PROLOG AND
TXPERT SYSTEMS

“PROLOG AND

EXPERT SYSTEMS

Kenneth A. Bowen

Applied Logic Systems, Inc.
and
Syracuse University

McGraw-Hill, Inc.

New York St. Louis San Francisco Auckland Bogotd
Caracas Hamburg Lisbon Londom Madrid Mexico Milan Montreal
New Delhi Paris San Juan Sio Paulo Singapore Sydney Tokyo Toronto

\

This book was set in Times Roman by Publication Services.
The editor was Eric M. Munson.

The production supervisor was Friederich W. Schuite.

The cover was designed by Joseph Gillians.

Project supervision was done by Publication Services.

R. R. Donnelley & Sons Company was printer and binder.

PROLOG AND EXPERT SYSTEMS

Copyright © 1991 by McGraw-Hiil, Inc. All rights reserved.

Printed in the United States of America. Except as permitted under the
United States Copyright Act of 1976, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a data
base or retrieval system, without the prior written permission of the
publisher.

234567890DOCDOC90987654321
ISBN 0-07-005731._-?

Library of Congress Cataloging-in-Publication Data
Bowen, Kenneth A.
Prolog and expert systems / Kenneth A. Bowen-— 1st ed.
p. cm.
Includes bibliographical references and index.
ISBN 0-07-006731-7 B

1. Expert systems (Computer science) 2. Prolog (Computer program language)
QA76.76.E95B67 1991 :

006.3'3 —dc20 90-24032

Also Available from MicGraw-riill

Schaum’s Qutline Series in Coipuiers

Most outlines include basic theory, definitions, and hundreds of solves problems and supple-

mentary problems with answers.

Titles on the Current List Include:

Advanced Structured Cobol

Boolean Algebra

Computer Graphics

Computer Science

Computers and Business

Computers and Pregramming

Data Processing

Data Structures

Digital Principles, 2d edition

Discrete Mathematics _

Essenticl Computer Mathematics

Linear Algebra. 2d edition

Mathematical Handbook of Formulus & Tables
Matrix Operations

Microprocessor Fundamentals, 2d edition
Programming with Advanced Structured Cobo!
Programming with Assembly Language
Programming with Basic, 3d edition
Programming with C

Programming with Fortran

Programming with Pascal

Programming with Structured Cobo!

Schaum’s Solved Probiems Books

Each title in this series is a compleic and expert source of solved problems containing thousands

of problems with worked out solutions.

Related Titles on the Current List include:

3000 Soived Problems in Calculus M
2500 Solved Problems in Differential Equations
20061 Solved Problems in Discroie Mathemarics
J000 Soived Problems in Linear Aigcora

2000 Solved Problems in Numerico: Analysis

Available at your College Bookstore. A complete listing o1 Schaum ftitles

obtained by writing to© Schaun: ivision
McGraw-Hili . Inc.
Princeton Road, S-i
Hightstown NI 08520

may be

“ABOUT THE AUTHOR

Kenneth A. Bowen, founder and President of Applied Logic Systems, Inc., is cur-
rently a professor of computer science at Syracuse University, Syracuse, New York,
where he was formerly a professor of mathematics. He recieved his B.S.,M.S., and
PhD degrees (in mathematics) from the University of Ilinois at Urbana, Illinois. Dr.
Bowen is a world-wide recognized authority on legic programming and Prolog, and
has been an invited speaker at confereaces throughout the United States, Europe and
Asia. Dr. Bowen was an invited participant in the joint Japanese — U.S. Seminar on
the Current State of Logic Programming, spoasored jointly by MITI (Japan) and NSF
(USA) at Argonne National Laboratories in October, 1989, and served as the General
Chairman for the Joint Meeting of the Fifth International Conference and Symposium
on Logic Programming held in Seattle in 1988.

With his extensive experience, e has acted as a consultant to several major com-
puter manufacturers and defense contractors, as well as various agencies of the Federal
Government. As a research professor at Syracuse University, Dr. Bowen has directed
a large number of government- and corporate-funded projects in _the area of logic
programming as it relates to knowledge base maintenance. He was one of the prin-
cipal investigators for the Rome Air Development Command Artificial Intelligence
Consortium and was the organizer, and ore of the presenters, of a nation-wide live
closed-circuit television presentation on Prolog and Expert Systems broadcast in De-
cember 1985. ’

PREFACE

This book is the result of years of indulgence: indulgence in a love of logic and its
computational manifestation in Prolog, indulgence in the joy of teaching Prolog to my
students, friends, and family (even when they had reservations about what it was I was
leading them into), and indulgence in the delight of using odd and anthropomorphic
methaphors and pictures to convey the ideas. I've tried, in the static pages of this
book, to capture some of the pleasure I've found in teaching these ideas. I can only
hope that some of it comes through.

One of the - striking and successful areas of application of Prolog is the imple-
mentation of expert systems. I have oriented the présentation of Prolog programming
toward the presentation of several approaches to the 1mplementanon of expert sys-
tems. The exercises utilize information from the everyday and scientific worlds as the
basis for developing aspects of such systems. More substantial raw information has
been included in the Appendix. There are scveral sequences of exercises that use the
various parts of the Appendix. The following tablé delineatss®them.

,pl
t ATV B-Eazymes C-Clouds D-IRS PhotoEqu!p F-Aut@ﬂcpalr
1 1818 112 110411 143 114 T .
2 2829 211 2.10 212 213 , .
3 3839 37 36 310 , ; 311
4 410
5 512 52 5.13
6 615 616
7 710 78 7.6,7.11-12
8 81 85 85 T 82 8.6
9 91 9.4 9.3 9.2 95
10 .
1 1.1 1. 1.1 1.1
12 121 12.2

xi

xli PREFACE

The approach of this book grew out of iny approach to the ieaching of pro-
gramming languages at the School of Computer and Information Science at Syracuse
University. I usually begin a programming language course with a brisk introduction
to the language in question. intending to provide an overal! view and appreciation of
" the language’s salient features. 1 generally omit or brush lightly over the more detailed
* or obscure apects of the language during this introduction. Basi¢ competence with
the language is reinforced in the siudents through (he use of many small exercises.
During the second portion of the course. T usuaiiy undertake one or more reasonably
large programming problems. As we develop the program(s), I refine the student’s
understanding and use of the languags in the context at hand. I have found this to
be a particularly successful approach for several reasons: First. if the large programs
are well selected, they are of inherent interest to the students, and hence capture their
attention more than sequences of smail exercises. Consequently, the students appear
much more receptive to discussions of the fine points of the programming language,
since these points often have sxgmﬁcant bearing on the overall iarge program. Second,
undertaking a neasonably large programming task enables me to discuss and illustrate
software, desngh issues, which are all too often glossed over in basw programlmnry
language coutses Part | of this book thus reflects the mtrojuctory portxons of my
Prolog programming courses. and Part If, on the xmplemcntanon of expert systems
using Prolng. conespgnds to the second portion of my courses. Instructors and stu-
dents should cover Part I at a brisk pace, and in pamcular should j Just skim Chapter 7,
Almost all aspects of Prolog are seriously exeicised in Part 1 during the development
of ‘various expert systcms As dxffenng aspects of Prolog are encountered in: Part 11,
readers and mstructors ,should return to the relevant portions of Part I (in particular
Chapter 7) for revlew ‘

Itisa customary statement, yet true, that this book would not have exisied with-
out the help of many people First must come aﬂ ,my_many students and friends—
together with my faxpsl —all of whom entered inta the leaming process w:th me,
and who taught me what ‘worked (and what didn’t) to convey the idéas. More imme-
diately, my colleagues at Applied Logic Systems-—Johanna Bowen, Kevin Buettner,
‘Keith- Highes; "and:Andy Tirk, have proven invaluable critics and -contributors of
ideas. The following reviewers were also helpful in réviewing early stages of the
marnuscript: Charles Frank, Northern Kenméky Umversxty Forouzan Golshani, Ari-
zona State University; Dennis Kibler, University of California, Irvine; and Kathleen
Swigger, North Texas State University. And finally, but not least important, my wife
and daughters, Johanna, Melissa, and Alexandra, have been among my sharpest crit-
ics and most imaginative contributors. To all, I say thank you. They have unproved
the book inestimably. The remaining flaws belong only to me.

Kenneth A. Bowen

CONTENTS

Preface

Xi
Part I Core Prolog

Chapter 1 Prolog Databases 3
1.1. Elementary Prolog Databases 3
1.2. Representing a Circuit 8
1.3. Identification of Hickory Trees 12
1.4. Syntax 14
1.5. Using Prolog Systems 18
Exercises 22
Chapter 2 Simple Queries against Databases 26
2.1. Concrete Questions 26
2.2. Databases and Reality 29
2.3. Documentation Style and Comments 31
2.4. Queries with Variables 32
Exercises ‘ h 35
Chapter 3 - Compound Queries 39
3.1. Queries with Multiple Literals , 39
3.2. Solving Compound Queries by Backtracking 43
3.3. Backtracking, Multiple Variables, and Multiple Solutions 50
3.4. The Logical Interpretation of Prolog Queries 54
3.5. Facts Containing Variables 58
3.6. Difference 61

Exercises

63
vii

vili CONTENTS

Chapter 4 Queries and Rules 66
4.1. Abbreviating Questions by Rules 66,

4.2. Defining Relationships with Rules 74

4.3. Two Interpretations of Rules ’ 77

4.4. How Prolog Works 80

'4.5. Tracing Prolog Computations : 82

4.6. How Prolog Applies Rules 87

Exercises R 96

Chapter 5 Recursion on Predicates 99
5.1. The Ancestor Problem 99

5.2. Path Finding in Graphs 103

5.3. Representing Systems with State ' 112

Exercises i 120

Chapter 6 Recursion on Terms 126
6.1. Elementary List Processing 126

6.2. Reversing and Sorting Lists _ 134

6.3. Association Lists 143

6.4. ‘Trees 150

6.5. Graphs Revisited 155

Exercises 169

Chapter 7 Pragmatics : 172
7.1. Control: Disjunction, Cut, Negation, and Relatives 172

7.2. Looking at the Program 178

7.3. Builtins Affecting the Program ~179

7.4, Comparing Tesms and Sosting Lists 182

7.5. Collecting Information 185

7.6. Analyzing Terms ‘ 189

7.7. Arithmetic Expressions 192

7.8. Input/Output 194

7.9. Operator Declarstions . 202

, : Exercises ‘ ’ ' 204

Part I MetaLevel Programming and Expert Systems

Chapter 8 Elementary Expert Systems 209
8.1. Object-Level Expert Systéms 209
8.2. Generate and Test 221
8.3. Query-the-User 231
8.4. Accumulating Proofs for Explanations 236

Exercises 241

CONTENTS Ix

Chapter 9 MetaLevel Shells 242
9.1. A Prolog Interpreter in Prolog 242

9.2. Interpreters for Rule-Based Systems 245
9.3. Solving Constraints 257

Exercises 263

Chapter 10 Parsing and Definite Clause Grammars 265
10.1. Stepping-Stone Parsing and List Representation 265

10.2. Parameter-Free Definite Clause Grammars ‘ 272

10.3. Building an Internal Representation 275

10.4. Using DCGs with Expert Systems 279

Exercises 283

Chapter 11 Compiling Knowledge - ' 287
Exercises . 310

Chapter 12 Mixed Forward and Backward Reasoning 311
Exercises 320

Appendixes) _ : 321
A. Television Schematic and Repair 321

B. Enzyme Sites and Actions 323

C. Cloud Descriptions and Properties 324

D. IRS Filing Rules . 330

E. Photography Troubleshooting - 333

FE Automobile Eagine Problems 336

Bibliography 341

Index : 343

CORE PROLOG

CHAPTER

PROLOG DATABASES

1.1 ELEMENTARY PROLOG DATABASES

The best way to start programming is to write a program. We will start with a simple
Prolog program consisting of several facts about drugs and diseases. Let us start by
putting down a number of simple assertions: that aspirin relieves headaches, that it also
relieves moderate pain, that KO Diarrhea relieves diarrhea, that Noasprinol relieves
headache, and so on. Each of these assertions claims that a simple relationship holds:

thing thing

Aspirin relieves headache.

relation

This would be expressed in Prolog by

relation

relieves (as;{rln, headache).
thing “thing

This is an example of a Pmlog fact. Facts assert that relationships hold between
things. The fact displayed above asserts that the relationship “relieves” holds between
the two things “aspirin” and “headache.” We will see iater that Prolog facts can assert -
relationships holding between two things, three things, four things, etc. There can
even be relations that involve only one thing or wo thmgs ‘We will make sense of that
later.

Since relations are very important to Prolog, the name of the relation comes first
in the Prolog statcment Then comes the list of thmgs mvolved in the relationship. The

3

4 PART 1: CORE PROLOG

list is enclosed in parentheses, and the things are separated by commas. The entire
expression is terminated with a period (.), sometimes called a full stop. Spaces can
be used almost everywhere to improve readability with one exception: No space can
occur between the relation name and the left-hand parenthesis.

Prolog generally insists that the names of relations and thmgs begm with a lower-
case letter. This is why we changed “Aspirin” to “aspirin.’

Consider another assertion:

relation

Aspirin relieves moderate pain.

\ thing \

thing

This also asserts that the relation “relieves” holds between two things, but in this
case, the expression naming the second thing is a two-word English phrase, namely,
“moderate pain.” Since Prolog is basically very dumb, it can’t handle names made up
of more than one word. What can we do? Qne solution is just to leave out the space:

moderatepain
But thxs is hard to read. We can 1mpmvc thmgs by capltahzmg the p m pain:
moderatePam ;) . t
 Even though Prolog insists that fisimes begm with 2 Iower-case letter, the rest of the

»»»»

lettet's in the riame can be ‘igwerl or ‘upper-case. You ‘can also use digits after the first
letter bf & Prolog tiaine, and you cén ke the unidetbar character (). Usihg the uhiderbar
character can definitely improve the readability of Prolog names, for example:

moderate_pain
One can even write

moderate_Pain

Now that we see how to name “moderate pain” in Prolog, it is easy to see that the
Prolog version of the assertion “Aspirin relieves moderate pain” would be

relieves(aspirin, moderate_pain).

Some other interesting assertions are that “aspirin aggravates asthma,” “aspmn aggra-
vates peptlp ulcer,” “DeConge§t aggravates high blood pressure,” etc. The assemon

that aspirin aggravates peptic ulcer would translate into
aggravates(aspiin, peptic_ulber). © SR :
The assertion that DeCongest aggravms hxgh blood pmssu:e would translate mto
aggravates(de_congest, high_blood_pressure).

_ Each of these Prolog facts asserts that a parhcular relauonshxp holds: among several
things. A collectxon of Ptolog facts is called. a Prolog database. Databases are the v

P

CHAPTER 1: PROLOG DATABASES 5

FIGURE 1-1

A Prolog database of simple medica] facts.
relieves(aspirin, headache).
relieves(aspirin, moderate_pain).
relieves(aspirin, moderate_arthritis).
relieves(aspirin_codeine_combination, severe_pain).
relieves(cough_cure_xm, cough).
relieves(pain._gone, severe_pain).
relieves(ko_diarrhea, diarrhea).
relieves(de_congest, cough).
relieves(de_congest, nasal_congestion).
relieves(penicillin, pneumonia).
relieves(bis_cure, diarrhea).
relieves(bis_cure, nausea).
relieves(noasprinol, headache).
relieves(noasprinol, moderate_pain).
relieves(triple_tuss, nasal_congestion).
aggravates(aspirin, asthma).
aggravates(aspirin, peptic_ulcer).
aggravates(ko_diarrhea, fever).
aggravates(de_congest, high_blood_pressure).
aggravates(de.congest, heart_disease).
aggravates(de_congest, diabetes).
aggravates(de_congest, glaucoma).
aggravates(penicillin, asthma).
aggravates(bis_cure, diabetes).
aggravates(bis_cure, gout).
aggravates(bis_cure, fever),

) simplest kind of Prolog program. Figure 1-1 shows a Prolog database that includes
the elementary facts we've developed above.
These Prolog facts have a natural intuitive translation back into English. Remember

that the first part of a Prolog fact is the name of a relation holding between the list of
things that follow. Thus,

r_elieves(de.congest, nasal_congestion).
would translate into

DeCongest relieves nasal congestion.
The fact i

aggravates(ko_diarrhea, fever).
translates into

KO Diarrhea aggravates fever.

6 PART 1: CORE PROLOG

Besides relations involving just two things, there are many relations that involve
more than two things. For example, consider the assertion that

Interstate 81 connects Binghamton and Syracuse.

The relationship here is the “connects” relation. The things involved in the relationship
are Interstate 81, Binghamton, and Syracuse. How do we translate this into a Prolog
fact? Remember that the name of the relation comes first, followed by the things
involved in the relationship, so the corresponding Prolog fact is

connects(interstate_81, binghamton, syracuse).
The assertion)
Binghamton and Syracuse are connééted by Interstate 81.

conveys the same information as the ongma] but with a different emphasns The
Prolog version of this is

connected_by(binghamton, syracuse, mtes’iﬁétb_Sl) ‘

Another natural relation involving three thmgs is the “parents of” relatlon

Ken and Johanna are the parents of Mel:ssa
This translates to

parents_of(ken, Johanna melissa).
The ongmal statement cdn also be phrased as

Melissa’s parents are Ken and Johanna.
This version becomes

parents(melissa, ken, johanna). .
Notice that we could have also translated the last assertion into the fact -

parents_are(melissa, ken, johanna).

Whether or not to include such helping words as is and are in the names of relations
is a matter of personal taste.

In everyday conversation, there aren’t very many natural relationships involving
four or more things. Of course, one can easily concoct lots of artificial relationships

with four or five or more participants. Heres one natural relationship mvolvmg four- .
things: oL

The states of Arizona, Colorado, New Mexico, and Utah meet in a common pomt
We can translate this into : d
common_point(arizona, colorado, new_mexico, utah).

There are many occasions when we must assert that something has a cenam 'propu :
erty. For example:

CHAPTER 1: PROLOG DATABASES 7

Nasal congestion is a mild condition.

Heart disease is a serious condition.

In the first example, the property is “being a mild condition”; in the second, it is
“being a serious condition.” In English, we usually write the property after the thing
for which it holds. However, in the corresponding Prolog facts, the property name

occurs first:
mild_condition(nasal_congestion).
se; ‘ous_condition(heart. disease).

Prolog thinks of properties and relations as being very similar sorts of notions. For
this reason, we will use the word predicate to refer to either properties or rela-
tions. So “relieves,” “aggravates,” “connects,” “parents,” “mild_condition,” and “se-
rious_condition” are all predicates.

From the examples so far, we can see that the basic form of Prolog facts consists
of a predicate name followed by the names of the things involved:

predicate(thing,name, thing;name, . ..).

Every Prolog fact must be términated with a period (full stop). The predicate name
. part of a fact normally appears first, although we will see a few exceptions later. The
things related to one another by a predicate are called its arguments. Thus,

aspirin, headache

is the list of arguments of “relieves” in the fact
telieves'(aspirin, headache). ‘

The arguments of “aggravates” in the fact
aggravates(bis._cure, gout).

are

bis_cure, gout.

The names of predicates are made up of letters, digits, and the underbar character
(); but remember, the first character of the-name must be a lower-case letter. .

The names of things are called constants (sometimes called atomic constants or
simply aroms). Like the names of predicates, they are made up of letters, digits, and
the underbar character, and must start with a lower-case letter.

If you choose the names of your predicates and constants to be as intuitive as

possible, it is very easy to understand the intended meaning of your Prolgg facts. The

meaning we intended for the first “relieves” fact in Figure 11 is that - -
Aspirin relieves headache.

The meaning of the last fact in the database is that

Bis Cure aggravates fever.

