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AUTHOR’S PREFACE

When it was suggested that I should write this book, ] 'was planning’
to prepare the material for a Seminar Course on the various formalisms
used in modern Field Theories, neglecting completely the quant-
ization of the field, in order to show the studex}t members of our

group how much of these theories is already of mere classical, i.e.
pre- qua.ntlo, character. Professor J. de Boer from Amsterdam sup-
" ported the idea that this should form the subject matter of my book,
and so I have the pleasure today to present it to the Public. For this
I am grateful to Professor de Boer as well as to the North-Holland
Pubhshmg Company.

It is then clear that the development of the Semmer Course was -
. profitable to the preparation of the book, and so I am indebted to
all its participants (though they may not have noticed it). But my
particular thanks for help and suggestions are due to my eloser
collaborators at the Department of Theoretical . Physics, among
whom I wish to name Professor W. Thirring, Dr. David Speiser, and
Dr. Willy Lindt. Mrs. Naomi Bloch was so kind to revise the English
text and this I want to acknowledge too. ‘

The material of the book is arranged according to the various
formalisms. Each Chapter includes a number,of sections, each section
a number of sub-sections, themselves eventually divided into minor '
parts. Examples to illustrate the theory are distributed throughout -
~ the whole book. Finally more than one hundred Problems have been.
proposed. They are not to be found at the end of each Chapter or
section, but ‘rather throughout the text, the purpose of this being
that, since many of the problems are parts of the theory, they should
be solved by the reader at the place where he finds them in order to
make ocontinued progress. .

* In order not to render the General Contents found at the opening
of this Book too heavy, it has been reduced to an indication of only
the Chapters and their sections. :

One shall find, however, at the opening of each individual Chapter
.& summary consisting of the subsections, Examples treated, and
-Problems proposed. )
‘ Finally, it. will be noticed that no references to original literature



vi o AUTHOR'S PREFACE

have been made, with one or two exceptions. The reason for this is
that most of the matter rests on work already classical or nowadays
becoming clagsical and a distinction between work to be referred to
and such not to be referred to would have been very difficult. Therefore
the only exceptions made concern cases where the reader may wish
to get more information because of lack of completeness in the
- present text.

A M
Berne, June 1958
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INTRODUCTION

Contents’

1. COORDINATES AND MoOMENTA . . . . . . . . . e 1
Time. — Geometrical Variables. — Example. — Another Example.
~ Another Exarnple. — (lassical Relativity. — Continuum of Coor-
dmates — Dynamicsl Vumbles

2. Dnsonnvnox or INTERAGEION . . . . . . . . . |
The Lagrangien. — The Hamiltonian.

1 Coordmntes and Momenta

Analytloa.l Dynamics and related -theories consader two funda-
mental functions or magritudés denoted very generally by L and H
respectively. Their role is to account for interaction ‘existing between
bodies and/or particles.

These functions, L and H, ‘each depend upon three kinds of
magnitudes: time, ‘geometrical’ variables and ‘dynamical’ variables.

1.1. TIME

Time ¢ is a unique magnitude. It is the most fundamental magni-
tude, and it appears as the independent variable on which all other
magnitudes finally depend, either explicitly or implicitly.

° 1.2. GEOMETRICAL VARIABLES

Geometrical variables are of the nature of coordinates: Cartesian
coordinates of mass-points or particles, angles, parameters as those
used to fix the individual members of families of surfaces or curves,
eto. They are usually designated by the symbols ¢,, where r is an
index running from 1 to f. The number f is then said to be the number
of degrees of freedom of the mechanical system at hand. If a mechanical
problem were solved, the geometrical variables @ would be the known
functions of the time {:

qr=Qr(‘)-

Consequently, it would be possible to figure them graphically in
some f-dimensional space. One constructs such a space by cohsidering
the ¢'s as f orthogonal Cartesian coordinates. This space will be
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referred to as configuration space. The functions g¢.(f) represent a
curve in this space. This curve is called the mechanscal trajectory in
configuration spuce.

The oriented segment joining the origin of configuration space
with the ‘point’ ¢ is an f-dimensional vector. Configuration space is
a veotor space, i.e. a space in which hnem tra.nsformatlons of coordi-
nates make sense. .

Apart from single points corresponding to reflexions by collisions
between bodies or the like, a trajectory like the mechanjoal trajectory
is assumed to be continuous, i.e. the derivatives dg¢,/d¢ are supposed
. to exist. The f magnitudes dg,/df compose a vectof tangent to the

trajectory in configuration space. This vector appears as generalizing
the notion of a velocity, it is the f-dimensional velocity-vector. '

Example. If one particle describes a straight line in ordinary
Newtonian (three-dimensional) space, we might describé ite motion
with the help of three Cartesian orthogonal coordinates: z=¢1, ¥ =g,
z=gqs, the configuration space becomes three- dimensional, f=38, and
the trajectory in configuration space is a straight line. The generalized
velocity dg,/df coincides with ordidary velocity.

Another Example. [If one particle describes a circle, uniformly in
time, we might describe its motion by expressing the angle or the

_ arc @ along the circle in function of time ¢:

0=0(t)=ewt
where
w = const.

The only geometrical variable will be ¢;=6. Configuration space

- is here one-dimensional, f=1, and the generalized velocity is equal to

dg de

This constant « is known as ‘angular velocity’ when referred to

the plane in which the uniform circular motion of the particle actually
oceurs.

This can be generahzed slightly by assuming the circular motion

to be non-uniform: .

= W.

= 0=0(t),
then d_@_ (f)

- | , d‘a—e-iw (1)

will be variable; it is still an angular velocity.
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Another Example. 1If two electric point charges of opposed signs
revolve around each other according to Coulomb’s sttraction, they
are accelerated at every moment. According to classieal electrodyna-
mics accelerated charges radiate energy. This energy can only be pro-
duced at the cost of mechanical energy. Therefore, the total mechanical
energy of the system of the two particles would (according to classical
electrodynamies) not remain constant. If there were no such radiation,
the problem would be similar to that of two celestial bodies gravitating
around each other. The trajectory in Newtonian space of one particle
around the other would form an ellipse {Kepler),

Fig. 1 v

So it is fairly clear that .the actual Newtonian trajectories in the
case of radiation would be spirals spinning towards their common
center (point of final collision). Taking this center as the origin for
polar coordinates in Newtonian space, and assuming that both spirals
are in a common plane (thanks to suitable initial gonditions), we
need two coordinates for the position of each particle on its spiral:
r1, 61 and ry, 6; (Fig. 1). We have then four geometrical magnitudes

‘q1=r1, gz=01, g3=72, q4=0s
f=4. ,

The corresponding trajectory in configuration space cannot be
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graphed on & piece of paper, it cannot even be visualized direetly
and must be imagined.

Fig'. 2 N

If we are interested in the motion of one of the particles, for example
ri=ri(t), =01 I

this motion is some spiral as drawn in Fig. 2.

-

k3. 4 arn ar

Fig. 3

 .The t"vo-dimensi(mal mechanical trajectory. in conﬁéumtion ‘space
will be an oscillating curve of the type given in Fig. 3, with the
' ge-axis as asymptote.
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Classical relativity

Assuming the coordinates to be functions of time amounts to
accepting a particular relativity of (configuration) space and time.
Physicists had not been conscious of this until another view on the
relativity of time and space was put forward by Einstein. However,
Newton realized that the accepted view implied far-reaching epistemo-
logical consequences.

Continuam of coordinates

A set ¢1 ... gr of f coordinates is numerable and even finite. The
various coordinates g, are distinguished by the ‘discrete’ values
taken by the index r. We can imagine an increasing number of
particles each needing e.g. three coordinates to be located in New-
tonian three-dimensional space of our vision. The ensemble of the
particles will appear as a fluid described by many coordinates.

At the limit where the fluid continuously fills a domain of the
three-dimensional space, all the infinitesimal elements of the fluid
need coordinates which must be located and their enumeration becomes
unfeasible since a ‘discrete’ series of values of an index will never
exhaust the continuum of space. The index must be replaced by one
or more continuous parameters. ] ’

For parameters, we might take the ‘Newtonian coordinates’ of &
point, or the vector r giving the position of this point, and as coordi-
nates ¢ a magnitude & function of r:

&(r).

This magnitude appears as a field, for it has a value defined every-
“where in a domain of the comtinuum just as there are ears of corn
everywhere in a cornfield. :
There are two view-points under which an analytical theory may
be developed for such continuous coordinates, One leads to a descrip-
tien of the kind given in Elasticity and Hydrodynamics, with their
eventual generalization in the framework of General Theory of
" Relativity. The other one leads to the kind of Field Theory that has
emerged from quantum mechanical considerations.

The field concept attached to the description of elastic and fluid
substances refers to the distinetion between & and r as was made in
the times of Euler and Lagrange. We shall not follow this line in
the present book; it has been dealt with in & former work on the
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Theory of Deformable Bodies'. The study of this idea up to its
ramifications in Einstein’s General Relativity can be followed in
several Reference books'.

We shall, in a later chapter, elaborate the theory of fields in the
way suited for“the understanding of modern quantum field theory
as it was originally invented by Heisenberg and Pauli.

1.3. DYNAMICAL VARIABLES

Dynairical variables distinguish themselves from purely geometrical
variables by the fact that they are to be considered as supports of
momentum. Momentum is a short-hand for what is meant by the
quantity of motion, Quantity of motion is often considered as con-
sisting of two factors: inertia and speed, as in the case of ordinary
momentum p of a body of mass m and linear velocity v according to

p=mv ; *
\

~or in the case of angular momentum. P of a rotating body with a
moment of inertia / and angular velocity w according to

L

P=I1w.

It would be better not to assume explicitly this combination of
two factors, though for practical calculations it is difficult to avoid
it. Quantity of motion, abbreviated simply as momentum, is to be
ufiderstood as distributed among as many magnitudes as there are
geometrical variables. These f magnitudes can he called dynamical '
varmbles or simply momenta. -

* Sometimes, however, one factor, viz. the one responslble for inertia,
is dropped from the expression of the dynamical variables. Then the
dynamical variables are reduced to mere ‘velocities’. They are nothing
more than the dg,/df. In order nét to be obliged to write time
derivatives like dgy/dt in full, the following convention is made:
every total derivative with regard to time ¢ of any magnitude g.
explicitly and implicitly a function of ¢, will be written g.

t A. MERcieR, Lecons et Probldmes sur la Théorie des Corps déformables -
(chez F. Rouge éd., Lausanne, 1943).

1t See e.g. Cur. Merrer, The ‘Theory of Rela.thty (Oxford Umversnty
Press, 1952). ,

-~

’
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For instance if

g=g(t, q1(2), ... gr(t)),

we write
: dg ¥y z’ o
g=-d——~§+’=15—-

It is clear that ¢, stands simply for dg,/d¢. Partial derivatives with
regard to t will never (contrary to the habit of some authors) be
written in this way.

So in the use of ‘reduced’ dynamical variables, we shall write
these simply as ¢,. There are f such magnitudes; we can consider them
as the orthogonal components of a vector in an f-dimensional
‘velocity’-space similar to configuration space. As the ¢,’s are time
functions, the extremity of the velocity vector describes a kind of
trajectory sometimes called a hodograph.

When the inertia factor is not dropped, dynamical variables do
not coincide with generalized velocities ¢,. We cannot give their
exact definition at this time, but shall do so later. However, assuming
we know what they are let us call them simply momenta and write
them as p,. There are f such momenta. They can be taken as orthogonal
Cartesian coordinates which build the f-dimensional momenium space.
They are time functions p,=p,(t). The extremity of the ‘vector’
Pr desorlbes a trajectory in momentum space.

Certainly, in the course of the actual motion of a system of bodies
neither this trajectory in momentum space, nor the hodograph i.e.
the trajectory in velocity space, can be declared independent of the
mechanical trajectory in configuration space. '

However, before knowing the solution of a mechanical problem,
we may, for the sake of argument, assume their mdependence with
the purpose of comparing what might be with what actually is. This
comparison will . play an important role in the estabhshment of
fundamental equations.

2. Description of Interaction

Coming back to the description of intera:ction We can now explain
through some more details how functions like L and H are to be
understood.

2.1. THE LAGRANGIAN
" The Lagrange ftmctwn or sxmply Lagrangian L is a function of ¢,
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of all the ¢/'s and of all the ¢,’s. As it is tedious to write sometﬁing
like g1 ... gr for all the f variables ¢,, we shall simply write ¢ (without
index) for the whole set. Similarly we will write ¢ for the set of all
gr’s (and later p for all the p,’s). The Lagrangian is a function

L=L<t: 9 q.’ :u)
for which the following derivatives are assumed to exist:

3L L L L

¢ Vg’ ¢ ¥
(We write dL[dq, etc. for the set of the derivatives bL/bq,, etc.) The
symbol u stands for inertia parameters. These are to be suitably
oombined with velocities in order to make L fully describe the
dynamics of the system of bodies under consideration, Usually, s ia-
not explicitly written in the Lagrangian, so we merely write

L=1I4t, q, ). (2.1)

Every function of the form (2.1) which satisfies the conditions
specified might aptly describe a possible mechanical system. This
does not mean that any such function describes a system which is
actually found in Nature. On the contrary, it has been found that
a few “laws’, i.e. some particular functions of the type (2.1) can
- furnish the models for all fundamental interaotions observed in
Nature. Moreover, it has been found that classes of L-functions
satisfly certain homogeneity conditions.

Of course, it is possible by transforming original varlables into
new variables to construct all sorts of Lagrangians. Such trans-
formations can be chosen in many queer ways. However, it ia pretty
clear thaé certain sete or variables are more suitable than others to
describe one or the other fundamental interaction.

Furthermore, under all possible changes of variables, there may
be such that should be retained rather than others because of their
interesting properties. In particular, we shall want to keep only those
which do not modify the general formalism of analytical dynamies.
2.2. THE HAMILTONIAN ,

TLater, we shall introduce another function called Hamilton's
function or Hamiltonian H. This H will be equivalent to L. Tt will
serve for the desoription of an interaction. However, its use will
be bound to another formalism called canonical formalism. v
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Nota bene

In order to simplify formulae, we shall replace sums like 3>’ _ a,b,
by a,b,. The expression a,b, will always mean 3 a,b, unless the contrary
be explicitely mentioned. Moreover: a2 = aua; = > .

1. Mechanical Trajectory and Varied Trajectory

In the course of time, a Lagrangian evolves because of its explicit
and implicit dependence upon time. Suppose we replace the mechanieal
trajectory in configuration space by another curve constructed
arbitrarily. This other curve is called a ‘varied’ trajectory if it joins
the same two points in configuration space at the beginning and at
the end of a time interval (1, f2). The indices 1 and 2 designate the
states at the beginning and at the end of the interval. All magnitudes
concern~d are supposed to take the same values at state 1 on the
mechanical trajectory as on the varied trajectory. The same holds
for state 2. But in between this need not be the case. However, all
produced variations are assumed infinitesimal, i.e. if g is replaced
by g'=g+dg, we assume |dg/g| <€ 1. Furthermore, the g¢'s, ¢¢'s and -
derivatives of L up to the 2nd order are assumed to exist on both
trajectories in all but isolated points.

This even allows for a substitution of a varied time ¢’ to time ¢:

£ =t() ()=t oo
—t+6t(t)} {mz)“%} B1(ty) = 0= 3Ky,

This variation may be interpreted as lookmg at a olock ‘going
wrong’, e.g. a non-periodic clock. v

~ The variation in the geometrical variables will replace the g/’s by
some v

—g(g) = gu(t) + 3qu(®) o

which, ofgcourse, can be considered as function of ¢’

g’ = q'(q(H(t')) = g((t") + Sq(#(t'))
wjth the limit cond;tions
8q(h) =0
dq(tz) =0.



cH. 1, §2] THRE LAGRANGIAN‘ S‘ORMALISM 11
r. o

Variations. dg(t) are independent of d¢(f). When ¢ is transformed into

t’, they must be kept invariant:

oq(t) = dq(¥(t")).

According to this variation of the time and fof the trajectory the
veloeities are also varied, ¢ is replaced by

dg’ _ d(g+dqg) dt
(o = ar

Q
+
L)r &

[«%
~
~
jon
-~

LS}
+
&)

E

-
-+
g
-~

i.e. dropping infinitesimals of higher order:

§' = (g +8q) (1—81)

=g +8q—g 3.
This can be written
dq’ dq _ —~ e

The same variation will produce a variation of the Lagrangian.
L(t, g, ¢) is replaced by .

LY. 4, &) 55 Lits 4, 4)+ L

where

JL St + AL AL

8L = %5 Ot + 5 0, + 57 4.

(1.2)

2. The Action and Hamilton’s Principle

Now consider all the values taken by L along the mechanical
trajectory or along the varied trajectory, and the integral of L along
either trajectory during the (fixed) time interval (i1, ¢2):

S = fL(t g,¢) dt and J'-d-_-f L, ¢, ) dr.
1



