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PREFACE TO THE FIRST EDITION

In the postwar years we have seen a rapid development of thermoelasticity, stimulated
by various engineering sciences. A considerable progress in the field of aircraft and ma-
chine structures, mainly with gas and steam turbines, and the emergence of new topics
in chemical and nuclear engineering have given rise to numerous problems in which ther-
mal stresses play an important and frequently even a primary role.

Thermoelasticity embraces a wide field of phenomena. It contains the theory of heat
conduction and the theory of strains and stresses due to the flow of heat, when coupling
of temperature and strain fields occurs. Thermoelasticity makes it possible to determine
the stresses produced by the temperature field, and, moreover, to calculate the distribution
of temperature due to the action of internal forces which vary with time.

The particular case of thermoelasticity in which the influence of the coupling of temper-
ature and strain fields is neglected is the basis of most quasi-static and dynamic problems
dealt with in this monograph; the influence of the coupling is considered in detail in the
Chapters IV and VIIL.

We shall investigate mainly the thermoelastic problems which occur in isotropic and
homogeneous bodies, under the assumption of small displacements and linear stress-
strain laws. We assume, moreover, that the material constants are independent of temper-
ature. These assumptions are peculiar to the classical theory of elasticity and obviously
limit the applicability of the solutions obtained to certain ranges of temperature. They
make it possible, however, to investigate a large class of engineering problems.

An attempt has been made in this monograph to unify the exposition. The solutions
have been constructed consisting of two parts, the first representing the thermoelastic
displacement potential while the second one is an additional solution expressed by the
components of the Galerkin vector or the stress functions. Wherever it was convenient,
Maysel’s method was employed.

In many problems investigated in this monograph the principal point is the determina-
tion of the Green functions for stresses. Therefore the integral transforms of Fourier, Han-
kel and Laplace have consistently been used. The latter is particularly useful in solving
non-stationary thermoelastic problems.

X



X PREFACE TQ THE FIRST EDITION

The problems have been divided into two large groups — the spatial and plane problems,
each group containing both stationary and non-stationary solutions. The detailed exami-
nation of the problems is preceded by an extensive introduction to thermoelasticity (Chap-
ter I) which contains the basic relations and equations, and the methods of solution.

In Chapter XI we deal with the non-classical problem of thermal stresses in viscoelastic
bodies with linear material relations. Finally, the last chapter contains a review of new
trends in thermoelasticity. We also consider briefly thermal stresses in non-homogeneous,
isotropic and anisotropic bodies.

I wish here to express my gratitude to Doc. habil. Dr. H. Zorski, Dr. J. Ignaczak and
. Dr. W Piechocki, for reading the manuscript and for many helpful suggetions.

W. _Nowacki
Warsaw



PREFACE TO THE SECOND EDITION

The first edition of Thermoelasticity appeared 20 years ago, many changes, deletions ind
additions therefore have been made, first of all in Chapter I dealing with the fundamental
relations and equations of thermoelasticity and in Chapter II devoted to the new trends
and new developments in thermoelasticity.

It is assumed in the static elasticity that during a slow growth of the loadings and hence
also the deformations, a complete exchange of heat with the surroundings takcs place.
Furthermore, we assume that the temperature in the whole body is equal to the tempera-
ture in the natural state. In classical dynamic elasticity the corresponding assumption is
that the heat exchange occurring by means of the heat conduction, is very slow, the process
therefore is adiabatic. The theory of thermal stresses is based on a different assumption,
namely we take into account the action of heat sources and surface heating but we ncglect
the changes of the temperature field due to the deformations of the body.

The above three basic assumptions lead to three different sets of differential equations
describing the fields of strain and temperature. The creation of the coupled thermoelasticity
is due to the tendency to obtain one system of differential equations describing all thermo-
dynamic processes. Chapter I treats thermoelasticity as a synthesis of the theory of elasticity
and the theory of heat conduction; some particular cases of thermoelasticity are aiso in-
vestigated, e.g. stationary problems, the theory of thermal stresses, classical' @ynamic
elasticity, etc.- .

Chapter XII has been completed by a brief examination of micropolar thermoelasticity,
magnetothermoelasticity ‘and thermopiezoelectricity. In order to reduce the volume of
the book we omitted Section VI8 concerning the application of the complex variable
method to two-dimensional problems of thermoelasticity. Finally, we reduced the list
of references to the papers which played a fundamental role in the de' ~lopment of thermo-
elasticity. )

W. Nowacki
Warsaw, 1983

Xt
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CHAPTER 1

BASIC RELATIONS AND EQUATIONS OF THERMOELASTICITY

1.1. Principle of emergy conservation. Entropy balance

A deformation of a body is inseparably connected with a change of its heat content
and therefore with a change of the temperature distribution in the body. A deformation
of a body which varies in time leads to temperature changes, and conversely. The internal
energy of the body depends on both the temperature and the deformation. The science
which deals with the investigation of the above coupled processes, is called thermoelas-
ticity. '

1t should be emphasized that investigations in the field of thermoelasticity were preceded
by extensive investigations in the so-called theory of thermal stresses. The latter is a theo-
ry of the state of strain and stress in an elastic body, due to a heating, under the simplifying
assumption that the influence of the deformation on the temperature field may be neglected.

In the theory of thermal stresses which goes back to the beginnings of the theory of
elasticity, the classical heat conduction equation was used, which does not contain the
term due to the deformation of the body. Knowing the temperature distribution from the
solution of the heat conduction equation, the displacement equations of the theory of
elasticity were solved, the latter containing the known terms proportional to the tempera-
ture gradient (*). _

At the same time the classical dynamic elasticity was being developed, also under the
simplifying assumption that the heat exchange between parts of the body due to the heat
conduction occurs very slowly and therefore the motion may be regarded as adiabatic.

Thermoelasticity deals with a wide class of phenomena. It contains the generalized
theory of heat conduction, the generalized theory of thermal stresses, describes the temper-
ature distribution produced by deformation and finally it contains a description of the
phenomenon of thermoelastic dissipation. The cognitive merits of this theory are very
large indeed. In spite of its mathematical complexity, the thermoelasticity enables us to
examine deeper than before, the mechanism of the deformation and thermal processes
occurring in elastic bodies.

(M) J. M. C. Duhamel, Second mémoire sur les phénomeénes thermo-mécaniques, J. de VEcole Poly-
technique, 1837, Vol. 15, p. 1.
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'BASIC RELATIONS OF THERMOELAS'I‘;ICITY

Thermoelasticity is a new field. Although the coupling between the deformation and
temperature fields was postulated already by J. M. C. Duhamel and the extended heat
conduction equation was given by W. Voigt (*) and H. Jeffreys (%), the real development
of the theory occurred in the last twenty years. The starting point was the paper by
M. A. Biot (%) in which on the basis of the thermodynamics of irreversible processes the
basic relations and equations were derived and the variational theorems of thermoelasticity
were formulated.

In this chapter we present in detail the derivation of the basic relations and equations
of thermoelasticity and the methods of their solution, as well as the energy theorems and
the integration methods they imply. :

We begin our considerations by deducing the constitutive relations, i.c. the relations
between the stress tensor and the entropy, and the strain tensor and the temperature,

We confine ourselves in principle to. elastic isotropic homogeneous bodies. An elastic
deformation is a state such that when the forces producing the deformation are removed,
the body returns 1o its initial undeformed state. The isotropy means that the elastic prop-
erties of the body are independent of the direction and the homogeneity means the in-
dependence of the elastic properties of the position.

Assume that the body in its undeformed stress-free state (no external forces acting) has

_a certain constant temperature To. This initial state is called the natural state of the body.
Due to the action of external forces, i.e. body forces and surface tractions, and to the action
of heat sources inside the body or a heating (or cooling) of its surface, the body undergoes
a doformation. There arise in the body the displacements u and the temperature under-
goes a change 7 = J —T,, where J is the absolute temperature. The deformation of the

"body is accompanied by a production of the strain ¢;; and the stress g;,. These quantities
depend on position and time. We assume that the change of temperature T = T -T,
accompanying the deformation is small and that the temperature increase T does not
produce any appreciable changes of the material coefficients, both elastic and thermal.
These coefficients will be regarded as quantities independent of T.

The assumption |T/T,] < 1 is now completed by another one concerning the magni-
tude of the deformation; we assume that the squares and products of the components
of the strain ¢;, can be neglected as compared with &,;. Thus, we confine ourselves to the
geometrically linear thermoelasticity. The. relation between the strain and displacement
has then the linear form

@ gy = dCuy tuy).
It is known that the strain components cannot be arbitrary and must satisfy six so-called
compatibility relations (*)

V)] Eiate—Enk—tn =90, L klI=12 3.

(}) W. Voigt, Lehrbuch der Kristallphysik, Teubnet, Leipzig, 1910.

(3) H. Jeffreys, The thermodynamics of an elastic solid in Proc. Cambr, Phill. Sac., 1930.

(®) M. A. Biot, Thermoelasticity and irreversible thermodynamics, J. Appl. Phys., 1956, Vol. 27, p. 240.
(*») J. S. Sokolnikoff, Mathematical theory of elasticity, New York, 1956.



PRINCIPLE OF ENERGY CONSERVATION :

The basic problem consists in deducing the constitutive relations, i.c. the relations
connecting the componerts of the stress tensor o, the entropy S, the components of the
strain tensor g;; and the temperature J .

Observe that the mechanical and thermal state of the medium at a certain instant of
time, is completely described by the distribution of the deformations ¢;; and the tempera-
ture 7. Thus, in an isothermal change of state we are faced with a process both elastically
and thermally reversible. However, in processes in which the temperature varies in time
we deal with two coupled processes, namely the reversible elastic process and the irrevers-
ible thermodynamic process. The latter is due to a spontaneous and hence irreversible
process of heat transfer by means of heat conduction.

The thermoelastic changes cannot be described by means of the classical thermody-

namics valid for equilibrium states; we must use the relations of the thermodynamics of
irreversible processes.(*) (3)

The point of departure of our considerations is the first and second law of thermody-
namics.. The first law, the law of energy conservation, has the form

d oy a0
3 H—t—(dll+f)—$+~at—.
Here % is the internal energy, £ the kinetic energy, & the power of external forces and Q
is the increment in time of the quantity of heat absorbed by the body. Equation 3) is

the energy balance. It states that the increment in time of the sum of the internal and

kinetic energies is equal to the sum of the power of the external forces and the heat ab-
sorbed by the body.

The power of the external forces is given by the formula

@) | 2= [X,0,av+ [poida,
1 4 A

where X is the vector of the body forces, p is the vector of surface tractions occurring on
the surface 4 bounding the body, v = du/dt is the vector of the displacement velocity.
The components p, of the vector p are connected with the stress vector by the relations
(5) pl =g Ji n i
Here n, is the component of normal — of the surface 4. We assume that the normal n
is directed towards the exterior of the body.

The kinetic energy appearing in (3) is expressed by the integral

(6) - o£’=%fv,v,dV,

\4

(™ S. R. de Groot, Thermodynamics of irreversible processes, Amsterdam, 1952.
(®) L. Prigogine, Etude thermodynamique des phénomenés irreversibles, Liége, 1947.



4 BASIC RELATIONS OF THERMOELASTICITY ,"/

and the non-mechanical power Q has the form L4
)
) O=— [anda+ [wav.
A 1 4

Here q is the vector of the heat flux and W the quantity of heat generated in unit time and
unit volume. .

Making use of the Gauss-Ostrogradski theorem we obtain from (7)

®) : ) = — f(qi.l'—W)dV-
s .
We introduce now the internal energy U per unit volume
) ¥ = [Uav. f
v

Substituting (4)~(9) into the energy balance (3) we obtain
(10) [(euti+ 0y aV = [X,0,av+ [ pvdd~ [(g.,~W)dV.

v 1 4 A 1 4
Since

P = Oy, f"n n;v,dA = f(o'n vy),,dV,
4 v
Equation (10) takes the form

(11) f [U—(01.5+ X, —@by) =04 0,5+ g1, ~ W] V.

1 4

Equation (11) should be valid for every part of the body; thus we arrive at the local prin-
ciple of energy conservation

(11" ) U= @5+ X~ o) 0,40, 9,,—q,+W.

We now demand that the expression (11°) be invariant with respect to a rigid motion of
the body.(!) ’

Consider first the rigid displacement
12) v - v+ by,

where b, is an arbitrary constant vector. We assume that during a rigid displacement tl.1e
quantities ¥ g, o,;, X;, ¢, W remain constant. Introducing (12) into (11°) we obtain

13) U= (@, +b) (00, + X, — 00)+ 0y 0 y— G+ W.
Subtracting (11°) from (13) we have
l b(os,+X1—0%) =0.

(Y) A. E. Green, R. S. Rivlin, Arch. Rat. Mech. Analysis, 17 (1964), 113,



PRINCIPLE OF ENERGY CONSERVATION 5

This equations should be satisfied for an arbitrary value of b;. Thus, we arrive at the equa-

tions of motion
&

(14) O, J+Xi 0!') =0,

Taking into account equation (14) we obtain a cons:detably sxmpliﬁed law of energy bal-
ance (11'), namely

(15) f}::a'ﬂ Vi3~ t+ W,

This expression should be invariant thh respect to a rigid rotation of the body. We as-
sume that

(16) O U —Cu X §, Uy U —8 2y, 2 = const.
Substituting from (16) to (15) we have
an U = 0,0~ D) —qu, e+ W.

Subtracting (15) from (17) and taking into account the invariance of the quantities U,
G i 4y, W we Obtaiﬂ

Qo0 =0, 9 #0.
This result proves that the stress tensor kis symmetric, i.e.
(18) Gy =0y .
Observe that
vy =4 @yt ) +E G, —iy) = 2+ ay .

Here &;; = 0g,,/0t, &, is defined by the relation (1), and @; = dw,,/0t is the time deriva-
tive of the rotation tensor a;. Since the stress tensor g, is symmetric and the tensor o,
is antisymmetric, we have o, @, = 0.

Thus, we have the local pelation

(19) -~ B =0, gy, ¢'*‘W
Consnder now the local entrbpy balance ‘

where S is the entropy per umt volume and unit time. Let us integrate (20) over the volume
of the body. Then

ny"dV=—vf(ﬂ> dv— fq’

1) deV. fq‘"‘ dAd— f"‘y‘~dy+ f—gj—dV.
14

——~dV




6 BASIC RELATIONS OF THERMOELASTICITY

The increment of the entropy in time consists of two basic parts. The first is described
by the surface integral constituting the increase (or decrease) of the entropy due to the
heat flux through the surface A, Thus, this integral describes the heat exchange with the
surroundings. The volume integrals are due to the entropy productionin the volume 7.
The first integral is the entropy produced in ¥V by the heat exchange while the second
is the entropy produced by the action of the heat sources.

Let us now return to the relation (20) written in the form

ds q T, w
@) G?="<?);'Zm'+?"

Here, too, the first term refers to the heat exchange with the surroundings while the two
remaining ones describe the entropy production in anglementary volume of the body.

The local statement of the second law of thermodynamics of irreversible processes
leads to the Claussius—~Duhem inequality

_ a9,

(23) . 77 =20,
or
ds q; w
en 8 (g) -¥=o

In what follows it will be more convenient to introduce the Helmholtz free energy F
= U—SJ which depends on the variables ¢;; and 7. Thus, we are led to the equation

(25) : F U ch_ Sg- = Oy 8,,—3.7 Sf q”+W
Eliminating the heat sources from the inequality (24) and equation (25) we obtam
. . . Ca
(26) —(F+S8T)+0ay, &,— ‘1‘3_ 4 >0.
We have i o
; oF oF
@n F= e B+ ag.f+ X g T,

where we assumed that F = F (g, 7, ;). Introducing (27) into (26) we arrive at the
inequality

oF oF \ ;. , OF @7,
(28) (Gu—m)ﬁu <S+ aﬂ')‘q."'_é.?’_:f-‘—'—'g'—'-i"()‘

This inequality should be satisfied for all rates &, 7T .- Hence the coefficients of the
above variables must vanish:

oF
@9 oy, $= -

Be,; T’ T,
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The relation (29); implies that the free energy is independent of the temperature gradient.
We are therefore left with the inequality

(30) - —q—‘;l'—'- >0,

which is satisfied if we assume that

G1) ‘ 4= -Ay T

The above is the Fourier law of heat conduction for an anisotropic body. The quantity
Q = —q, 7, should he a positive definite quadratic form

(32) =—-q T =TT ;-

In view of Silvester’s theorem, the considered inequality imposes additional restrictions
on the symmetric tensor of heat conduction A,;,. For an isotropic body we have

(33) @i=—4%T ., 4>0.

Let us now expand the free energy F (g, ) into the Taylor series in the vicinity of
the natural state (¢;; =0, = Ty)

~ F(0,T,) . OF(0,Ty)
(34) F (Eu, ,_7—) = F (0, T0)+ aeu b'u+ oT

O°F (0, To) 0*F (0, To) 0%F (0, T) 2
2( D61y Ot fu £“+2781,6.7' sl T —To)+ —33 372 (7-To)*) +

(T —To)+

Here F (0, T,) is the energy of the natural state, which we assume to be equal to zero.
Moreover, we assume that the quantities dF (0, Ty)/de;; and OF (0, T, 0)/0F vanish; they
constitute the stress and the entropy in the natural state, respectively. Thus

(35) Fey T)=%eymeytu—Puyey T-3mT2+ ..,
where
_ _ 0%F (0, Tp) _ 62F (0, Tp) _ 0%F (0, To)
T=9 T, Cum—m, ﬂ“———_as—”—aﬁ'—’ m = 0T 2 .

Retaining in the expansion (35) the quadratic terms only we obtain from (29)

oF
(36) gy = F) = Cijui eq—Puy T
£y

Observe that

(37) < 68,“ )T = Cijkl » ( 6.7') ﬁb] N

Equation (36) is the law of elasticity, the so-called Duhamel-Neumann relation for
an anisotropic body. The constants ¢, and 8, refer here to the natural state of the body,




