Data Structures
and C Programs

Data Structures

and C Programs

Christopher J. Van Wyk

AT&T Bell Laboratories
Murray Hill, New Jersey

3000 Ay
ADDISON-WESLEY PUBLISHING COMPANY
Reading, Massachusetts « Menlo Park, California « New York

Don Mills, Ontario « Wokingham, England « Amsterdam + Bonn
Sydney « Singapore « Tokyo + Madrid + San Juan

AR ITL TN
g.’» 3 ’:339‘3 9

L 2,
L

~Y Yo
by

To Claudiu L v
This book is in the Addison-Wesley Series in Computer Science

Michael A. Harrison
Consulting Editor

Library of Congress Cataloging-in-Publication Data

Van Wyk, Christopher J.
Data structures and C programs.

Bibliography: p.

Includes index.

1. C (Computer program language) 2. Data
structures (Computer science) I. Title.
QA76.73.C15V36 1988 005.7'3 88-3437
ISBN 0-201-16116-8

R1

This book was typeset in Palatino, Helvetica, and Courier by the author, on an Auto-
logic APS-5 phototypesetter and a DEC VAX® 8550 running the 9th Edition of the
UNIX® operating system.

Reprinted with corrections April, 1989

e
P———"Y
fr———Y

=
e

Ater

Copyright © 1988 by Bell Telephone Laboratories, incorporated.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of the
publisher. Printed in the United States of America. Published simultaneously in
Canada. :

UNIX is a registered trademark of AT&T.

DEFGHIJ-DO-89

Preface

One of the best things about computer science is that it offers the
chance to build programs that do something, and at the same time to
use interesting mathematics with which to study properties of those
programs. This book is about some of the important tools that com-
puter scientists use to study problems and to propose and choose
among solutions.

Outline of the Book L

Part I presents several fundamental ideas. These include abstractions
like algorithm, data type, and complexity, and also programming
tools like pointers, dynamic memory, and linked data structures.
Chapter 6 presents a simple ‘model of computer memory; the concrete
details in this chapter suggest the source of some of the abstractions
in Chapters 1 through 5. .

Part II presents techniques to solve several general and important
problems, especially searching and sorting. Chapter 12 shows how
“one might apply the material in Chapters 7 through 11 to solve a
real-world problem; the emphasis is on building a program that can
readily be changed to use different data structures and algorithms.

Part III surveys some advanced material about graphs and graph
algorithms. The two chapters cover a lot of topics at a faster pace
than Chapters 1 through 12, yet they offer only a hint of what lies
beyond the scope of this book.

v .

PREFAC

Each chapter concludes with a section called “Summary and Per-
spective,” which highlights the chapter’s important ideas and offers
some thoughts on how they fit into the larger scheme of things.

How to Read this Book

It would be good to read this bool with pencil and paper in hand.
Pause at each problem as it is presented in the text; sketch your own
solution before you see the one in the book. This will help you to
appreciate the obstacles that any solution to the problem must face.

You can add even more to your reading by using a nearby com-
puter to try your own solutions, and to test, modify, and experiment
with the programs that are included in the text. Waiting for a slow
program to finish can give you a visceral appreciation of what it
means for running time to grow linearly or quadratically with input
size. -

Finally, your reading will be incomplete unless you do some of
the exercises at the ends of each chapter. Many of the exercises rein-
force the ideas in the text. Others ask you to extend results in the
chapter to solve a new problem. Appendix D contains solutions to
about one-fifth of the exercises.

C Programs

- The programs in this book are written in C. Programmers who are

new to C can consult Appendixes A and B, which contain a brief
introduction to the C language and common C library functions; the
programs in Chapters 1 through 3 should help you to pick up the
essentials of the language.

Since C is a high-level language, it supports most of the abstrac-
tions that are important to writing good programs. At the same time,
C reflects the architecture of contemporary computers and lets pro-
grammers take advantage of it, so a C programmer has a reassuring
familiarity with the way a data structure is stored in computer
memory. When I taught from an earlier version of this material at
Stevens Institute of Technology, students who wrote in C ger-erally
understood the material better than those who wrote in Pascal, even
though I used Pascal in lectures and sample solutions.

Anything in the text that is labelled “Program” was included
directly from the source file of a computer program that was com-
piled and tested (under the 9th Edition of the " NIX operating sys-
tem) before it could appear in the book. Thes ' pror rams are meant to
illustrate computational methods, not to serve as r odels for software

v
5 PREFACE

engineering. In genei'al, tixey use global variables for simplicity, and
contain few comments since they lie near text that explains them.

Some Perspe&ﬁve on Theory

Mathemaﬁzal techmques ﬁgure prominently in the analysis of data
structures and algorithms.. Careful proofs of correctness give us con-
fidence that our solutions do what they should, while asymptotic
- methods let us compare the running time and memory utilization of
' different soluhons,to the same problem. But mathematical methods
~are umms with wluch to study, not ends in their own right. The pro-
gtam.«s in this book:are meant to counteract the view that the
mathematical analysis of data structures and algorithms is paramount.

Of course, some people believe that students of data structures and
algorithms do not need to see programs at all. They contend that
once you understand clearly the idea for a data structure or -algo-
rithm, you can easily write a computer program that uses it. They
prefer to write problem solutions in high-level pseudo-code that
omits many details. A few even go so far as to claim that ”program-
ming has no intellectual content.”

I take strong exception to this dismissal of the importance of pro-
gramming, which is, after all, the source of many interesting prob-
lems. I was surprised at how much I learned when I wrote the pro-
grams in this book. Sometimes, the final program bore little resem-
blance to the pseudo-code with which I had started; the program han-
dled all of the details glossed over by the pseudo-code, however, and
many times it was also more elegant Seeing data structures and algo-
rithms implemented also gives'a better idea of how 51mp1e or compli-
cated they are.

Another advantage of wntmg programs is that we can run them.
This can give us insight into thé performance of a particular tech-
nique. It ggn show us errors in our logical and mathematical analysis,
or conhfirm it and give us more feeling for the practical importance of
that analysis. Finally, by analyzing statistics gathered from programs,
many researchers have been led to discover new data structures and
algorithms.

Acknowledgements <

I am grateful to many people who have influénced this book in some
way. 1 learned a lot about putting theory into practice when I
worked on projects with Brian Kernighan and Tom Szymanski. Al
Aho and Jeff Ullman offered encouragement and advice when I con-
ceived this book and started writing. Doug Mcllroy and Rob Pike

vi

PREFACE

gave me thoughtful comments on early drafts of several chapters.
Jon Bentley and Brian' Kernighan read the whole manuscript care-
fully; in fact, Brian waded through several versions.

I also offer thanks to the following people, whom Addison-Wesley
recruited to review parts of the manuscript: Andrew Appel (Princeton
University), Paul Hilfinger (University of California, Berkeley), Glen
Keeney (Michigan State University), John Rasure (University of New
Mexico), Richard Reid (Michigan State University), Henry Ruston
(Polytechnic University of New York), and Charles M. Williams
(Georgia State University); and to these people, who taught classes
from the manuscript: Michael Clancy (University of California, Berke-
ley), Don Hush (University of New Mexico), and Harley Myler and
Greg Heileman (University of Central Florida).

Murray Hill, New Jersey CJ.V.W.

Sy,

Contents

PREFACE . ' - iii

Part I: Fundamental ldeas

Charting Our Course | 3
1.1 PROBLEM: SUMMARIZING DATA 3

1.2 SOLUTIONI 6

1.3 SOLUTIONEK 7

1.4 MEASURING PERFORMANCE 12
1.5 SUMMARY AND PERSPECTIVE 20

The Compiexity of Algorithms 25

2.1 THE IDEA OF AN ALGORITHM 25

22 ALGORITHMS FOR EXPONENTIATION 27
23 ASYMPTOTIC ANALYSIS 35

24 IMPLEMENTION CONSIDERATIONS 38
‘2.5 SUMMARY AND PERSPECTIVE 41

Pointers and Dynamic Storage 49

3.1 VARIABLES AND POINTERS 49

3.2 CHARACTER STRINGS AND ARRAYS 56
3.3 TYPEDEFS AND STRUCTURES 66

3.4 DYNAMIC STORAGE ALLOCATION 69
3.5 SUMMARY AND PERSPECTIVE 72

Vit

viii

CONTENTS

4 Stacks and Queues 79

4.1

TWO DISCIPLINES FOR PAYING BILLS 79

‘4.2 THE STACK DATATYPE 81

43 THE QUEUE DATATYPE 84
4.4 EXAMPLE APPLICATIONS 89
45 SUMMARY AND PERSPECTIVE 94

5 Linked Lists 7 101
51 LISTS . 101
5.2 APPLICATION: SETS 108
5.3 MISCELLANEOUS TOOLS FOR LINKED STRUCTURES 117
5.4 MULTIPLY LINKED STRUCTURES 123
55 SUMMARY AND PERSPECTIVE 125

6 Memory Organization N) 129
6.1 MORE ABOUT MEMORY 129 .
6.2 VARIABLES AND THE RUNTIME STACK - ' 133
6.3 wA SIMPLE HEAP MANAGEMENT SCHEME =~ 136
6.4 PHYSICAL MEMORY ORGANIZATION - 139
6.5 SUMMARY AND PERSPECTIVE 142 -

. . L3
Part Il:- Efficient Algorithms

7 Searching * - ' : : 149
7.1 ASPECTS OF SEARCHING 149 .
7.2 SELR-ORGANIZING LINKED LISTS 152
7.3 BINARY SEARCH 15§
7.4 BINARY TREES 159
7.5 BINARY SEARCH TREES 183
78 SUMMARY AND PERSPECTIVE . 170

8 Hashing . . o e 177
8.1 . PERFECT HASHING = 177 .
8.2 COLLISION RESOLUTION USING A PROBE STRATEGY .. 179
B.3 COLLISION RESOLUTION USING LINKED LISTS 185
8.4 SUMMARY AND PERSPECTIVE 186

9 Sorted Lists ' 193
9.1 AVL TREES 194
92 Z24TREES 200
9.3 IMPLEMENTATION: RED-BLACK TREES . 205
9.4 FURTHER TOPICS 218
95 SUMMARY AND PERSPECTIVE 220

iX

CONTENTS
10 Priority Queues 225
10.1 THE DATA TYPE PRIORITY QUEVE 226
10.2 HEAPS 227 ‘ /
10.3 IMPLEMENTATION OF HEAPS | 232
10.4 HUFFMAN TREES 235 '
10.6 OTHER OPERATIONS 240 _
10.6 SUMMARY AND PERSPEGTIVE 243
11 Sorting i 249
11.1 SETTINGS FOR SORTING 249
11.2 TWO SIMPLE SORTING ALGORITHMS 251
11.3 TWO EFFICIENT SORTING ALGORITHMS 255
11.4 TWO USEFUL SORTING IDEAS 262
1.5 SUMMARY AND PERSPECTIVE 265
12 Applying Data Structures 271
12.1 DOUBLE-ENTRY BOOKKEEPING 271
12.2 BASIC SOLUTION 277
123 SOLUTION! 284
12.4 SOLUTION § 287
126 SUMMARY AND PERSPECTIVE 289
Part lll: Advanced Topics
13 Acyclic Graphs 297
13.1 ROOTED TREES 207
13.2 DISJOINT SETS 300
13.3 TOPOLOGICAL SORTING 308
13.4 SUMMARY AND PERSPECTIVE 309
14 Graphs 313
14.1 TERMINOLOGY 313
. 142 DATA STRUCTURES 315
14.3 SHORTESTPATHS 317
14.4 MINIMUM SPANNING TREES 324
14.5 TRAVERSAL ORDERS AND GRAPH CONNECTIVITY 329
14.8 SUMMARY AND PERSPECTIVE 337
Appendixes
A C for Programmers

3456

CONTENTS

B Library Functions 357
C Our Header File 365
D Solutions to Selected Exercises 367

INDEX

377

Part 1

Fundamental
Ideas

RN

1

Charting
Our
Course

The questions we ask when we study data structures and algorithms
have their roots in practice: someone needs a program that does a job,
and does it efficiently. The techniques we shall see in the chapters to
come were discovered in the quest to create or improve a solution to
some practical problem. To give some idea of the circumstances that
often surround such discoveries, we shall solve a simple, practical,
problem in this chapter.

The two solutions we shall see use only rudimentary program-
ming techniques. Both solutions work, which is an important and
good property. But both solutions also have serious limitations: the
first is inconvenient for users, while the second takes longer and
longer to run as its input grows. These limitations can be overcome
only by using more sophisticated data structures and algorithms. Our
reflections on these solutions offer some glimpses of important issues
in the study of data structures and algorithms.

11

PROBLEM: SUMMARIZING DATA

The problem is to write a program with which to keep track of
money in a checking account. We want to know both how money is
spent on different expense categories (food, rent, books, etc.), and
how money comes into the checking account from different sources
(salary, gifts, interest, etc.). Following standard bookkeeping practice,
we call both expense categories and sources of income accounts.

¢330099

4

CHARTING QUR COURSE

At this point we shall leave the exact details of the input unspeci-
fied; instead, we say merely that the data is presented as a sequence:
of lines, with each line specifying a transaction, an account together
with an amount to be added to or subtracted from the balance in that
account. Each line has the form

account amount

Different solutions can use different ways to designate accounts,
tailoring the choice to the programmer’s or the user’s convenience.
We do specify, however, that the output should have the same form
as the input, with one line for each distinct account designation, and
the amount on that line equal to the sum of the amounts on all input
lines containing that designation.

For example, given as input the following six transactions:

salary 275.31
rent -250
salary 125.43
food -23.59
bocks -60.42
food -18.07

the program should produce the following output summary:

salary 400.74

rent -250
food -41.66
books -60.42

As a matter of fact, neither of the programs presented in this chapter
accepts exactly this input, although Solution II comes close.

Problems like this arise in many situations. A solution to this
provlem could be used to maintain the balances in customers’ charge
accounts at a store; the output reports the amount owed in each
account. It could also be used to follow inventories, with each
account corresponding to a particular product, perhaps a dish served
in a restaurant or a tool stocked by a hardware store.

The requirement that output be acceptable as input is not meant to|
dash creative efforts at report design, although it does leave us with'
fewer decisions to make. A program is often more useful if it can
process what it produces. For example, given a program that solves
this problem, we might use it to summarize checking account activity
by the month; to arrive at an overall summary for the year, we would
simply run the monthly summaries- through the same program that

5
1.2 SOLUTION |

produced them. The same idea applies to inventory control for a
large corporation: if each restaurant or store in a region sends its

* summarized sales data to regional headquarters, and the summaries
are in the appropriate format, then regional headquarters can sum-
marize the data from all franchisees in the region and send -the
results to national headquarters.

1.2

SOLUTION |

In our first solution we adopt an input format expressly chosen to
make our programming job simple: each account is designated by a
non-negative integer less than n, where n is to be specified in
advance. (Although this choice makes it simple to write the program,
it is inconvenient for users, as mentioned in the chapter introduc-
tion.) For example, if n were five or larger, the following input
would be acceptable:

275.31
-250

125.43
-23.59
-60.42
-18.07

Wk WO a0

This method for designating accounts suggests a natural data struc-
ture to use in a C program, since the first position in a C array is at
index zero. We declare balance[] to be an array of length n, then
store the balance of account i in balance[i].

We present our solution in a top-down fashion, beginning with a
high-level view and refining the details to simpler steps until we
reach a working program. We begin with the following outline:

(1) read and process each transaction line
(2) print a summary table

We elaborate Step (1) more fully as follows:

on each line, .
(1a) read two numbers—the account number and the transaction amount
(1b) update the appropriate element of balance(]

Step (2) is sixi\pler:

6

o~

CHARTING OUR COURSE

#include "ourhdr.h"

#define N 5

float balance(Nl;

void getlines() /# read and process each line «/
{
int account;
float amount; .
while (scanf{"%d %£", &account, &amount) != EOF)
balance[account] += amount;

}

void printsummary() /» produce a summary table s/
{
int i;
for (i = 0; i < N3 i++)
printf("%d %g\n", i, balance(i]);
}

main()

{
getlines();
printsummary();
exit(0);

PROGRAM 1.1

- Solution | to the problem in Section 1.1. See Appendix A for a brief introduction

to the C language, Appendix B for a description of the library functions exit(),
printf£(), and scanf (), and Appendix C for the contents of the header file
ourhdr.h.

as i goes from O through n-1,
print i and balancel[i}

The outline is now detailed enough that we can write Program
1.1. Program 1.1 uses N to denote the size of array balancel], so we
can change that size by simply redefining N if necessary. To keep the
program simple, array balance(] contains £loats; if we were deal-
ing with real money (especially money that belonged to other people)
we would want to be more careful about the precision with which
amounts of money are stored.

