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Preface

Digital logic and switching theory have found many uses in modern tech-
nology. Telephone switching was one of the early applications of these prin-
ciples, and they contributed significantly to its rapid growth and utility. Other

- early contributors to this field were radar systems, digital instrumentation sys-
tems, and data communication systems which lead to the formalization of puise
circuit design and application. Closely following the development of these sys-
tems was the development of data handling and data processing systems.

Although the development of these systems was a major impetus to the
development of digital technology, the explosive growth would not have occurred
without the rapid improvement of digital components. In earlier periods the elec-
tromagnetic relay served as the basic digital element. Digital technology made a
significant leap forward with the application of the vacuum tube to digital circuits.
The transistor provided even greater improvements, but it was the emergence of
integrated circuit components which provided the spectacular growth of recent
times. Not only has integrated circuit technology provided improvements in the
performance charactenstlcs of digital systems but it has also provided econorhical
savings which promise even more dramatic growth in the future.

No one can expgct to escape the influence of digital logic systems today.
They have become an important component of many systems —from the auto-
mated traffic lights to process control and automation.

It is the purpose of this book to provide an introduction to logical analysis
and design using integrated circuit tomponents. Although it is sufficiently theo-
retical to provide insight and understanding of modern formal design methods,
emphasis has been placed on the practical aspects of logical design. Each topic
- included has been selected to bring the reader, as rapidly as possible, to the level

of competence required to understand and design complex digital systems suc-
cessfully. Readers who complete this book will also have the techpical -back-
. ground to pursue rhore advanced topics in switching theory and logical design.

The book is intended for anyone with an interest in logical design. It as-

sumes no technical background beyond a familiarity with ordinary algebra, which
will provide the mathematical maturity required to follow the development of the
Boolean algebraic techniques. All analytical tools required are developed as
needed. Aithough some electrical circuit details are included for completeness of
material, the reader who finds electrical fundamentals difficult or boring will not
be seriously handicapped. The few basic ideas required can be easily mastered
and the use of integrated circuits effectively made.

The material in this book has been used in a wide variety of courses and
presented to students with diverse backgrounds. It originated as an elective un-
dergraduate/graduate electrical engineering course at the University of Michigan-



Dearborn. Most of the material is now an undergraduate requirement in electrical
engineering. Throughout the long history of the course many non-electrical en-
gineering students, including numerous students from the College of Arts,
Sciences, and Letters, have successfully completed this material. Student levels
have ranged from freshman to first-year graduate students.

A number of the students who graduated from this course have worked with
the author in the laboratory and have found the topics covered sufficiently broad
to design many useful digital systems; others have reported successful application
of the material in industrial organizations. This success ini practical application
led to the offering of the material in a one-week continuing engineering education
course at the University of Michigan in Ann Arbor. The course has been offered
each year since 1971 to practicing scientists, mathematicians, engineers, and
technicians. It was largely from | the notes developed for this course and the en-
couragement of the participants that this book emerged.

The organization of the book is designed to develop the skill and under-
standing of the reader systematically. The book begins with a study of the charac-
teristics of number systems and manipulative techniques required for logical
design. Since most digital elements are binary in nature and most digital systems
are coded in number systems other than binary, it is necessary to understand the
relations between number systems. Chapter 2 introduces the reader to coding
systems and their conversion to other cod:1g systems.

Formulation and manipulation of switching systems and logic circuits is
facilitated with a knowledge of Boolean algebra. Chapter 3 develops the rules
of Boolean algebra—first from the more intuitive set theory and then more
formally by an axiomatic approach. Because of the ease of understanding its
operation, relay logic is introduced in Chapter 4 to provide the first exposure of
the application of Boolean algebra to design and analysis of switching circuits.
Chapter 5 extends the application to the integrated circuit element, electrically
more complicated, but more useful and relevant to modern digital and computer
systems. A description is given of basic logic elements and the effects of the ele-
ment parameters, and a discussion is presented of the types of logic families com-
mercially available. It is the intent of the chapter to provide a survey of practical
and useful integrated circuit logic elements.

Although formal Boolean algebra techniques and manipulative skills are
basic to a firm understanding of logical design, tools are available which greatly
enhance these more formal analytic methods. These are the Karnaugh map and
Quine-McCluskey minimization techniques described in Chapters 6 and 7, re-
spectively. Most algebraic expressions arising from algebraic design techniques
are in a form which are not entirely compatible with integrated circuit logic ele-
ments. Chapter 8 provides several methods of altering the equations to permit the
direct application of thesc elements.

Chapter 9 summarizes the techniques studied in the preceding chapters. Its
purpose is twofold —it provides several design examples and describes a number
of MSI integrated circuit elements commercially available, including code con-
verters, code generators, and arithmetic units.

A new logical element, the flip-flop, is introduced in Chapter 10. Many
types of commercial flip-flops are illustrated and analyzed. Chapter 11 discusses
the formal procedures for designing logic circuits which incorporate flip-flop
elements. These circuits are called clocked and pulsed sequential circuits and



have special characteristics which make them particularly easy to design. Chapter
12 extends the sequential design techniques to the level-mode sequential ma-
chines which require more elaborate methods.

Additional examples of sequential designs are given in Chapter 13 not only
to illustrate further the procedures but also to introduce some of the common
MSI integrated circuit sequential elements presently available. Also included is
a description of circuits used for digital system timing and control. Chapter 14
describes several design examples of digital systems to illustrate the ease with
which complex systems can be designed by using the techniques and components
introduced in the book.

Problems are provided at the end of each chapter. These were chosen to
illustrate the main topics of the book and, in some cases, to extend the material.
Answers are given to selected problems to verify the solutions. The reader who
solves all the problems will find that he has filastered the text material. Many
references have been provided for those who wish to study certain topics more
thoroughly.

The book can easily be covered in a three semester hour course. Other ar:
rangements are possible. For example, the material in Chapters [ through 10
and part of Chapter 13 has been successfully used in a two semester hour course.
The entire book has also been presented in a one-week intensive course. Others
have reported that the material is effective as a self-study text. )

As is the case with all books, there are many who contributed to its prepara-
tion. Particular thanks, however, must be given to a select few. First of all, thanks
is due to the students who have suffered through the many editions of the manu-
script and who made many valuable criticisms and suggestions. Thanks also go to
Dean J. Robert Cairns for praviding the opportunity to teach the digital logic
course repeatedly, and to my Department of Electrical Engineering colleagues
who helped select the material most appropriate for the electrical engineering
curriculum,

Special thanks also go to Mr. Raymond E. Carroll, who supported the
development of the one-week continuing engineering education course and to the
instructors who ,worked with me on the course. These included Professors
David J. Anderson, Keki B. Irani, Murray H. Miller, Norman R. Scott, and
John F. Riordan, and Messrs. John O. Brown, Mitchell A. Goodkind, Raymond
R. Jonassen, Thomas A. King, Charles W. Kleekamp, and George W. McClure.
Ms. Jane A. Strom directed the preparation of the course notes.

Thanks must be given to my secretary, Ms. Mary L. Wilkie, who helped
arrange my time and activities so that it was possible to complete the manuscript.
My son and daughter, Eric and Patricia, also deserve special mention for their
patience and understanding during the lengthy period of manuscript preparation.
And a special thanks to Cookie, who kept me company during the long sessions
in my Study.

And finally, loving appreciation 10 my wife, Helen, who not ouly en-
couraged the writing of this book, but also was an important contributor to the
effort by typing, retyping, and proofreading the entire manuscript. Without her
the book would not have been written.

W.D.B.
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1
Number Systems

introduction

The earliest systematic numbering system is believed to be the one de-
veloped by the Egyptians approximately 5,000 years ago. The system, known as
hieroglyphics, has been well documented from numerous archeological records
and is basically a‘tally or unitary system. One can speculate that it arose from the
need to tally the quantity of products traded between farmers. Perhaps during a
trade of cattle for wheat, it occurred to the traders simply to tally the number of
cows and bins of wheat traded for later comparison rather than to pair a cow with
eacn bin. Marks scratched in the sand may have been used for record keeping
during the transaction.

As the number of units involved in the trade grew, interpretation of repeti-
tive marks representing large quantities undoubtedly became difficuit, and it is
quite natural that additional symbols were introduced to replace various collec-
tions of marks. Specifically the hieroglyphic system used the vertical stroke | to
represent the basic tally unit, the croquet wicket N to represent ten vertical
strokes, the snare. 2 to represént ten croquet wickets, etc. Thus, for example,
the quantity 354 was represented as 292 2N NNNNIHI. Note that each new
symbol denotes a tally ten times larger than the symbol it replaces — a forerunner
of the present-day decimal (base-10) system. Perhaps this use of ten resulted
from counting with the ten fingers — or toes.

Approximately 1,000 years later (records are available from around
1850 B.c.) the hieroglyphic system had evolved into the more enumerative
hieratic system. In this system groups of hieroglyphic symbols were replaced,
by simpler marks in the same manner as our modern system, which uses the
symbols 1, 2, 3, 4, etc. The hieratic representation of the quantity 354, for ex-
ample, was \=2 > where the first symbol denotes 4, the second 50,-and the third
300.

By the year 1650 B.c., the Babylonians had developed a system similar to
that of the Egyptians except that it was a sexagesimal system (base-60) with a
decimal (base-10) substratum. The reason for the use of base-60 instead of
base-10 is obscure —they surely didn’t have 80 fingers — but possibly it was in-
fluenced by the large number of exact divisors found in 60. A major numerical
contribution of the Babylonian system was the use of the principle of position,
i.e., the concept that the relative position of the symbol within the number in-

1



2 Logical Design Using Integrated Circuits

fluences its value. For example, since | was the symbol for unity and < the
symbol for 10, V< represented the quantity [(60)! + 10(60)° = 70 whereas
<Y represented 10(60)' + 1(60)° = 601. Unfortunately the Babylonians had
no symbol for missing positions, a major deterrent to numerical maturity.

The most weli-known ancient method of numeration is the Roman numeral
system developed around 700 B.c. This system is basically a base-10 system with
the symbols subdivided in groups of five.ie.. 1 =1.5=V, 10=X, 50 =L, etc.
Positional ideas were used in this system, too (e.g., 4 = IV and 6 = VI). Anyone
who has tried to perform arithmetic operations or represent large numbers with
the Roman system must marvel that Roman numerals are still in use. This is
surely a result of the strong influence of the Roman Empire on modern civiliza-
tion and not because of the utility or practicality of the Roman system.

The basis for our modern number system was not developed until around
A.D. 700 when the Hindus used decimal, ciphered, and positional notation. This
system, which introduced the extremely important concept of the cipher 0, per-
mitted large quantities to be represented with only ten symbols. It wasn’t until
the late tenth century that modern numerals (of Hindu-Arabic origin) were in-
troduced into Western Europe. As surprising as it might seem, the system was
not extended to fractions until a.p. 1585, and the decimal point was not intro-
duced until the early seventeenth century! One has only to speculate about the
major numerical concepts awaiting discovery. '

The Decimal System

The modern decimal number system is based on the use of ten numerals
orsymbols (0, 1, 2, . . . , 9) which obtain their numerical value from their relative
position in the numerical representation. In this system, the right-most position
(or digit) represents units, the next adjacent digit represents tens, the next hun-
dreds, etc. In other words, each digit is multiplied by a power of ten which is ten
greater than the multiplier of the digit on its immediate right. Ten is called the
radix, or base, of the system and the power corresponds to the order. The four-
digit number (or quantity) 1534 will serve as an example. It may be trivially de-
composed into the value of each digit as

1534
l |———-.4><l=4><10"= 4
3IX10=3x10'= 30

SX100=5x102= 500

1 X 1000 = 1 X 103 = 1000
1534

In this example, 4 is referred to as the zero- or low-order digit, 3 as the first-
order_ digit, etc. The low- and high-order digits are also sometimes called the least
and most significant digits, respectively.

The Octal System
The counting procedure in the decimal system uses nine numerals to repre-

sent the numbers from 1 to 9. Once the count of 9 is reached there are no addi-
tional nonzero numerals available and a | is placed in the first-order (tens) position



Number Systems 3

and a 0 (zero has no numerical value except to influence the positional location
of the other digits) is placed in the low-order (units) position. Counting then pro-
ceeds in the same manner with the numerals 1 to 9 placed in the units position.
When the numerals run out again, the numeral in the first-order position is incre-
mented by 1 and the process is repeated. e.g.. 1.2,...,9,10, 11, 12,...,19,
20, 21, 22, . ... When all nine numerals in the first order have been used, the
process is repeated, incrementing the second-order numerals as required. This,
of course, is a procedure well known to kindergarteners.

Had our predecessors had only eight fingers, our numbering system would
undoubtedly have evolved differently. Instead of a radix- 10 (decimal) system, the
radix-8 (octal) system might have been used. In this system there would have
been eight numerals including zero. Thus, using the first eight numerals of the
decimal system as the eight numerals of the octal system, the counting sequence
becomes

L,2,....7,10, 11,12, ...,17,20, 21, 22, ...

Therefore, to represent the number 8 (decimal), it is necessary to use both th
zero and first-order digits of the octal system. It follows that' '

(10)s = (8)
(20), =(16),,

By following the method of decompo%ition used to evaluate decimal num-
bers, the decimal equivalent of the octal number (1534), is obtained as

(153 4y,
4x8=4x1 = 4
IXNG' =3x8 = 24
5x8=5x64 =320

1 X8=1x%x512=15]2
(860),,

where powers of 8, instead of 10, are used to weight the digit positions.

It is interesting to note that the number of digits required to represent a
number in the decimal system is less than the number required for the octal sys-
tem. What would be the advantage of the sexagesimal system? Why do you sup-
pose the Babylonians used a decimal substratum?

The Binary System

Suppose it~is necessary to design a mechanically adjustable numerical in-
dicator which wilt be spbjected to severe vibration. Two approaches might be
taken. A ten-valued indicator corresponding to the popular decimal system might
be used for each digit. A typical digit is depicted in Fig. 1-1A. Once set, the

' Whenever mixed radix systems are discussed it will be necessary to distinguish between
systems. Thus. if it is not clear from the accompanying text which radix system is implied,
subscripts denoting the radix will be appended to each number. Perhaps a better method
would be to use entirely new symbols for the numerals of each system, but unfortunately,
only a limi\ed quantity of symbols is available to the typesetter:
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Fig. 1-1. Mechanical digit indicators.
MARBLE

WING NUT

(A} DECIMAL SCALE {8) BINARY SCALE

pointer will remain stationary only if the pivot arm is forcibly constrained by
some mechanical device such as the wing nut indicated. On the other hand,
the two-valned (binary) system (Fig. 1-1B), if properly designed, will remain
in either of the two positions with no additional mechanical restrictions on the
pivot arm. The system thus possesses greater positional stability than the decimal
system. Similar stability advantages can be obtained in two-valued electrical
and electronic circuits; e.g., an electrical switch is usually designed to be either
open or closed and indicator lamps are either dark or lit. For these reasons it
should be useful to develop a counting system based on a radix of two, i.e., a
radix-2, or binary, system.

" By following the same counting procedure used in the decimal and octal
systems, the nonzero binary numerals are first placed in the low-order binary
position (binary digis, or bif) until all have been used. Since there is only one
nonzero binary numeral, the next higher order binary position must be used im-
mediately after the first count, etc. Thus, in binary, counting proceeds

1,10, 11, 100, 101, 110, 111, . ..

Table 1-1. Number Systems

Decimal Binary Octal Hexadecimal

) 0000 0 0
1 0001 1 1
2 0010 2 2
3 0011 3 3
4 0100 4 4
5 0101 5 5
6 0110 6 6
7 0111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
1 1011 13 B
12 1100 14 c
13 1101 1§ )
14 1110 16 E
15 1111 17 F
16 10000 20 10
17 +10001 21 1
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Table 1-1 shows the relationship between the decimal, binary, octal, and hexa-
decimal® systems. As in the decimal system, leading zeros are optional in any
system and have been suppressed in some cases. The reader will find it worth-
while to memorize the numerical equivalences between the different systems
in the first (16),, rows.

Binary-to-Decimal Conversion

Several methods are available for the conversion of binary numbers to
decimal numbers. The first method parallels the method used for octal-to-decimal
conversion previously described. It is presented without further discussion.

(10110 1),

l—+ 1 X 29= 1 « (Least significant bit)
0x2f= 0

1 x22= 4
1 X23= 8
!
0 X2¢= 0

—————> 1 X 2% =32 « (Most significant bit)
(450

Thus (101101), = (45),,. Notice how much more compact the decimal system
is (two digits) compared to the binary system (six digits).

Table 1-2 is provided to assist in the conversion to the decimal system from
the binary, octal, and hexadecimal systems. To illustrate its use, observe that,
from the fifth line of the table, 4096 = 2'2 = 8= 16° where I, m, and n equal
12, 4, and 3, respectively.

The second method is known as the double-dabble method. It is based on
the following rule: i

Starting with the most significant nonzero digit, add 1 (dabble), and proceed
to the adjacent lower-order bit, multiplying by 2 (double) on the way. Con-
tinue dabbling and doubling for each successive bit in descending order,
dabbling only if the bit is nonzero but always doubling regardless of the
value of the bit. The process stops with the dabble (or nondabble) at the
least significant bit.

Application of the double-dabble rule to the example above is illustrated in
Fig. 1-2. In step a, the most significant nonzero bit (order five) is dabbled, i.e.,
the running sum N is set to 1. In step b, the result is doubled to produce N = (2)10.
No dabbling occurs in step c, since the fourth-order bit is zero and N remains
equal to (2);0- In step d, the result is again doubled to make N = (4)1. The process
repeats until, finally, N = (45),,, which agrees with the decimal number obtained
by the first method.

Reflection on the double-dabble procedure reveals that all nonzero bits

are doubled according to the order (position) of the bit; i.e., the process can be
written

* Hexadecimal (radix-16) systems will be considered in Chapter 2.
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Table 1-2. Decimal Equivalents for Integer Powers of 2, 8, and 16
Binary (2') Octal (8™) Hexadecimal (16")

Decimal H m n
65 536. 16 4
32 768. 15 5
16 384. 14
8 192. 13
4 096. 12 4 3
2 048. 11
1 024, 10
512. 9 3
256. 8 2
128. 7
64. 6 2
32. 5
16. 4 1
8. 3 1
4, 2
2. 1
1. 0 0 0
05 —1
0.25 -2
0125 -3 ~1
0.062 5 -4 -1
0.031 25 -5
0.015 625 —6 -2
0.007 812 5 -7 v
0.003 906 25 -8 -2
0.001 953 125 -9 -3
0.000 976 562 5 —-10
0.000 488 281 25 -1
0.000 244 140 625 —12 —4 -3
0.000 122 070 312 5 —-13
0.000 061 035 156 25 -14
0.000 030 517 578 125 —-15 -5
0.000 015 258 789 062 5 —16 —4
ab cd ef gh ij k
L A A A A

W2+0)2+ D2+ 1)2+0)r2+1=45

where the steps in Fig. 1-2 have been identified to clarify the correspondence
with the double-dabble method. In this expression, each 1 corresponds to a
dabble, each 0 to no-dabble, and each 2 to a double. Collecting all 2s, this expres-
sion becomes

IX2540X24+ 1 X284+ 1X224+0X2'+ 1 X20=45

which corresponds exactly to the first method.

A major advantage of the double-dabble method is the ease with which
binary numbers can be mentally converted to their decimal equivalents. A few
practice conversions should soon convince the reader of this.



