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PREFACE

This book is concerned with the use of Computer-Aided Design (CAD) in the
device and process development of Very-Large-Scale-Integrated Circuits
(VLSI). The emphasis is in Metal-Oxide-Semiconductor (MOS) technology.
State-of-the-art device and process development are presented.

This book is intended as a reference for engineers involved in VLSI develop-
ment who have to solve many device and process problems. CAD specialists
will also find this book useful since it discusses the organization of the simula-
tion system, and also presents many case studies where the user applies the
CAD tools in different situations. This book is also intended as a text or
reference for graduate students in the field of integrated circuit fabrication.
Major areas of device physics and processing are described and illustrated with
simulations. ) :

The material in this book is a result of several years of work on the implemen-
tation of the simulation system, the refinement of physical models in the
simulation programs, and the application of the programs to many cases of
device developments. The text began as publications in journals and con-
ference proceedings, as well as lecture notes for a Hewlett-Packard internal
CAD course.

This book consists of two parts. It begins with an overview of the status of
CAD in VLSI, which points out why CAD is essential in VLSI development.
Part A presents the organization of the two-dimensional simulation system.
The process, device and parasitics simulation programs are described in some
detail. The basic principles, input file format and application examples are
presented. These chapters are intended to introduce the reader to the pro-
grams. Since these programs are in the public domain, the reader is referred.to

o
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the manuals for more details. Part B of the book presents case studies, where
the application of simulation tools to solve VLSI device design problems is
described in detail. The physics of the problems are illustrated with the aid of
numerical simulations. Solutions to these problems are presented. Issues in
state-of-the-art device development such as drain-induced barrier lowering,
trench isolation, hot electron effects, devnce scaling and interconnect parasitics
are discussed.

For the book to be used as a textbook, we recommend that it be used for a
semester course. If the course deals with device modeling and computer-aided
design tools, then Part A of the book should be emphasized. The student will
learn about the fundamentals of process and device simulation programs and
simulation system organization. If the course deals with device physics and
process development, then Part B of the book should be emphasized. The stu-
dent will learn about current issues in VLSI device development. In either case,
Part A and Part B of the book will complement each other.

We are grateful that Dr. John Chi-Hung Hui has contributed Chapter 11 on
the issue of hot electron -degradation effects in submicron n-channel
MOSFETs. The optimization of the LDD structure for reducing the hot elec-
tron degradation is described in detail.

We are also grateful that Dr. Sukgi Choi has contributed Chapter 12 on the

%ue of device scaling. The scaling of n-channel enhancement and depletion
mode devices are presented. Factors causing the device characteristics to
deviate from classical scaling rules, as well as complications involved in short
channel device scaling such as punchthrough are discussed.

We are indebted to Dr. P. Vande Voorde, Dr. D. Wenocur and Mr. M. Varon
for proofreading the manuscripts. Mr. K. Ogasaki has been assisting us with
the computer graphics which produced many of the figures in this book.
_Thanks are to Mr. T. Ekstedt who has kindly assisted the formatting of the
text, and Dr. S.-L. Ng who has assisted in preparing many of the figures.

The manuscript was prepared by the TDP software on the HP3000 computer.
Most of the simulations were performed on the HP1000 computer. We are
grateful to the system managers for their support and assistance.
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Preface

We are indebted to many of our colleagues at Hewlett-Packard Laboratories
for providing us with many ideas and suggestions, and to our management for
providing an opportunity for us to complete this task.

Finally, we would like to thank our families for their spiritual support, pa-
tience and understanding during preparation of the manuscript.

Overview

In order to bring out the importance of Computer-Aided Design(CAD)
in VLSI(Very-Large-Scale Integration) device design, it is necessary to
discuss the evolution of the Metal-Oxide-Semiconductor Field-Effect
Transistors (MOSFETs) and the issues involved in its scaling. MOSFETs,
first proposed 50 years ago, are based on the principle of modulating
longitudinal electrical conductance€ by varying a transverse electrical
field. Since its conception, MOSFET technology has improved steadily
and has become the primary technology for large-scale circuit integration
on a monolithic chip, primarily because of the simple device structure.
VLSI development for greater functional complexity and circuit
performance on a single chip is strongly motivated by the reduced cost
per device and has been achieved in part by larger chip areas, but
predominantly by smaller device dimensions and the clever design of
devices and circuits. . }

A general guide to the smaller devices in MOSFETs and associated
benefits, has been proposed by Dennard et al [1] (MOSFET scaling). This
proposed scheme assumes that the x and y dimensions (in the circuit
plane) are large compared to the z-dimension for the active device. The
scaling method is also restricted to MOS devices and circuits. The active
portion of MOS devices is typically restricted to within one or two
microns of the crystal surface and interconnection dielectrics and metals’
are less than one micron in thickness. Thus we should expect that the
guidelines as peeposed by Dennard should be reasonably valid for
minimum  <circuit dimensions of two microns or greater. As the
_' dimensions decrease below two microps, problems are introduced in both

1
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Fig. 1 Generic MOS Transistor.

fabrications and device operations that are not significant in larger
long-channel devices. The 2-D aspects of the impurity profiles and
oxidation process become important in determining the effective channel
length and width. More processing steps are required, such as channel
implantation and local oxidation, which make more stringent control of
the process necessary. Secondary effects, such as oxidation-enhanced
diffusion significantly affect the impurity profile. As a result, better
understanding and accurate control of these phenomena are crucial to
achieving the desired performance from the scaled dev ces.

For the device operation, we will examine many of the scaling
assumptions as applied to the long channel, wide conductor circuits, Also,
in each case, there have been practical departures from the scaling
assumptions. The original rules proposed that physical dimensions were
scaled so that all electric field patterns were kept constant. Fig. | shows
a geaeric MOS transistor and the various dimensions. Table 1 gives
Dennard’s constant field scaling rule, even though these have not been
the general practicee. When a process is scaled to smaller dimensions, the
X,y and z dimensions are all scaled by the same amount. In addition, the
"applied voltages are scaled in constant field sciling to rr{aintain constant
field pattern.
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W, L, Tox. V, Np o K-l

Ips &« (W/LXV2/Tox) « K-l

Cg « WLCy « K-l
td « CgV /I « K-l
P « VI o« K2

P/A « VI/WL « 1

Ptg « K-3

Table | Dennard’s constant field scaling.

Many scaling schemes bave been proposed since the "constant field"
proposal. It is useful to consider the actual scaling methods that have
been followed. The desirability of electrical compatibility with bipolar
TTL circuits and the five volt power supply standard has resulted in
"constant voltage scaling" as far as circuit power supply is concerned.
Sometimes the internal node voltages are changed as a result of scaling
and re-design. If the source/drain juncﬁon is less than one micron and
V pp is retained at five volts, the electric field stress in the channel is too
great and the MOS transistor characteristics drift with time because of
the hot carrier charge trapping. It is possible, but not evident at this
writing, that some modified structure such as a graded junction or ‘a "low
doped drain" (LDD) can allow five volt operation for sub-micron devices.
This constant voltage scaling also makes the 2-D field coupling
significant, which is negligible in the long-channel device. It is the major
cause of all the short-channel effects. To model these short-channel
effects, 2-D numerical simulations become necessary because 1-D
analytical models are not adequate. We must, in any event, consider
lower system voltage at some future time. Following examples illustrate
several features of the scaling methods. The most evident is that whereas
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most features of Dennard’s constant field scaling are approximately
retained from one generation of technology to the next, practical
considerations have resulted in significant departures. Constant voltage
scaling has in fact been the primary mode of scaling for most merchant
suppliers. We can expect that a new power supply standard will be
adopted and used until the dimensions are once more so small that device
instability re-appears. Another departure from strict geometrical scaling
has been in the vertical thickness of films. Conductor thickness has
scaled very slowly in order to avoid electromigration effects in
aluminum, or signal delay effects in polysilicon conductors. Table 2
shows the actual scaling done by most industrial suppliers. Either
constant voltage or constant field scaling has resulted in improved
circuits as measured by speed, and chip size and power for a given
electronic function. As was mentioned earlier, circuit voltage, ¥ pp, will
almost certainly be reduced for sub-micron devices. The tendency not to
scale the interconnect or dielectric thickness (except gate oxide) will
continue. -

The future reduction of minimum features to less than one micron will
undoubtedly bring further changes in actual scaling effects. The
minimum practical conduction threshold for switches to turn off in
dynamic circuits is approximately 0.6 volts. The desirability of dynamic
operation in many electrical functions will keep CMOS circuit operation
at about two volts. There will be exceptions such as the watch circuit
that operates from a single battery cell The peak current
(VGs =V ps/2) per unit width scales as K2 for long channel devices and
constant voltage scaling. The efféct of velocity saturation is to reduce
this scaling factor to approximately K-1. If width is also reduced by the
same scaling factor of K, then peak current per unit width scales as K-/
for long channel and is almost constant for short channel. The
transconductance follows the same behavior as current. Some switches
such as the transistors in a static RAM cell are not required to switch
particularly fast and have a small capacitive load. Hence the relative lack
of increased performance from scaling, the smallest geometry device
does not result in a performance problem inside the static RAM cell. On
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PROCESS Leff |Vt | VDD | Tox |X]
(COMPANY) (um) |[tvol) |(vol) | (m) | (um)
NMOS(intel) 4.6 50 |120 |2.00
NMOS(HP) 30 |08 |50 {100
HMOSI(intel) | 29 |07 |s0 |70 |00
. NMOS(Xerox) 25 50 | 70 |0.46
NMOS(HP) 20 |08 |50 |50 |0.20
HMOSntel 16 |07 |50 | 40 |080
NMOS(HP) 14 |06 |30 |40 |0.30
HMOSlIKintel) 11 0.7 50 25 |0.30
NMOSINTT) 16 |05 |50 |30 |025
NMOS(IBM) 08 |06 |25 |25 [035
NMOS(Toshiba) |05 |05 |30 |15 [0.23
NMOSIAT&T) 0.3 15 25 |0.26

Table 2 Actual scaling done by the most industrial
suppliers. -
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the other hand, devices that must drive long signal lines, clock lines, or
word lines may require width-scaling that is not at all the same as
length-scaling.

The scaling for commercial devices then will be to a new voltage
standard of less than five volts as dimensions become sub-micron. The
tendency in node capacitance is such that average wire length is a
fraction of chip size. As more electronic functions are included on a
chip, the chip size will continue to increase, and wire length also
increases. In future scaling, the capacitance per unit length of wire for
minimum pitch will stay almost constant since a large part of capacitance
is fringing field or else inter-line. A new circuit design problem will be
wire placement to minimize capacitance effects. To evaluate the actual
capacitance values, the circuit cxtraction program coupled with the 2-D
or 3-D parasitics simulator is indispensable.

An additional feature of scaling will be that the logic device width will
be reduced by a smaller factor than the scaling factor. This feature is a
result of the fact that the driving current per unit width only scales at
best as Cp ~ K-{. If the width is scaled by a factor of K, then the driving
current per device at constant voltage will decrease somewhat as a result
of various parasitic effects. The examples of minimum operating voltage
and deleterious effects on performance are given to help illustrate the
practical approach to sub-micron scaling.

The ability to calculate the effect of a process change on circuit or
device electrical parameters has been an indispensable part of the rapid
advances that have been made in semiconductor circuits ever since the
beginning of the solid state micro-electronic industry. Experiments tend
to establish the validity of theoretical concepts, establish empirical laws;
as well as help ciscover new physical effects. A symbiontic relation has
. developed between experiment and associated theory (modeling) in which
the  modeling helps to guide the direction of experiments, and
experiments establish the validity of models as well as produce devices
and circuits with optimized performance.

The conventional process and device designs for integrated-circuit
technologies have been based on a trial-and-error approach using
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Fig. 2 Block diagram of the process development

fabrications and measurements plus simple 1-D analytical modeling to
achieve the desired terminal electrical characteristics and circuit
performances. The left half of Fig 2 outlines a process, device, and
circuit design using the fabrications and simple models. This approach is
not, however, adequate for the small geometry devices. As mentioned in
the review of scaling, the constant voltage scaling and the lack of vertical
scaling make the 2-D field coupling more dominant in the device
performance. Especially, the threshold voltage becomes a sensitive
function of the channel length and the drain bias. The fringing and
inter-line capacitances become significant in the wiring capacitance. The



8 Computer-Aided Design .

velocity saturation also prohibits the s{mple 1-D model from accurately
predicting the saturation currents. These factors force the engineers to
resort more to the experiments. Thus, it drastically increases the cost and
time to develop a scaled geometry process. Even with the experiments,
complicated procwsé and structures make it difficult to get physical
insight and quantitative analysis of the factors governing device
operation. '

A complementary analysis and design path through process, device, and
circuit simulations has been proposed and is now widely accepted. In the
process simulation, process-specification information is used to simulate
the device structure and impurity distribution using the process models.
Device simulation yields the terminal characteristics based on the device
structure and the impurity profile from the process simulation and
physical models. The SPICE parameters are extracted from the terminal
characteristics and the layouts. Based on these parameters and circuit
connectivity, circuit simulations yield the switching characteristics and
provides the means to evaluate the circuit performances. Compared to
laboratory experiment, the design path via simulation is less costly and
faster; more important, it produces detailed information concerning
device operation in a well-controlled environment.

A complete 2-D numerical simulation system has been implemented in
Hewlett -Packard Laboratories since 1982, In part A, this numerical
simulation system and its individual tools will be explained in detail so
that the reader can get acquainted with these tools and learn how to use
them. Most of these tools are in tlie public domain. Thus we also give the
. information of these programs in the appendix so that it will help the
reader implement these tools. In part B, the applications of the system in
modeling small geometry processes will be presented. These simulation
tools are different with the simple analytical models. First, we try to
develop a methodology to use these- tools effectively in process
development. Next, real examples which are typical in important topics
of scaled process development will be given in detail to help the reader
attack their real problems.



