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Smooth Dynamical Systems.
Introductory Article*

D. V. ANOSOV

1. Since about 1960, the theory of smooth dynamical systems has developed
significantly. It has emerged as a branch of mathematics in its own right replete
with its own concepts, methods, and problems, as well as a host of deep results.
Of course, long before 1960, starting from Poincaré, remarkable results have
appeared on smooth dynamical systems that are in no way inferior to modern
achievements. However, these earlier results have not been combined into a single
entity, due to the absence of unifying concepts and methods that would have
distilled them from thecorpus of works on differential equations.

The last ten years have seen a number of conferences and symposia in which
the theory of dynamical systems was the main, or one of the main, themes. The
results of these symposia are reflected in [1]-[4] and contain much valuable
information. In addition, the total volume of publications on the subject which
have appeared during the same period exceeds the combined size of these
proceedings by several times.

Naturally, outside the scope of the present collection,** there lie whole lines of
investigation which we can only mention:

1) Work of an analytical nature (including the investigation of neighborhoods
of equilibrium positions and periodic solutions).

2) The theory of bifurcations. We refer the reader to the survey [5]. The
collections [3] and [4] contain much recent foreign (i.e., non-Soviet) work in this

area.

* Translation of the editor’s introduction to the book Smooth dynamical systems, Matematika:
Novoe v Zarubezhnoi Nauke, vyp. 4, “Mir”, Moscow, 1977, pp. 7-31; MR 58 #31208.

**Editor's note. “ The present collection™ refers to the Russian translations of [A}-[F], [H] and {1},
and the original paper [G], published in the Russian volume (J], to which this is the editor’s
introduction.

1980 Mathematics Subject Classification. Primary 58F15, 58F18, 34C35. 34C40; Secondary 70F10.

©1985 American Mathematical Society
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2 D. V. ANOSOV

3) Questions involving ergodic theory and related subjects (for example,
Markov partitions of hyperbolic sets). These are discussed in the recently pub-
lished survey [6].

4) Isolating blocks (which are used to localize isolated invariant sets), their
“continuation” in parameters, and the derivation of their properties. For want of
a more recent survey, we refer the reader to an old one [7] and the detailed article
{8]- The latter article does not, however, contain any apphcauons The recent
paper [45] also deals with these topics.

We remark that many of the concepts and results associated with isolating
blocks do not depend on smoothness and can be extended to more general
situations {9]. They may, therefore, be viewed as belonging to so-called topologi-
cal dynamics. However, in spirit, they are far removed from this discipline in its
present form.

On the other hand, we shall dwell at some¢what greater length on several topics
below. The various sections that follow do not depend on one another, and their
order is more or less arbitrary.

2. Ruelle and Takens [10] have constructed an example in which the collapse of
a quasiperiodic motion on a higher-dimensional torus is accompanied by the birth
of an attracting hyperbolic set. By itself, this example does not stand out among
the many other examples of bifurcations that have appeared in recent times.
However, it has excited interest due to Ruelle and Taken'’s assertion that it can be
used to model the onset of turbulence during the loss of stability of a laminar
flow.

The value of [10] lies not so much in the concrete model proposed therein, as in
the role it has played in fostering, among specialists in mathematical hydrody-
namics, the understanding that the resources of contemporary mathematics are
not exhausted by quasiperiodic motions and that, further, it makes sense to
attempt to link turbulence with attracting hyperbolic sets. Hyperbolic sets are
particularly attractive in this regard because they combine instability of individual
trajectories with stability of the set as a whole (stability both with respect to
perturbation of the initial data, as soon as the set is attracting, and with respect to
perturbations of the dynamiical system, as soon as it is hyperbolic). The attractive-
ness is heightened by the fact that hyperbolicity can, in principle, lead to
emergence of statistical properties in systems. (It is not clear which of the many-
invariant measures to prefer in this case. For this reason, along with other Soviet
mathematicians I prefer to use the words “quasirandomness” or “stochasticity”.
The words “random” or “statistical” are apparently reserved in contemporary
Russian-language mathematical literature for situations in which some sort of
measure (“ probability”) is involved.) :

At present, many researchers are performing numerical expemnems with
systems of several (usually three) ordimary differential equations, which occur as
Galerkin approximations for the partial differential equations of Navier-Stokes.
Such systems may, therefore, be considered as simplified models of the latter.
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Experiments of this type were first conducted more than a decade ago by Lorenz,
who observed that for some values of the parameters of the system the trajectories -
behave stochastically. Namely, under restricted accuracy of the initial conditions
the motion is more or less determined over only a comparatively short time span,
while later various possibilities may occur depending on initial data unknown to
us. In a trajectory there exist segments which repeat rather precisely, but these
repetitions occur very irregularly; immediately following the approximate repeti-
tion of a segment, the segment immediately following the repeated one may or
may not repeat. Initially, Lorenz’s work did not attract a great amount of -
attention (owing, perhaps, to the lack of concepts which could have helped to
theoretically interpret his observations?). However, Ruelle has currently expressed
the opinion that Lorenz observed motions in a hyperbolic attracting set [11]. We
can only hope that soon new numerical experiments combined with attempts at
theoretical comprehension of their results will allow us to judge (at least convinc-
ingly enough, if not absolutely strictly) whether in fact hyperbolic sets have
something to do with the behavior of trajectories of those model systems of
ordinary differential equations. It is a different question whether the conclusions
obtained will ever be carried over to the genuine Navier-Stokes equations with
any degree of persuasiveness.

With regard to the model itself in [10}, the authors themselves note that it is not
understood how a higher-dimensional torus can arise in the hydrodynamical
situation. It is well known that, under sufficiently general conditions, the loss of
stability of a periodic solution is accompanied by the genesis of a two-dimen-
sional torus (Hopf bifurcation). However, [10] requires a higher-dimensional
torus. One can, of course, imagine that there exist bifurcations of the torus which
lead to the increase of its dimension, but this process has not been studied, and it
is possible that such bifurcations occur only under some unlikely confluence of
circumstances. (In fact, the genesis “a la Hopf” of a two-dimensional torus may
be followed soon after by its “disintegration”.)

Apart from the above, there are some other considerations which make it
questionable whether the example in [10] could, in fact, serve as an appropriate
model for the onset of turbulence. In this example the limit set generated is close
to the collapsed torus, whereas the turbulent flow can hardly be regarded as close
to the laminar. Moreover, experimental data suggest that the turbulence originates
when the laminar flow is still stable but its domain of stability is very small.

Up to this point we have been concerned with nonconservative dynamical
systems. The theory of smooth dynamical systems (both the
Kolmogorov—Arnol’d—Moser theory and the “hyperbolic” idealogy) has been
applied even earlier to conservative (Hamiltonian) dynamical systems (with a
similar degree of rigor by using numerical experiments) by a group of Novosibirsk
physicists— Chirikov, Zaslavskii, et al. {12}, {13]).

3. Schweitzer [14] has proved that every homotopy class of nonsingular vector
fields on a three-dimensional manifold contains a C* vector field which does not have
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a periodic trajectory. An analogous result holds for three-dimensional masifolds
with boundary if we consider vector fields transverse to the boundary (and if, of
course, the given manifold admits nonsingular vector fields transverse to the
boundary). Higher-dimensional analogues of the above results hold even for C®
fields.

Special cases of the above theorems settle two well-known problems. The first
was posed by Seifert [15] and pertains to the three-dimensional sphere. The
second, which I ascribe to Smale (although the folklore tradition, justified or not,
connects it with Poincaré), pertains to the solid torus (that is, the direct product
S! x D? of the circle and the disk). Earlier, Fuller [16] had constructed a simple
example of a nonsingular vector field on the solid torus which was transverse to
the boundary and which, while it possessed a periodic trajectory, had the property
that this trajectory, contrary to naive expectations, did not orbit along S' but,
rather, lay in a disk x, X D%

The possibility that nonsingular vector fields on the three-sphere may not
possess periodic trajectories sharpens the significance of results which guarantee
the existenge of a periodic trajectory under various special conditions [15]. (See
also [19), (17] and [18).)

It is not known whether or not the analogue of Schweitzer’s result for C*
(r > 1) vector fields on three-dimensional manifolds is true. It is also natural,
although somewhat less general, to ask the same question about vector fields
. which define flows with 4 smooth invariant metric. Finally, Wilson [20] has
considered analogous problems in which the question is about minimal sets of
codimension greater than or equal to two, instead of periodic trajectories.

In a beoader vein, we remark that this is not the only instance in which the
" existence of a system with well-defined quahtanve behavior has been established
only in the C' case. This is also the case for the celebrated closing lemma (see
Takens [H]) and in the problems considered in [H] and [I]. In most cases,
including the Seifert problem, the corresponding question in the case of greater
smoothness remains open. An exception, to which [I] is devoted, is the problem
- .about invariant curves for mappings of the annulxi_p which preserve area elements.
Here, due to the efforts of a number of mathematicians (Kolmogorov, Arnol’d,
Moser, and Riissmann), it can be proved that the situation is different for greater
smoothness. Although there are “lacunae” between Riissmann’s result and Taken’s
example, this example is of great interest because it exhibits an effect principally
connected with less differentiability (it is true, however, that here the question is
not about the smoothness of the transformation, but about the smallness of the
perturbation in the C"-topology).

Along the same lines we can also cite the question about the metric characteris-
tics of Anosov systems. Here, we do not acutally have C ! counterexamples to the
natural conjectures which have been established for C” mappings with » > 1.
However, the premises on which the proofs rest are apparently not true in the ct
situation (see [40]). In a related question, concerning the measure of nowhere
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dense hyperbolic sets, there is a counterexample, due to Bowen [41), which shows
that the situation for C! diffeomorphisms differs from the C" case, r > 1 (see

[42]).

4. Mather [21] has shown that a fundamentally new type of singularity occurs
in the n-body problem with a Newtonian potential when n > 4, in comparison
with n = 2 or 3. At the end of the last century Painlevé completely characterized
the singularities in the three-body problem: they were either double or triple
collisions (in which, by definition, the distance between the colliding bodies
approaches zero). Moreover, in a finite time, only finitely many such collisions
could occur. (For a survey of the classical research undertaken around the turn of
the century concerning the analytic characteristics of the solutions of the three-
body problem, together with references to the literature, see the lectures of
Alekseev [48).) We now know that the situation in the four-body problem is
different. Namely, there exist trajectories for which infinitely many double collisions
occur in finite time t,, and where, as t — t, three of the bodies leave to infinity— one
in one direction and two of the others in the opposite direction. The latter two bodies
unboundedly approach one another (which gives the energy of the whole process).
The fourth body oscillates between two of the bodies. Here, the most interesting
feature is, of course, the approach to infinity at finite time ¢,. At ¢, we have an
essentially new type of singularity. It is entirely possible that the approach to
infinity could happen without the preceding collisions in the strict sense of the
word. However, in the example under consideration all four bodies move along a
straight line, and it is clear that as long as this is the case we cannot manage
without the collisions. It is natural to ask whether a small neighborhood of this
motion in the three-dimensional case contains motions which approach infinity in
finite time without the collisions. This has not yet been clarified.

Mather's research builds on the work of McGehee [22] concerning the regulari-
zation of singularities in the collinear three-body problem (whence the joint
authorship of [21]). When the “oscillating” body draws near the two “approach-
ing” bodies, we almost get a triple collision. Mather exploits McGehee’s analysis
of the motion in a neighborhood of the triple collision. The techniques employed
are themselves a combination of Alekseev’s techniques for analyzing “quasiran-
dom motions” and the technique of regularizing singularities which was devel-
oped by Moser to investigate simultaneous regularization of all singularities on a
constant energy surface in the two-body problem.

5. Recently, Herman has substantially advanced the investigation of properties
of cascades generated by diffeomorphisms of the unit cirlce. (Translator’s note:
Anosov uses the term “cascade” to refer to flows in the context of discrete
dynamical systems.) See Herman’s articles [23] and [46] and also Deligne’s report
of his work [24].

Given a map @: S — S' of the circle { xmod 1}, it is convenient to work in
terms of the covering map f: R — R, which we call the angular function of the
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map ¢. (Two different angular functions of a single map ¢ differ by an integral
constant.) For example, the statement that ¢ is an orientation-preserving diffeo:
morphism of class C” can be formulated in terms of the angular function as
follows: f € C” and, for all x,

df(x)/dx >0,  f(x+1)=f(x). (1)
For any orientation-preserving homeomorphism ¢ the limit

a(f) = lim (1/n)f"(x)

(where f", as usual, denotes the nth iterate of /) exists and does not depend on x.
It is called the rotation number (of the homeomorphism). More precisely,
a(f)mod1 is the appropriate invariant of ¢, since a(f+ k) = a(f) + k for
kel. -

A classical theorem of Denjoy asserts that if an orientation-preserving diffeomor-
phism @ has an irrational rotation number, and if the derivative df/dx of the angular
function f is a function of bounded variation (in finite intervals), then there exists a
homeomorphism x: S* — S such that @ is conjugate to a rotation Y via x:

y:x—»x+a(f) modl.

The homeomorphism is uniquely defined to within a rotation of the circle, a fact
which immediately raises the question of its smoothness.

It is easy to see that the (conjugating) homeomorphism in the above case is
either absolutely continuous or singular (it carries a set of measure zero to a set of
full measure). The latter case actually occurs even when f is analytic ([25] and,
somewhat less neatly, {26] and [27]). It is not difficult to show that this is the case
for a diffeomorphism with angular function

fH(x)=x+A+(1/47)sin27x (2)

for some A. In fact, the following is proved in {25]-{27). Let f,(x) be a function of
two variables which is defined and analytic for all x € R and X € {B, v]. Further,
suppose that, for each fixed A, f,(x) satisfies (1) for all x, and thus defines a
diffeomorphism @, of the circle. Suppose a(fg) # a(f,) and, whenever a(f,) is
rational, @, is not topologically conjugate to the rotation x — x + a(f,); the latter
condition is equivalent to the condition that for each n and \ the identity

_ f(x) = x + const (forall x) 3)
does not hold. Then there exists X for which a( f,) is irrational and the conjugating
homeomorphism is singular.

~ To see tha;‘(3) does not hold for the family (2), note that f,(x) is an entire
function of x, and 50, if (3) were to hold for all x € R, it would also hold for all
complex x. Differentiating, we obtain

 dfh(fi7(x)
I

iwm]
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The expression on the left side is a product of entire functions. It must have zeros,
because when i = 1 we obtain

df\(x)/dx = 1 + % cos2nx,

and this function has zeros in the complex domain. This gives a contradiction.
(More generally, no nonlinear entire function f can satisfy the identity f"(x) = x
+ const, for this identity implies that f: C — C is injective.)

The argument used to construct the A for which ¢, is singular shows that a( ;)
is approximated exceedingly well by rational numbers. Experiments connected
with “small denominators” suggest that such anomalously rapid approximations
could be the source of the “pathology”. Therefore, Arnol’d [25] conjectured that
there exists a set M of full measure such that, for each u € M and each
orientation-preserving analytic diffeomorphism @: S' — S with rotation number
g, the homeomorphism x under which ¢ is conjugate to a rotation is analytic.

In [25] this conjecture was shown to be true for diffeomorphisms sufficiently
close to the rotation x — x + . An analogue of this result was later established
in the finitely smooth case. In [26] Finzi asserted that if ¢ € C? and its rotation
number is approximated sufficiently slowly by rational numbers, then x € C’.
However, Glimm discovered that Finzi had incorrectly estimated a sum on p. 269.

Herman has proved Amol’'d’s conjecture [46]. We present a weaker theorem,
also due to Herman [23}, {24]. It pertains to those u which are approximated as
slowly as possible by rational numbers: namely, those u which are such that if the
a, are coefficients of the continued fraction expansion of ., then

sup — 3.a, < co.
n B 1
(The set of all such p is a set of measure 0.) The theorem asserts that if the rotation
number of the diffeomorphism @ satisfies the condition stated above, and if p € C",
where n > 3, then x € C"~2 (and, in addition, the (n — 2)th derivative of the
corresponding angular function satisfies the Hélder condition with any exponent
smaller than 1). Also, if @ is analytic, so is X.

6. In this section and the next we discuss in more detail some special questions
which are closely related to the problems considered in [A}-[D].

The articles in the present collection, which deal with Anosov systems* of
codimension one (that is, Anosov systems for which, in standard notation, the
leaves W* and W* have codimension one) use, as well as “dynamical” concepts,
concepts from the theory of foliations due to Haefliger, Novikov, and Sacksteder.
It is interesting to see how much can be obtained using only foliation theory.

Let us first recall some definitions. For simplicity, we assume that all foliations
are smooth (since this is the case for those foliations which most interest us,
namely, codimension one foliations arising from Anosov systems of class C?).

* Translator’s note. Anosov uses the term hl-system (B-flow, H-cascade, etc.) instead of 'Anasov
system (Anosov flow, Anosov cascade, resp.). )
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Let M be an n-dimensional manifold with a distinguished foliation, and let
W(x) denote the leaf passing through the point x. Suppose that y: [0,1] = W(x,)
is a closed path in the leaf which begins and ends at x,. At each point y(¢) we can
construct a small “plane” I1(t), transverse to the foliation, in such a way that
I1(z) depends continuously on ¢, its tangent space depends continuously on ¢, and
I1(0) = TI(1). More formally, let the’leaf be k-dimensional and set / = n — k.
Choose a map f: D' x [0,1] > M" (D' is the /-dimensional disk) such that
(0, 8) = ¥(1), f(x,0) = f(x,1), and f|D' X {¢} is a smooth imbedding, trans-
verse to the leaves, whose derivative with respect to x at the point (x, ) is
continuous in (x, 7). Then II(1) = f(D' X {t}). Given any point x in I1(0) lying
in a sufficiently small neighborhood U of x,, there exists exactly one continuous
path y.: [0,1] = M such that vy (¢) € I[I(¢) N W(x). Thus, we can défine the
succession map along the path y to be the map U — I1(0) which sends x to v,(1).
(It is also called the monodromy map.) A closed loop is called a limiting cycle (of
the given foliation) if the succession map is not the identity in any neighborhood
of x, (that is, there are points arbitrarily close to x, which are displaced). This
definition does not depend on the choice of framing (that is, on the choice of
II(¢)). Moreover, two loops in the same leaf which are freely homotopic in the
leaf are either both limit cycles, or else, neither is a limit cycle. :

A foliation will be called coorientable if the normals to its tangent field T W(x)
(constructed using some auxiliary Riemannian metric) can be oriented con-
sistently on all points x € M (here, “consistently” means that the orientation
depends continuously on x). Equivalently, a foliation is coorientable if the bundle
over M whose fiber over x is the quotient space 7. M /T W(x) is orientable. The
reader should beware that Novikov [28] and Brakhman [29] (whose results are
cited below) use “coorientable” to mean “orientable”, whereas in this collection a
foliation being orientable means that its tangent field 7, W(x) is orientable.

We now suppose that we have a foliation which has codimension one. In this
case the transversals I1(¢) are arcs, each of which is divided by the point y(¢) into
two halves which locally lie on different sides of W (that is, on some neighbor-
hood U of y(t) they lie on different sides of the connected component of U N W
containing y(¢)). If the foliation is coorientable, then for all paths in a leaf W we
can consistently declare one of the semiarcs to be “right” and the other to be
“left”. Moreover, by restricting the succession map to the right (left) semiarcs, we
can define right (left) limit cycles. Like limit cycles they are independent of the
choice of “framing” and well defined up to homotopy on the leaf. A one-sided
limit cycle is a right (left) limit cycle which is not a left (right) limit cycle.

Suppose that a loop y in W(x,) is not a right limit cycle. Then it is possible to
move along the right transversal semiarcs to a nearby leaf W(x,) and thereby
obtain a loop v,. It may happen that while the loop v is not contractible in W(x,)
to a point, the displaced loops v, are contractible in W(x,) to a point for all

- sufficiently small ¢ > 0. In this case v is called a right vanishing cycle (the term
was proposed by Haefliger; Novikov speaks about “cycles, limitwise right-homo-
topic to zero”). As usual, this property is independent of the specific choice of
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transversal arcs and invariant under free homotopy. §n perticelar, the word
“cycle” is often used instead of “loop”, since the choice of imitial point on the
curve (which is understood to have a fixed orientation) is immasenial.

We shall be particularly interested in the following propositions due to Mowi-
kov [28]. They concern coorientable foliations on a closed manifold M".

1) If a foliation does not have vanishing cycles, then the universal cover M of the
manifold. M is diffeomorphic(*) to the direct product W X R of the universal cover
W of any leaf W with the line R. The diffeomorphism carries each leaf of the
Jfoliation covering the original foliation on M to W x {t}.

2) Under these conditions the inclusion i: W — M induces a monomorphism i ,:
m (W) — 7, (M) of fundamental groups, the image of which is a normal subgroup.
The quotient group m,(M) /i n, (W) is a free abelian group with a finite number of
generators.

3) If a foliation does not have vanishing cycles, then either there exists a leaf W
for which the homotopy group m,(W ) # 0, or else.m,(M) = 0.

4) Under the same condition no closed transversal contracts to a point.

Statements 1) and 2) essentially comprise Theorem 5.1. Statements 3) and 4)
constitute a part of Theorem 6.1; by passing to a suitable double cover it is easy
to see that they do not depend on coorientability.

In Anosov cascades the foliations by W* and W* cannot have limit cycles
(since all leaves are contractible), and for Anosov flows of codimension one the
corresponding foliation does not have vanishing cycles (because incontractible
closed curves exist only on leaves containing periodic trajectories, and in this case
they are two-sided limit cycles). These observations allow us to draw the following
conclusions.

a) If a closed manifold M admits an Anosov flow of codimension one and the
foliation is coorientable, then M has the homotepy type of a torus.

In addition, we obtain information about the covering foliation in the universal
cover; see 1). (This is the case even if the foliation is not coorientable, since we
can first pass to the two-sheeted cover.)

b) If there exists an Anosov flow 7f codimension one on a closed manifold M, then
x,( M) = 0 and no closed transversal is contractible.

The above statement about closed transversals is used (and proved) by Plante
and Thurston [D] (see also the footnotes inserted in the Russian translation of
[D]). The result concerning , is apparently new. In the three-dimensional case it
easily implies that M is contractible. Since there exists a contractible three-dimen-
sional manifold which is not homeomorphic to R3, this is somewhat weaker than
the following result due to Margulis [30], which is proved by using both the
foliations by W* and W?*: the universal cover of a closed three-dimensional
manifold M on which there exists an Anosov flow is homeomorphic to Euclidean

(!) Recall that we have restricted ourselves to smooth foliations—were this not the case we would
be obliged to replace the word “diffeomorphic” by “homeomorphic”.



, i
0 D.V. ANOSOV .

space. (Masgulis gbtains this as a corollary of his proof that «r,( M) has exponen- - o

tial growth, a result which is now subsumed by the work of Plante and Thurston.)

For Anosov cascades proposition a) can be sharpened by using “dynamical”
considerations (see Franks [A] and Newhouse {B]). Franks essentially uses the
properties of M and the foliation {#) formulated above. However, the proof
(which, as Franks notes, is due to Novikov) requires the assumption that all
points of M are nonwandering. It is possible to avoid this assumption in two
ways. On the one hand, Newhouse has shown that for codimension one Anosov
cascades the assumption is always satisfied. On the other hand, it is clear from the
derivations of the results cited above that the theory of foliations yields the
requisjte conclysions about M and { W } given only the absence of limit cycles.

At this juncture a rather complex situation has arisen. It springs from the fact
that the proof of proposition 1) in [28] is incorrect. The error is due to the
insufficient attention paid by the author to his own Figure 8. As a result of this
error, the arguments on Russian p. 261 (English pp. 283-284) stand in need of
serious revision. Corrections were advanced first by Novikov himself and later by
Brakhman {29]. These, however, did not suffice to establish the proposition in full
generality. It was Novikov’s argument which Franks cited.

Suppose that a closed manifold M admits a coorientable codimension one
foliation without a limit cycle. We can construct a smooth vector field which is
everywhere transverse to the leaves. The flow defined by this field is naturally
called the fransversal flow (in {29] it is called the “normal flow”). In [29] it is
shown that proposition 1) holds if the following condition holds: each trajectory
of a transversal flow intersects all the leaves. However, no one seems to have
neticed that this additional condition is automatically satisfied for any coorienta-
ble codimension one foliation on a closed manifold. In particular, it follows that
1) is valid in the generality with which it is formulated above.

The result we require is easily deduced from Theorem 4 and Proposition 3.4 of
Sacksteder and Schwartz’s paper [31]. Comparing these two results immediately
yields the following corollary. Suppose that a closed manifold M admits a coorien-
table codimension one foliation. If some closed transversal does not intersect all the
leaves, then the foliation has a limit cycle. (In other, better known, work of
Sacksteder and Schwartz, C? smoothness is required and, indeed, essential. Thus,
we stress that in [31), as well as [29], the smoothness requirements are minimal. C!
smoothness and, in fact, even weaker requirements, such as smoothness of the
leaves and continuity of the tangent space, suffice.) Thus, it remains to consider
nonclosed trajectories x(z) of the transversal flow. Let x, be an w-limit point.
Choose a neighborhood U of x,, and coordinates u,,...,u, on U, each varying
between —e¢ and & such that the leaves (or, more precisely, the connected
components of the intersection of the leaves with U) are given by the equations
u, = const, and the trajectories of the transversal flow by the equations u, =
const,...,u, = const. Now, some interval on the trajectory x(¢) which passes
through U will have equations u, = a,,...,u, = a,. Choose the point x(¢,) which



SMOOTH DYNAMICAL SYSTEMS 11

has the coordinates (¢/2, a,,...,a,) and follow the trajectory until it again
intersects U in a segment given by equations u, = b,,...,u, = b,. Let x(¢,) be
the point with coordinates (-¢/2, b,,...,b,). Choose a smooth function ¢ satisfy-
ing 0 €< ¢(r) < 1 for all # such that ¢(?) =0 for : < -¢/2 and @(t) =1 for
t > e/2. We can now “close the loop” between x(¢,) and x(¢,) by joining them
by means of a smooth arc lying entirely in U and having equations

u,=a,+(b,—a)o(u), |wl<e/2,i=2,....n

This yields a closed transversal to the foliation (which is not, of course, a
trajectory of our flow) which does not intersect any leaves not meeting x(#). Thus,
it follows from the above corollary of the results of [31] that if x(7) does not meet
some leaf, then the foliation might have limit cycles.

7. In this section we set forth several diverse results about Anosov systems.

a) Anosov systems are usually considered on closed manifolds. In this case
compactness ensures that the choice of Riemannian metric used in the definition
does not matter. However, the definition of Anosov systems may be carried over
verbatim to open manifolds (that is, manifolds without boundary which are not
compact). In this case however, the definition depends in an essential way on the
choice of Riemannian metric. (It is natural to use a complete metric. Moreover, it
seems advisable to require that some sort of uniformity condition be satisfied.
The requirement that the derivative of the mapping or vector field be bounded
immediately comes to mind. However, it might possibly be worthwhile to require
more, perhaps that the metric have bounded curvature or that the derivative of
the mapping or vector field be uniformly continuous.)

At present, open manifolds, as well as closed manifolds, are considered in the
theory of geodesic flows on manifolds with negative curvature. A number of
substantial results have been obtained for open manifolds (see [32] and [33]).
These by themselves justify the consideration of Anosov systems on open mani-
folds. However, even the simplest (or so it seems) such systems can give rise to
sudden surprises. An example of such has been discovered by White [34]. He
constructed an Anosov diffeomorphism on the plane (with a nonstandard metric)
which has very different properties than the usual hyperbolic automorphism (with
the standard Euclidean metric). In particular, this diffeomorphism has no fixed
point and each unstable leaf intersects only part of the stable leaves (and
conversely). Under such circumstances doubt must arisé as to whether the
generalization of the notion of an Anosov system to an open manifold is -

. productive. (It may be better to modify the definition by including some sort of
additional oondmons In White’s example it is clear that the derivatives are
bounded, b it is not clear what the situation is with respect to different variants.
of uniformity. White does not discuss this, but it is obvious that the question can’
be clarified without undue effort.) A :

We present the formulas describing White’s example and leave it to the reader
to declphet their geometrical meaning. Let ¢(x) be a C* function. which equals 0

~

>
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for x £ 0, increases from O to 7/2 for 0 < x < 1/4, and equals /2 for x > 1/4.
Define a periodic function ¢(x) with period 2 by setting (for 0 < x < 2)

P(x) =¥(x = 1) = w(x =) ~¥(x = 1) +¥(x - 1).
Let e(p) denote the vector

0 .
coswa + smq)—g

and set e;(x, y) =e(p) and e,(x, y)=e(p + 7/2). Suppose that X,Y €
L. y,R have components ( X;, X;) and (Y;, Y;), respectively, with respect to the
basis e,(x, y), e5(x, y). Introduce a Riemannian metric by setting

(X,Y)=A*XY, + A" 2X,Y,,

where A > 1 is a fixed number. With respect to this metric the map (x, y) —
(x + 1, -p) is an Anosov diffeomorphism. The integral curves of the field e, are
the unstable leaves, while those of e, are the stable leaves. .

b) We returp to Anosov systems on closed manifolds. It is desirable to have a
variety of examples of such systems. For discrete time systems an extensive stock
of examples is furnished by hyperbolic automorphisms of infranilmanifolds which
are obtained algebraically. This subject is dealt with in this collection. To
construct Anosov flows, algebraic methods can also be used. This is well known
in the case of geodesic flows on manifolds of constant negative curvature (and on
a number of other manifolds), but they can also be used to obtain new examples.
See Tomter [35], [36].

¢) In addition to propcma common to all Anosov flows, geodesic flows on
manifolds of negative curvature have a number of special properties of a
geometric nature. Klingenberg [37] hes shown that all geodesic flows satisfying
‘the Anosov condition enjoy a string of such properties—in fact, all the basic
‘properties which are generally studied. (See also [38] regarding irreversible Finsler
metrics.)

d) In the transhuon of Franks’s article [A] some attention is alloted to Anosov
coverings. The selection of this class of objects is motivated by the desire to unify
the study of Anosov diffeomorphisms and expanding mappings. It turns out,.
however, that the unification thus obtained is rather “relative”. Namely, Anosov
_ diffeomorphisms and expanding mappings occupy a distinguished position among
all Anosov coverings; it is only in these two cases that Anosov coverings are
structurally ‘stable (sec [43] and [44]). (Apparently, the results in these papers
allow one to deduce that in these two cases the covering is a m,-covering. This
does not, of course, mean that it is inappropriate to study Anosov coverings. The
investigation of their ergodic properties is, for example, a completely reasonable
undertaking.) We explain the situation in general terms below. We will see that
the definition of an Anosov covering must be altered somewhat if we demand that
asmall(mtheC‘sense)pcun-banonofanAnowvmgagmnyleldan

Anosov covering.




