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Preface

We are entering an exciting era of B meson physics, with several new high
luminosity facilities that are about to start taking data. The measurements will
provide information on quark couplings and CP violation. To make full use of
the experimental results, it is important to have reliable theoretical calculations
of the hadronic decay amplitudes in terms of the fundamental parameters in
the standard model Lagrangian. In recent years, many such calculations have
been performed using heavy quark effective theory (HQET), which has emerged
as an indispensible tool for analyzing the interactions of heavy hadrons. This
formalism makes manifest heavy quark spin-flavor symmetry, which is exact
in the infinite quark mass limit, and allows one to systematically compute the
correction terms for finite quark mass.

This text is designed to introduce the reader to the concepts and methods of
HQET, developing them to the stage where explicit calculations are performed.
It is not intended to be a review of the field, but rather to serve as an introduction
accessible to both theorists and experimentalists. We hope it will be useful not
just to those working in the area of heavy quark physics but also to physicists
who work in other areas of high energy physics but want a deeper appreciation of
HQET methods. We felt that if the book is to serve this role, then it is important
that it not be too long. An effort was made to keep the book at the 200-page
level and this necessitated some difficult decisions on which subjects were to be
covered.

The material presented here is not uniform in its difficulty. Section 1.8 on
the operator product expansion, Section 4.6 on renormalons, and Chapter 6 on
inclusive B decays are considerably more difficult than the other parts of the
book. Although this material is very important, depending on the background of
the reader, it may be useful to skip it on first reading. Chapter 3 involves some
familiarity with radiative corrections in field theory as studied, for example, in
a graduate course that discusses renormalization in quantum electrodynamics.
Readers less comfortable with loop corrections can read through the chapter, ac-
cepting the results for the one-loop diagrams, without necessarily going through
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X Preface

the detailed computations. A section on problems at the end of each chapter is
intended to give the reader more experience with the concepts introduced in that
chapter. The problems are of varying difficulty and most can be completed in a
fairly short period of time. Three exceptions to this are Problem 2 of Chapter 3 and
Problems 3 and 7 of Chapter 6, which are considerably more time-consuming.

This book could serve as a text for a one-semester graduate course on heavy
quark physics. The background necessary for the book is quantum field theory
and some familiarity with the standard model. The latter may be quite modest,
since Chapter 1 is devoted to a review of the standard model.

The only references that are given in the text are to lattice QCD results or to
experimental data that cannot be readily found by consulting the Particle Data
Book (http://pdg.1bl.gov). However, at the end of each chapter a guide to
some of the literature is given. The emphasis here is on the earlier papers, and
even this list is far from complete.

We have benefited from the comments given by a large number of our col-
leagues who have read draft versions of this book. Particularly noteworthy among
them are Martin Gremm, Elizabeth Jenkins, Adam Leibovich, and Zoltan Ligeti,
who provided a substantial number of valuable suggestions.

Updates to the book can be found at the URL:

http://einstein.ucsd.edu/hgbook.



1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10

2.1
22
23
24
2.5
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13

Contents

Preface

Review

The standard model
Loops

Composite operators

Quantum chromodynamics and chiral symmetry

Integrating out heavy quarks

Effective Hamiltonians for weak decays
The pion decay constant

The operator product expansion
Problems

References

Heavy quarks

Introduction

Quantum numbers

Strong decays of excited heavy hadrons
Fragmentation to heavy hadrons
Covariant representation of fields
The effective Lagrangian
Normalization of states

Heavy meson decay constants

B — D™ form factors

A, —> A form factors

Ay — A, form factors

Problems

References

vii

page ix

[STa Y

15
17
24
25
31
32
42
43

45
48
52
54
58
60
61
63
70
72
72
75



viii

3

3.1
3.2
33
34
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

5.1
52
5.3
5.4
5.5
5.6
57

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

Contents

Radiative corrections
Renormalization in HQET
Matching between QCD and HQET
Heavy-light currents

Heavy-heavy currents

Problems

References

Nonperturbative corrections
The 1/m o expansion
Reparameterization invariance
Masses

Ap — AceV, decay

B — D™eb, decay and Luke’s theorem
Renormalons

v-A = 0 gauge

NRQCD

Problems

References

Chiral perturbation theory

Heavy mesons

gz in the nonrelativistic constituent quark model
B — meb, and D — mév, decay

Radiative D* decay

Chiral corrections to B — D™e1, form factors
Problems

References

Inclusive weak decay

Inclusive semileptonic decay kinematics
The operator product expansion
Differential decay rates

Physical interpretation of 1/ m,z, corrections
The electron endpoint region

[ Vep| from inclusive decays

Sum rules

Inclusive nonleptonic decays

B, — B, mixing

Problems

References

Index

77
71
84
87
95
99
100

102
102
104
105
107
112
115
123
124
127
129

131
131
136
138
141
146
149
150

151
151
157
164
166
168
173
175
178
181
186
187

189



Review

The standard model of strong, weak, and electromagnetic interactions is a rela-
tivistic quantum field theory that describes all known interactions of quarks and
leptons. This chapter provides a quick review of features of the standard model
that are relevant for heavy quark systems, and of basic field theory techniques
such as the operator product expansion. It will also serve the purpose of defining
some of the normalization conventions and notation to be used in the rest of the
book.

1.1 The standard model

The standard model is a gauge theory based on the gauge group SU(3) x SU(2) x
U(D). The SU(3) gauge group describes the strong color interactions among
quarks, and the SU(2) x U(1) gauge group describes the electroweak interac-
tions. At the present time three generations of quarks and leptons have been
observed. The measured width of the Z boson does not permit a fourth genera-
tion with a massless (or light) neutrino. Many extensions of the minimal standard
model have been proposed, and there is evidence in the present data for neutrino
masses, which requires new physics beyond that in the minimal standard model.
Low-energy supersymmetry, dynamical weak symmetry breaking, or something
totally unexpected may be discovered at the next generation of high-energy par-
ticle accelerators.

The focus of this book is on understanding the physics of hadrons containing
a bottom or charm quark. The technically difficult problem is understanding the
role strong interactions play in determining the properties of these hadrons. For
example, weak decays can be computed by using a low-energy effective weak
Hamiltonian. Any new physics beyond the standard model can also be treated
by using a local low-energy effective interaction, and the theoretical difficulties
associated with evaluating hadronic matrix elements of this interaction are vir-
tually identical to those for the weak interactions. For this reason, most of the
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2 Review

discussion in this book will focus on the properties of heavy quark hadrons as
computed in the standard model.

The matter fields in the minimal standard model are three families of spin-
1/2 quarks and leptons, and a spin-zero Higgs boson, shown in Table 1.1. The
index i on the Fermion fields is a family or generation index i = 1, 2, 3, and the
subscripts L and R denote left- and right-handed fields, respectively,

YL = Py, Yr = PRy, (1.D

where P; and Pg are the projection operators
1 1
Po=50=ys),  Pr=_(+ys). (1.2)

. u', d} are the quark fields and L , e/, are the lepton fields. All the particles
associated with the fields in Table 1.1 have been observed experimentally, except
for the Higgs boson. The SU(2) x U(1) symmetry of the electroweak sector is
not manifest at low energies. In the standard model, the SU(2) x U(1) symmetry
is spontaneously broken by the vacuum expectation value of the Higgs doublet

Table 1.1. Matter fields in the standard model®

Field SUQB) SU2) U(l) Lorentz

, uy
L= 3 2 1/6  (1/2,0)
dL

uly 3 1 2/3  (0,1/2)

di 3 1 —-1/3  (0,1/2)

L (UZ) 1 2 ]
= “12 (/2.0

L

e 1 1 -1 ©0,1/2)
H+

H = (HO) 1 2 172 (0,0)

¢ The index i labels the quark and lepton family. The
dimensions of the SU(3) and SU(2) representations and
their U(1) charge are listed in the second, third, and fourth
columns, respectively. The transformation properties of the
fermion fields under the Lorentz group SO(3, 1) are listed
in the last column.



1.1 The standard model 3

H. The spontaneous breakdown of SU(2) x U(1) gives mass to the W and Z°
gauge bosons. A single Higgs doublet is the simplest way to achieve the observed
pattern of spontaneous symmetry breaking, but a more complicated scalar sector,
such as two doublets, is possible.

The terms in the standard model Lagrangian density that involve only the

Higgs doublet
H*
H = ( 5O ) (1.3)

Lhiges = (D, H) (D" H) — V(H), (1.4)

are

where D, is the covariant derivative and V(H) is the Higgs potential
A
V(H) = Z(mH —v?/2)%. (1.5)

The Higgs potential is minimized when H'H = v?/2. The SU(2) x U(1) sym-
metry can be used to rotate a general vacuum expectation value into the standard
form

0
(H)=(v/ﬁ), (1.6)
where v is real and positive.

The generators of the SU(2) gauge symmetry acting on the Higgs (i.e., funda-
mental) representation are

T =0%/2, a=1,2,3, (1.7)

where the Pauli spin matrices are

I _ 01 2 _ 0 —i 3 _ 1 0
‘ "(1 0)' “ _(i 0)’ ? —<0 —1)’ (1.8)

and the generators are normalized to Tr T°T? = §°%/2. The U(1) generator Y
is called hypercharge and is equal to 1/2 acting on the Higgs doublet (see
Table 1.1). One linear combination of SU(2) x U(1) generators is left unbro-
ken by the vacuum expectation value of the Higgs field H given in Eq. (1.6).
This linear combination is the electric charge generator Q = T3 + Y, where

o3 (10
0=T +Y—(0 0), (1.9)

when acting on the Higgs representation. It is obvious from Egs. (1.6) and (1.9)
that

Q(H) =0, (1.10)
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so that electric charge is left unbroken. The SU(3) x SU(2) x U(1) symmetry of
the standard model is broken to SU(3) x U(1)¢ by the vacuum expectation value
of H, where the unbroken electromagnetic U(1) is the linear combination of
the original U(1) hypercharge generator, Y, and the SU(2) generator, T, given
in Eq. (1.9).

Expanding H about its expectation value

H = hT () (1.11)
=0z om0 '

and substituting in Eq. (1.5) gives the Higgs potential
A
V(H) = S0h7F + 1h° + v2uRe hO). (1.12)

The fields 2t and Im 4% are massless. This is an example of Goldstone’s theo-
rem. The potential has a continuous three-parameter family of degenerate vacua
that are obtained from the reference vacuum in Eq. (1.6) by global SU(2) x U(1)
transformations. [Of the four SU(2) x U(1) generators, one linear combination
Q leaves the vacuum expectation value invariant, and so does not give a mass-
less mode.] Field excitations along these degenerate directions cost no potential
energy and so the fields A" and Im 4° are massless. There is one massive scalar
that is destroyed by the (normalized) real scalar field /2 Re h0. At tree level, its

mass 1s
[A
MRepd = 5 v. (113)

Global SU(2) x U(1) transformations allow the space-time independent vac-
uum expectation value of H to be put into the form given in Eq. (1.6). Local
SU(2) x U(1) transformations can be used to eliminate 2t (x) and Im A° (x)
completely from the theory, and to write

0
H(x)=<v/\/§+Reh0(x)). (1.14)

This is the standard model in unitary gauge, in which the W* and Z bosons
have explicit mass terms in the Lagrangian, as is shown below. In this gauge, the
massless fields 4+ and Im 40 are eliminated, and so do not correspond to states
in the spectrum of the theory.

The gauge covariant derivative acting on any field ' is

Dy, =8, +igAfT* +ig;WiT" +igiB,Y, (1.15)

where T4, A = 1,..., 8, are the eight color SU(3) generators T%, a = 1,2, 3
are the weak SU(2) generators, and Y is the U(1) hypercharge generator. The
generators are chosen to be in the representation of the field ¥ on which the co-
variant derivative acts. The gauge bosons and coupling constants associated with
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these gauge groups are denoted A7, Wy, and By, and g, g», and g1, respectively.
The kinetic term for the Higgs field contains a piece quadratic in the gauge fields
when expanded about the Higgs vacuum expectation value using Eq. (1.11). The
quadratic terms that produce a gauge-boson mass are

2,2
P

Acguugc-boson = -
mass 8

2
v
(Ww%wmﬁ+§mwtwm% (1.16)

where for simplicity of notation Lorentz indices are suppressed. The charged
W-boson fields

Wl -W2
wt= 2 TV (1.17)
V2
have mass
My = &2, (1.18)
2
It is convenient to introduce the weak mixing angle Oy defined by
sin gy = —21 cos fy = —22 (1.19)

Ver+es Ve +e

The Z-boson field and photon field .4 are defined as linear combinations of the
neutral gauge-boson fields W3 and B,

Z = cosOyw W3 —sinby B,

) (1.20)
A =sinfy W?> + cos 6y B.
The Z boson has a mass at tree level
2 2
V81t 8 M
My = v=—" (1.21)

2 "~ cosfy’

and the photon is massless.
The covariant derivative in Eq. (1.15) can be reexpressed in terms of the
mass-eigenstate fields as

Dy =, +igASTA +i 82 (wiT+ + wiT™)

V2
+i\/g} + 8313 —sin® 0w Q)Z, + igasinOw QA,,  (1.22)
where T+ = T! 4+ iT2. The photon coupling constant in Eq. (1.22) leads to the
relation between the electric charge e and the couplings g; »,

8281

Ve +&

e =gy sinfy = (1.23)
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so the Z coupling constant ,/g* + g3 in Eq. (1.22) is conventionally written as
e/(sin By cos Oy ).

Outside of unitary gauge the H kinetic term also has a piece quadratic in the
fields where the Goldstone bosons A%, Im A° mix with the longitudinal parts of
the massive gauge bosons. This mixing piece can be removed by adding to the
Lagrange density the 't Hooft gauge fixing term

2
fix

1 a ; a a
L gage = % ; [0“ W2 +ig:6((H)'T“H — H'T*(H))]

_ L
2%

which gives the Lagrangian in R; gauge, where & is an arbitrary parameter. The
fields 4% and Im h° have mass terms proportional to the gauge fixing constant £.
In Feynman gauge £ = 1 (the easiest for doing calculations), these masses are the
same as those of the W* and Z. Im #° and h* are not physical degrees of freedom
since in unitary gauge & — oo their masses are infinite and they decouple from
the theory.

SU@3) x SU(2) x U(1) gauge invariance prevents bare mass terms for the
quarks and leptons from appearing in the Lagrange density. The quarks and
leptons get mass because of their Yukawa couplings to the Higgs doublet,

[0“B, +igit(H)'YH — H'Y (H)], (1.24)

Lukawa = 87 i H € Q] — g d H' Q] — g e HIL) +hc.  (1.25)

where h.c. denotes Hermitian conjugate. Here repeated indices i, j are summed
and the antisymmetric matrix € is given by

€= (_(1’ (])) (1.26)

Color indices and spinor indices are suppressed in Eq. (1.25). Since H has a
vacuum expectation value, the Yukawa couplings in Eq. (1.25) give rise to the
3 x 3 quark and lepton mass matrices

M, = vg,,/«/i, My = vgd/«/i, and M, = vge/\/i. (1.27)

Neutrinos do not get mass from the Yukawa interactions in Eq. (1.25), since
there is no right-handed neutrino field.

Any matrix M can be brought into diagonal form by separate unitary transfor-
mations on the left and right, M — LDR?, where L and R are unitary, and D is
real, diagonal and nonnegative. One can make separate unitary transformations
on the left- and right-handed quark and lepton fields, while leaving the kinetic
energy terms for the quarks, Q' i@ Q) , i u'y, and d'ip d%, and also those for
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the leptons, invariant. The unitary transformations are

up =U @, LYu;, urp=Uwu, R)up,
dp=U,L)d;, dg =U(d, R)dpg, (1.28)
e, =Ue,L)e;, er=UC(e, R)ey.

Here u, d, and e are three-component column vectors (in flavor space) for the
quarks and leptons, and the primed fields represent the corresponding mass
eigenstates. The transformation matrices f are 3 x 3 unitary matrices, which
are chosen to diagonalize the mass matrices

m, 0 O
Uu, IMUwW, )= 0 m. 0 |, (1.29)
0 0 m
mg 0 0
Ud,RIMauUu@d,Ly=| 0 my 0 |, (1.30)
0 0 my)
d
an m, 0 0
U, Y MU, Ly=| 0 m, 0 |. (1.31)
0 0 m,

Diagonalizing the quark mass matrices in Eqgs. (1.29) and (1.30) requires
different transformations of the u; and d; fields, which are part of the same
SU(2) doublet Q. The original quark doublet can be rewritten as

U, L / ’
) _(HeDu) | ), (1.32)
d ) \uw v va,

where the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix V is defined by
V=U@L'UW,L). (1.33)

It is convenient to reexpress the standard model Lagrangian in terms of the
primed mass-eigenstate fields. The unitary matrices in Eq. (1.32) leave the quark
kinetic terms unchanged. The Z and A couplings are also unaffected, so there
are no flavor-changing neutral currents in the Lagrangian at tree level. The W
couplings are left unchanged by U (u, L), but not by V, so that

82 wagyrd, = 8L wha,yrvad,. (1.34)

V2 V2
As a result there are flavor-changing charged currents at tree level.

The CKM matrix V is a 3 x 3 unitary matrix, and so is completely specified
by nine real parameters. Some of these can be eliminated by making phase
redefinitions of the quark fields. The u and d quark mass matrices are unchanged
if one makes independent phase rotations on the six quarks, provided the same



8 Review

phase is used for the left- and right-handed quarks of a given flavor. An overall
equal phase rotation on all the quarks leaves the CKM matrix unchanged, but
the remaining five rotations can be used to eliminate five parameters, so that V
is written in terms of four parameters. The original Kobayashi-Maskawa para-
meterization of V is

Cl 51C3 5153

V= —S§1C2 C1CC3 — .st:;eilS ciC83 + 52638“S ’ (1-35)

—S81852 C18203 + C2S3€i(s C185283 — C2C3€i‘s

where ¢; = cos6;, and s; = sin6; for i = 1, 2, 3. The angles 6, 6,, and 63 can
be chosen to lie in the first quadrant, where their sines and cosines are positive.
Experimentally it is known that these angles are quite small. The CKM matrix
is real if § = 0, so that § # 0 is a signal of CP violation in the weak interactions.
It describes the unitary transformation between the mass-eigenstate basis d/,
and the weak interaction eigenstate basis d'. The standard notation for the mass-
eigenstate fields is u'! =u, u? =c,u® =t,d" =d,d? =s,d"? =b.

So far we have only considered the left-handed quark couplings to the gauge
bosons. For the right-handed quarks there are no W-boson interactions in the
standard model, and in the primed mass-eigenstate basis the couplings of the Z,
photon, and color gauge bosons are flavor diagonal. The analysis for leptons is
similar to that for quarks, with one notable difference — because the neutrinos
are massless, one can choose to make the same unitary transformation on the
left-handed charged leptons and neutrinos. The analog of the CKM matrix in the
lepton sector can be chosen to be the unit matrix, and the leptons can be chosen
to be simultaneously mass and weak eigenstates. We adopt the notation v'! = v,,
V2 = v, v3 = v, e =¢,e? = p, &3 = 1. From now on, we will use the
mass-eigenstate basis for labeling the quark and lepton fields.

1.2 Loops

Loop diagrams in the standard model have divergences from the high-momentum
(ultraviolet) region of the momentum integrals. These divergences are interpreted
by a renormalization procedure; the theory is regulated in some way and terms
that diverge as the regulator is removed are absorbed into the definitions of the
couplings and masses. Theories in which all divergences in physical quantities
(e.g., S-matrix elements) can be removed in this way using a finite number
of counterterms are called renormalizable. In the unitary gauge, £ — oo, the
standard model is manifestly unitary (i.e., only physical degrees of freedom
propagate because the “ghost” Higgs associated with #* and Im A° have infinite
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mass). The vector-boson propagator

v — kyk, /M3
_i 8u ukv/Miy 4 (1.36)

is finite as k — oo, and naive power counting suggests that the standard model is
not renormalizable. In the Feynman gauge, £ = 1, the vector-boson propagator
is
, Buv
— s, (1.37)
k2 — M3, ,

which falls off as 1/k*, and naive power counting shows that the standard model is
renormalizable. The potentially disastrous divergences that occur in the unitary
gauge must cancel. However, unitarity is not manifest in the Feynman gauge
because the unphysical degrees of freedom associated with »* and Im h° are
included as intermediate states in Feynman diagrams. The standard model is
manifestly unitary in one gauge and manifestly renormalizable in another. Gauge
invariance assures us that the theory is both unitary and renormalizable.

In this book we will regularize Feynman diagrams by using dimensional reg-
ularization. Diagrams are calculated in n = 4 — ¢ dimensions, and the ultraviolet
divergences that occur in four dimensions appear as factors of 1/¢, as € — 0.

To review how dimensional regularization works, consider the quantum elec-
trodynamics (QED) Lagrangian

1 , - . 7
EQED — 4Fl(l?))[,(0)/w “/,(O)ylt(au _ 18(0).45?))1//(0) _ mgo)w(o)v/(o)’ (1.38)

which is part of the standard model Lagrangian. The superscript (0) is used to
denote a bare quantity. Here

F) =0, AY ~ 3,49 (1.39)

is the bare electromagnetic field strength tensor. In n dimensions, the action
Sqep = /dnx EQED (1.40)

is dimensionless, since e SeE is the measure in the Feynman path integral (we use

units where /i = ¢ = 1). It follows that the dimensions of the fields, the coupling

constant /¥, and the electron mass, m'”, are

[AO]=(n-2)2=1-¢/2,
[vO] = -1)/2=3/2-¢)2,
[P =@ -n)/2=¢/2,

("]

(1.41)
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The bare fields are related to the renormalized fields by

1
A, = —AY,
YV Za "
1
y=——v",
IZ"’ (1.42)
_ L e2,0
e Zeu ,
1
me-—-———z mgo).

The factor of /2 is included in the relation between the bare and renormalized
electric couplings so that the renormalized coupling is dimensionless. Here u is
a parameter with dimensions of mass and is called the subtraction point or renor-
malization scale of dimensional regularization. In terms of these renormalized
quantities the Lagrange density is

Lapn =~ g ZaFuF* +iZy By (3 — i1 2o/ Zae Ay )b
~ZmZymo Y,
- _%FMFI“’ +igy*(d, — in?e Ay )y — meyy + counterterms.
(1.43)

It is straightforward to compute the renormalization constants Za y.e.m by
using the formula for one-loop integrals in dimensional regularization,
a" q ( qZ)a
Qn) (q* — M?P

4

w—pin)2 Fa+n/2)I'(B—a —n/2)

= ~ 1) (M2 , (144
Z"Jr"/2( MY I'(n/2)T(B) (144)
and the Feynman trick for combining denominators,
1 (M)

T Tmy)- - T(my)

1 1 §(1 — n .
xf dxlx;'"'l.../ dxyxm™! ( Z,:H‘z) (1.45)
(4] Q

g (x1a4 +"'+xnan)M,

where
n
M= Zm,’.
i=1

The Z’s are determined by the condition that time-ordered products of renor-
malized fields (i.e., Green’s functions) be finite when expressed in terms of the



