CURRENT TRENDS
i
PROGRAMMING METHODOLOGY

VOLUME I

Software Specification
and ‘Design

RAYMOND T. YER, Editor



CURRENT TRENDS
PROGRAMMING METHODOLOGY
: VOLUME I
SoftWare Speaﬁcatlon
and Desxgn

"RAYMOND T. YEH, Editor

Department of Computer Sciences -
The University of Texas at Austin

PRENTICE-HALL, INC., Englewood Cliffs, New Jersey 07632



Library of Congress Cataloging in Publication Data

Ma:n entry under title

Current trends 1n programming methodology
Bibliography v 1

Includes index.
CONTENTS v 1 Software spectfications and

design —
1 Programming (Electronic computers) I Yeh,
Raymond Tzuu-Yau (date)
QA76.6.C87 001 6'42 76-46467
ISBN 0-13.195701-5(v 1)

© 1977 by Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may
be reproduced in any form or by any means
without permission in writing from the publisher.

10 9 87 6 5 4 3

Printed in the United States of America

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney
PRENTICE-HALL OF CANADA, LTD., Toronto
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo
PRENTICE-HALL OF SOUTHEAST ASIA PTE. LTD., Singapore
WHITEHALL BOOKS LIMITED, Wellington, New Zealand



PREFACE

Programming is a problem-solving activity. As such, it must deal with a whole
spectrum of activities concerned with specifications, design, validation, modeling, and
structuring of programs and data. The purpose of this series in programming meth-
odology is intended to bring together a collection of tutorial papers in each volume
which are representative of the current trends in one of the above mentioned specific
subject areas of the programming activities. :

The intention of this first volume is to survey recent developments of program-
ming principles and techniques for the systematic design of well-structured and reliable
software architecture. . :

Large programs are clearly among the most complex creations of human intellect.
Our human inability in coping with the complexity has been a major factor contribut-
ing to software unreliability. In the past few years there has been much effort devoted
to the development of techniques for the systematic design of well-structured software
architecture. All of these techniques seem to be pointing to the concept of modularity.
Several principles have emerged for the construction of useful modules.

The notion of abstraction is a powerful tool to combat this complexity. The princi-
ple of abstraction is concerned with the selection of essential properties and omitting .
inessential ones. In most programming languages, there appear many implicit abstrac-
tions which are built into the language, for example, the notions of procedure, array,
stack, etc. The recent research trend is for the development of explicit abstractions,
i.e., those introduced by the programmer. Through explicit abstraction, a program
can be decomposed into hierarchical structures and built up from “modules” or units
of abstraction, and is easier to design, implement, and maintain. The princi-
ple of abstraction used alone does not always yield useful decomposition. However,
together with two other principles, they form a set of powerful tools for the modulari-’
zation of programs. o ‘ - :

Another principle is that of information hiding. The purpose of hiding not only
requires makingvisible certain essential properties of a module, but making inaccessible
certain nonessential details that should not affect other parts of a system. “

In Chapters 1 and 2, the concept of data abstraction is introduced. A data abstrac- .
tion is comprised of a group of related operations that act on a particular class of
objects with the constraint that the behavior of the objects can be observed only by the
application of the operations. In Chapter 1, the role of formal specification in the
program construction process is explained. It surveys some formal specification tech-
niques for describing data abstractions, and possible future research is-also discussed.



X PREFACE

Chapter 2 is concerned with the relation between programming languages and the
“structure” of programs. The thesis of this chapter is that programming languages,
being the veRicle of expressing a programmer’s thought, have strong influence over the
way of a programmer’s thinking when constructing a program. The chapter surveys
the features of existing programming languages which aid the programmer in his
ability to abstract. Finally, it introduces a powerful language feature called “form™ as
a way of representing an abstract concept.

Chapter 3 presents a general methodology for the design, implementation, and
proof of large software systems. The basis of this methodology lies in the use of a for-
mal specification technique to describe a software system as a hierarchy of abstract
machines such that each abstract machine can be formally specified as a module (in
the sense described in Chapters 1 and 2).

Chapter 4 deals with general observations on the improvement of software reli-
ability in the design process assuming the software structure is characterized by the
interfaces between modules. It suggests some techniques by considering certain un-
pleasant facts of life in the specification in the early stages of the design process for the
improvement of reliability.

The first four chapters thus represent an integrated treatment of software design
with the principles of abstraction (especially data abstraction) and hiding as its founda-
tion. ' o

Another principle is that of localization. This principle is concerned with textual
locality. Thus, subroutines and arrays are examples of localizations. This principle
" applied to control structure results in the so-called structured program. A structured
program is one in which the text can be grouped into a set of vested regions such that
each region has a single entry and single exit. Note that the single-entry/single-exit
regions of a structured program need to be in correspondence with abstractions to be
useful because the computational abstractions realized in these ways are close textually.
Such a programming technique attempts to systematically place restrictions on the
developmental process of programs. The purpose of these restrictions is to allow the
programmer to control the complexity in the program development, and hence con-
struct well-structured programs.

In Chapter 5, an operational procedure is described for the development of large
reliable programs based on the top-down programming technique. It introduces a
systematic procedure to restructure programs by decomposing programming work
into logical and clerical components as a basis for systematic program development and
quality control. Such a procedure turns out to be an excellent management tool for
large software projects. _

Chapter 6 consists of a lengthy discussion of the true nature of structured pro-
gramming. It brings out opposing points of view about whether or not goto statements
should be abolished. In the flow of this discussion, a methodology of program design
by systematic transformation is introduced. It also focuses on improved syntax for
iteration and error exit as an aid for writing a large class of programs with understand-
ability and efficiency without the use of goto statements.



PREFACE xi

Chapter 7 presents a design methodology for fault-tolerant software. The main
idea of the method consists of structuring a programinto recovery blocks, each consisting
of primary and several alternatives. The alternatives are built-in “redundancy” for the
prevention of and recovery from failures. Each recovery block has an associated accep-
tance test which specifies what is expected of a successful execution of this block.
When invoked, the primary block is executed, followed by an acceptance test. If the
test is passed, control is returned to the invoking sequence. Otherwise, the system state
is restored to a State just prior to the execution of the primary block and an alternative
is executed, etc. If no alternative satisfies the acceptance test, then an error message is
passed to the invoking sequence and perhaps an alternative of this sequence will be
initiated, etc. This chapter provides an engineering tool in software system construc-
tion so that tolerance is built in at the design phase. '

Chapter 8 discusses a programming technique in which the central agent of pro-
cess control is a table of control records. It is shown that control-record-driven process-

\ing is based on a top-down approach to the design, and that it is particularly applicable.
as a design tool for programming that leads to jumping about in an irregular manner -
during the course of action. ' o ‘ .

In Chapter 9, a constructive approach to nondeterministic programming is intro-
duced. “Guarded commands” are introduced as building blocks for alternative and
repetitive constructs. Program “semantics” is formally defined by means of a “predi-
cate transformer” which transforms a set of program states after the execution of a
program to the set of all possible states before the execution of the same program.

_ Thus, the distinction between determinism and nondeterminism is no longer significant =
in this semantic context. The focus is on the nature of computation and hence the
concept of iteration, and not how the program iterates. A calculus is introduced for
the formal derivation of programs expressed in térms of these constructs.

Finally, a comprehensive annotated bibliography is included which provides
necessary pointers to literaure.

" This book can be used as a textbook by upper-division undergraduate or first
year graduate students in computer science or computer engineering as & course in
programming methodology or software systems design. It should, however, be supple-
mented by exercises and projects. It should serve as an excellent reference book for
professional software engineers.

I would like to take this opportunity to thank all contributing authors, and Ann .
Marmor-Squires for annotating theq:ibliography. Thanks are also due to John Wang
who laboriously combined all bibliographic entries into an integrated guide.

Raymonp T. YEH
" Austin, Texas '



CONTENTS

PREFACE

1

AN INTRODUCTION TO
*FORMAL SPECIFICATIONS OF DATA ABSTRACTIONS

BARBARA Liskov
STEPHEN ZILLES

1.1 Introduction. 2

1.2 Criteria for Evaluating Specification Methods. 6

1.3 The Specification Unit. 7

1.4 Properties of Specifications of Data Abstractions. 10
1.5 Specification Techniques, 13

1.6 Conclusions. 31

2

LANGUAGES AND STRUCTURED PROGRAMS
WiLLIAM A. WULF

Introduction, 33
1. An Examination of Extant Language Features. 37
IL. The New Languages. 42

3

A FORMAI:. METHODOLOGY FOR THE DESIGN
OF OPERATING SYSTEM SOFTWARE

LAWRENCE ROBINSON
KARL N, Leviir
Peter G, NEUMANN
ASHOK R. SAXENA

3.1 Introduction. 62
3.2 The Methodology for Design, Implementation,
and Proof. 63

ix

33

61



vi

33

34
3.5
3.6

37
38
3.9

Approaches to the Design of a Secure Operating

System. 71
Objects, Types, and Type Managers. 75

The Type Managers of the Operating System Subset.
IHustration of Specifications for an Operating

System Subset. 92

Representation of Directories. 100
Comparison with Other Methods. 108
Discussion. 109

3.10 Acknowledgements. 110

4

THE INFLUENCE OF SOFTWARE STRUCTURE

ON RELIABILITY
D. L. ParNAs

Introduction to Software Structure. 111
Introduction to Software Reliability, 112
Summary and Conclusions. 116

Appendix: Examples of System and Module Requlremems
Intended to Make Real Software More Reliabie,

Acknowledgments. 119

5

ON THE DEVELOPMENT
OF LARGE RELIABLE PROGRAMS

R. C. LINGER
H. D. MiLLs

Introduction. 120

Programming as a Precision Activity. 121
Structured Programming. 122

Proving Program Correctness 133
Development Accounting. 135
Appendix. 136

6

STRUCTURED PROGRAMMING
WITH go to STATEMENTS

DonNaLp E. KNUTH
Introduction. 141

6.1

Elimination of go to Statements. 143

77

CONTENTS

il



CONTENTS vil

6.2 Introduction of go to Statements. 168
6.3 Conclusions. 185
Acknowledgments. 192

Appendix. 193
SYSTEM STRUCTURE
FOR SOFTWARE FAULT TOLERANCE 198
B. RANDELL
7.1 Introduction. 195
7.2 Fault Tolerance in Software. 197
7.3 Recovery Blocks. 198
7.4 Error Recovery Among Interacting Processes. 205
7.5 Muiltiievel Systems. 210
7.6 Conclusions. 218
7.7 Acknowledgements. 218
8
CONTROL-RECORD-DRIVEN PROCESSING 220
PETER NAUR }
8.1 Introduction. 220
8.2 Symbol Transliteration. 221
8.3 String Conversion Based on Finite-State Transducer. 222
8.4 Conversion to Postfix Form in Compilers. 224
8.5 Applicability and Development of Design. 228
8.6 Problem and Solution Structure, 229
8.7 The Language of Control Records. 229
8.8 Representing the Control Records. 230
8.9 Execution-Time Efficiency. 230
8.10 Proof and Testing of Control-Record-Driven |
Solutions. 231
GUARDED COMMANDS, NONDETERMINACY AND
FORMAL DERIVATION OF PROGRAMS 233

Epsaer W. DUKSTRA

9.1 Introduction. 233
9.2 Two Statements Made from Guarded Commands. 234
9.3 Formal Definition-of the Semantics.- 235



viii CONTENTS

9.4 - Formal Derivation of Programs. 239
9.5 Concluding Remarks. 241
Acknowledgments. 242

BIBLIOGRAPHY 243

ANN B. MARMOR-SQUIRES

INDEX 272



CHAPTER 1

AN INTRODUCTION TO
FORMAL SPECIFICATIONS OF
DATA ABSTRACTIONS

BARBARA LISKOV
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts

STEPHEN ZILLES
IBM Research
San Jose, California

Abstract

The main purposes of this chapter are to discuss the importance of formal specifi-
cations and to survey a number of promising specification techniques. The role of
formal specifications ‘both in proofs of program correctness, and in programming
methodologies leading to programs which are correct by construction, is explained.
Some criteria are established for evaluating the practical potential of specification
technigues. The importance of providing specifications at the right level of abstraction
is discussed, and a particularly interesting class of specification techniques, those used
to construct specifications of data abstractions, is identified. A number of specification
techniques for describing data abstractions are surveyed and evaluated with respect
to the criteria. Fmally, dlrectlons for future research are mdlcated

Key Terms

: speciﬁdations; specification techniques; data abstractions; proofs of correctness; pro-
gramming methodology. ’ )

This work was supported in part by the IBM funds for research 1n computer science.



2 AN INTRODUCTION TO FORMAL SPECIFICATIONS OF DATA ABSTRACTldNS / CHAP. 1

1.1. INTRODUCTION

In the past, the advantages of formal'spepi_ﬁcations have been outweiglied by the
difficulty of constructing them for practical programs. However, recent work in pro-
gramming methodology has identified a program unit, supporting a data abstraction,
that is both widely useful and for which it is practical to write formal specifications.
Some “formal specification techiques have alreddy been déveloped for describing
data abstractions. It is the promise of these techniques, some of which are described
later in the chapter, which leads us to believe that formal specifications can soon
become an intrinsic feature of the program construction process. By writing this mate-
rial, we hope to encourage research in the development'of formal specification tech-
niques and their application to practical program construction.

In the remainder of the introduction we discuss what is meant by formal specifi-
cations and then explain some advantages arising from their use. In Section 1.2, a
number of criteria are presented that permit us to judge techniques for constructing
formal specifications. Section 1.3 identifies the kind of program unit, supporting a
data abstraction, to which the specification techniques described later in the chapter
apply. Section 1.4 discusses propertigs of specification techniques for data abstractiongs
and, in Section 1.5, some existing techniques for providing specifications for data ™
abstractions are surveyed and compared. Finally, we conclude by pointing out areas

" for future research.! '

Proofs of Correctness

' Of serious concern in software construction are techniques that permif us to
recognize whether a given program is correct, i.e., does what it is supposed to do.
Although we are coming to realize that correctness is not the only desirable property
of reliable software, it is surely the most fundamental: If a program is not correct,
then its other properties (e.g., eiﬁcxency, fault tolerance) have no mcanmg since we
cannot-depend on them.

Techniques for establishing the correctness of programs may be class1ﬁed as for-
mal or informal. All techniques in common use today (debugging, testing, program
reading) are informal techniques; either the investigation of the properties of the pro-
gram is incomplete or the steps in the reasoning place too much dependence on human
ingenuity and intuition. The continued existence of errors in software to which such
techniques have been applied attests to their inadequacy. Formal techniques, such as
the verification condition (Floyd [1967] and Hoare [1969]) and fixed-point (Manna
[1973]) methods, attempt to establish properties of a program with respect to all legiti-
mate inputs by means of a process of reasoning in which each step is formally justified
by appeal to rules of inference, axioms and theorems. Unfortuna;ely, these techniques

1This chapter is an expanded version of earlier materlal published by the autho?s Llskov and
“Zilles [1975]. It differs from the earlier publication pnmarlly in Sectlon 1.5, which has been sub-
stantially enlarged and contains additional examples.



SEC. 1.1 / INTRODUCTION 3

. have been very difficult to apply and have therefore not yet been of much practical
interest. Howevet, interest in formal techniques can be expected to increase in the
" future; economic pressure for reliable software is growing (Boechm [May 1973)), and
the domain of applicability of formal techniques is also growing because of the devel-
opment of programming methodologies leading-to programs to which formal tech-
niques are more readily applied. Indeed, application of proof techniques to practical
programs is being attempted in the area of operating system-security (Schroeder [1975]
and Price [1973] and Neumann [1974]), where the need for absolute certainty about,
the correct functioning of software is. very great.

To study techniques that establish program correctness, it is mterestmg to examine
a model of what the correctness of a program means. What we are looking for is a
process that establishes that a program correctly implements a concept that exists in
someona’s mind. The concept can usually be implemented by many programs—an
infinite number, in general—but of these only @ small, finite number are of pract:cal
interest. This situation is shown in Figure 1.1. In current practice, the concept is stated
informally and, regardless of the téchnique used to demonstrate the correctness of a
program (usually testing), the result of applying the technique can be stated only in
informal terms.

_Concept
P' PP Pn

Figure 1.1. A concept and ali programs which
impiement the concept correctly.

With formal techniques, a specification is interposed between the ‘concept and the
programs. lts purpose is to provide a mathematical description of the concept, and
the correctness of a program is established by proving that it is equivalent to the speci-
fication. The specification will be provably satisfied by a class of programs (again,
often an infinite number of which only a small, ﬁmte number are of interest). This
situation is shown in Figure 1.2.

Concept

|

Specification
Q, Q

Figura 1.2. A concept, its formal specification, and
all programs which can be proved equivalent to the
specification. -



4 AN INTRODUCTION TO FORMAL SPECIFICATIONS OF DATA ABSTRACTIONS / CHAP. 1

'Proofs of large programs do not consist of a smgle monolithic proof W1th no
interior structure. Instead, the overall proof is divided into a hierarchy of many smaller
proofs which establish the correctness of separate program units. For each program
unit, a proof is given that it satisfies its specification; this proof makes use of the speci-

fications of other program units, and rests on the assumption that those program
units will be proved consistent with their specifications.? Thus a specification is used
in two ways: as a description against which a program is proved correct, and as a set

~ of axioms in the proof of other programs. At the top of the proof hierarchy is a pro-
. gram unit which corresponds to the entire program. At the bottom is the p’rogram-
ming language, and the hierarchy is based on the axioms for the programmmg
language and its primitives.

The proof methodology can fail in two ways. First, a proof may mcorrectly
establish some program (or progeam unit) P as equivalent to the specification when,
in fact, it is not. This is a problem which can be eliminated by using a computer as, at
least, a proof checker. (Observe that one advantage of using formal specxﬁcatwns is
that such specifications can be processed by a computer.)’

The second way the methodology can fail is if the specification does not correctly
capture the meaning of a concept. We will say a specification captures a concept if
every Q, in Figure 1.2 is some P, in Figure 1.1. There is no formal way of establishing
that a specification captures a concept, but we expect to have gained from using the
proof methodology because (hopefully) a specification is easier to understand than a
program, so that “convincing oneself” that a specification captures a concept is less
error-prone than a similar process applied to a program. Furthermore, any distinc-

_tion between concept and specxﬁcatlon may be irrelevant because of the hierarchical
" nature of the proof process. If a program P is proved equivalent to its specification,
and every program using P is proved correct using that specification, then the concept
that P was intended to implement can safely be ignored.

Advantages of Formal Speclﬁcatlons

Proving the correctness of programs as described above is a two- step process
ﬁrst a formal specification is provided to describe thé concept, and second, thé pro-
gram is proved equivalent to the specification by formal, analytic means. Formal
techniques are not necessarily limited to axiomatic methods. For example, it may
also be possible to develop testing methodologies that are based on a comparison of
the formal specification and the implementation. The output of a methodology wauld
be a set of critical test cases which, if successfully executed, establish that the program
correctly implements the specification. The formality of the specification means that
the computer can aid in the proof process, for example, by checkmg the steps of a
program proof, or by automatically generating test cases.

Clearly, the speo:ﬁcatxon must be present before a proof can be given. However,
formal specifications are of interest even if not followed by a formal proof Formal

2Special techniques (Manna [1973]) must be used if the program units are mutually 'recursive.



SEC. 1.1 |/ INTRODUCTION 5

specifications are very valuable in conjunction with the idea of making code “public”
(Baker [January 1972]) in order to ‘encourage programmers to read one another’s
codes. In the absence of a formal specification, a programmer can only compare a
program he is reading with his intuitive understanding of what the program is sup-
posed to do. A formal specification would be better, since intuition is often unreliable.
With the addition of formal specifications, code reading becomes an informal proof
technique; each step in the proof process now rests on understanding a formal descrip-
tion rather than manipulating the description in a formal way.? As such it can be a
powerful aid in establishing program correctness.’

Formal specifications can also play a major role while a program is being con-
structed. It is widely recognized that a specification of 'what a program is intended to
doshould be given before the program is actually coded, both to aid understanding
of the concept involved, and to increase the likelihood that the program, when imple-
mented will perform the intended function. However, because it is difficult to con-
struct specifications using informal techniques, such as English, specifications are
often omitted, or are given in a sketchy 4nd incomplete manner. Formal specification
techniques, like the ones to be described later in this chapter, provide a concise and
well-understood specification or design language, which should reduce the difficulty
of constructing specifications. :

Formal specifications are superior to informal ones as a communication medium.
The specifications developed during the design process serve to communicate the inten-
tions of the designer of a program’to its ‘implementors, or to communicate between
two programmers: the programmer implementing the program being specified, and the
programmer who wishes to use that program. Problems arise if the specification is
ambiguous: that is, if it fails for some reason to capture the concept so that two pro-
grams with different conceptual properties both satisfy the specification. Ambiguities
can be resolved by mutual agreement, provided those using the specification realize
that an ambiguity exists. Often this is not realized, and- instead the ambiguity is
resolved in different ways by different people. Formal specifications are less likely to
be ambiguous than informal ones because they are written in an unambiguous lan-
guage. Also, the meaning of a formal specification is understood in a formal way, and
therefore ambiguities are more likely to be recognized.

The above paragraphs have sketched a program construction methodology that
could lead to programs which are correct by construction. Formal specifications play
a major role in this methodology, which differs from standard descrxptlons of struc-
tured programming (Dijkstra [1972]) prlmarlly in the emphasis it places on specifi--
cations.* Specifications are first introduced by the designer to describe the concepts
he develops in a precise and unambiguous way. Each concept will be supported by a

3The relationship between proofs and understanding is a major motivating factor in structured
programming. For example, the “go to” statement is eliminated because the remaining control struc-
tures are each assoctated with a well-known proof technique, and therefore the programs are intellec-
tually manageable (Dijkstra [1972)).

4See the publication by Hoare [1971] for a structured programming example in whlch spec:ﬁca-

tions. are emphasized.



6 AN INTRODUCTION TO FORMAL SPECIFICATIONS OF DATA ABSTRACTIONS / CHAP. 1

program module. The specifications are used as a communication medium among the
designers and the implementors to insure both that an impiementor understands the
designer’s intentions about a program module he is coding, and that two implementors
agree about the interface between their modules. Finally, the correctness of the pro-
gram is proved in the hierarchical fashion described earlier. The method of ‘proof
may be cither formal or informal, and the proofs can be carried out as the modules
are developed, rather than waiting for the entire program to be coded. Progress in -
developing formal specification techniques will enhance the pracncallty of applying
this methodology to the construction of large programs.

1.2. CRITERIA FOR EVALUATING
SPECIFICATION METHODS

An approach to specification must satisfy a number of requirements if it is to be
useful. Since one of the most important goals of specification techniques is to permit
the writing of specifications for practical programs, the criteria described below include .
practical as well as theoretical considerations.

We consider that the ﬁrst criterion must be satxsﬁed by any spec:ﬁcatlon tech-
nique: . _

1. Formality. A specification method should be formal, that is, specifications
should be written in a notation which is mathematically sound. This ¢riterion

- is mandatory if the specifications are to be used in conjunction with proofs
of program correctness. In addition, formal specification techniques can be
studied mathematically, so that other interesting questions, such as the
_equivalence of two specifications, may be posed. and answered. Finally, for- -.

. mal speciﬁcations are capable of being understood by computers, and auto-
matic processing of specifications should be of i mcreasmg importance in the
vfuture . : ’

The next two criteria address the fundamental problem w1th specxﬁcauon tech-
niques—the difficulty encountered in using them. .

2. Constructibility. It must be possible to construct specifications w1thout undue
difficulty. We assume that the writer of the specification undcrstands both the
specnﬁcatxon technique and the concept to be specified. Two facets of the
construction process are of interest here: the difficulty of constructing a speci-
fication in the first place, and the difficulty in knowmg that the specnﬁcatlon
captures the concept. '

3. Comprehenszbzlzty A person trained in the notation being used should be
able to read a specification and then, with a ‘minimum of difficulty, recon-
struct the concept which the specification is intended to describe. Here (and
in criterion 2) we have a subjective measure in mind in which the difficulty



SEC. 1.3 |/ THE SPECIFICATION UNIT 7

encountered in copstructing or reading-a specification is compared with the
inherent complexity (as intuitively felt) of the concept being specified. Prop-
erties of specifications which determine comprehensibility are size and
lucidity. Clearly, small specifications are good since they are (usually) easier
to understand than larger ones. For example, it would be nice if a specifica-
tion were substantially smaller than the program it specifies. However, even
if the specification is large, it may still be easier to inderstand than the-pro-
gram because its description of the concept is more lucid.

The final three criteria address the flexibility and generality of the speEiﬁcation'
technique. It is likely that techniques satisfying these criteria will meet criteria 2 and 3
as well.

4. Minimality. It should be possible using the specification method to construct
specifications which describe the interesting properties of the concept and
nothing more. The properties which are of interest must be described pre-
cisely and unambiguously but in a way which adds as little extraneous infor-

. mation as possible. In particular, a specification must say what function(s)
a program should perform, but little, if anything, about how the funetion is
performed. One reason this criterion is desirable is because it minimizes cor-
rectness proofs by reducing the number of properties to be proved.

5. - Wide Range of Applicability. Associated with each specification technique
there is a class of concepts which the technique can describe in a natural and
straightforward fashion, leading to specifications satisfying criteria 2 and 3.
Concepts outside of the class can only be defined with difficulty, if they can
be defined at all (for example, concepts involving parallelism will not be
describable by any of the techniques discussed later in the chapter). Clearly,
the larger the class of concepts which may be easily described by a technique,
the more useful the technique. s

6. Extensibility. It is desirable that a minimal change in a concept result in a
similar small change in its specification. This criterion especially impacts the
constructibility of specifications.

1.3. THE SPECIFICATION UNIT

The quality of a specification (the extent to which it satisfies the criteria of the
preceding section) is dependent in large part on the program unit being specified.
If a specification is attached to too small a unit—for example, a single statement—
what the specification says may be uninteresting, and furthermore there will be more
specifications than can conveniently be handled. The specification could express no
more than the following comment, sometimes seen in programs:

x . =x+1, "increase xby 1"



