flow vary with the
type of multibody interactions between them? Or how is structuration in a energy
flow determined by molecular features of the components and their supramolecular
interactions?

There is here a very exciting and fundamental field of investigation for supramo-
lecular chemistry concerning the emergence of order and complexity, the passage
from the microscopic to the macroscopic, from the isolated to the collective, with
the aim of providing an etiological explanation of the phenomenological description.
It requires bridging of the gap between and integration of the points of view of the




