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Preface

The language and elementary results of category theory have now
pervaded a substantial part of mathematics. Besides the use of these
concepts and results everyday, we should note that categorical no-
tions are fundamental in some of the most striking new developments
in mathematics. One of these is the extension of algebraic geometry,
which originated as the study of solutions in the field of complex num-
bers of systems of polynomial equations with complex coefficients, to
the study of such equations over an arbitary commutative ring. The
proper fundation of this study, due mainly to A. Grothendieck, is
based on the categorical concept of scheme. Another deep applica-
tion of category theory is K. Morita’s equivalence theory for modules,
which gives a new insight into the classical Wedderburn-Artin struc-
ture theorem for simple rings and plays an important role in the
extension of a substantial part of the structure theory of algebras
over fields to algebras over commutative rings.

From the conception of Wedderburn’s theorem on the simple Ar-
tinian rings, it must has been intuitively clear that the category of left
modules over the simple Artinian ring is equivalent to the category of
left vector spaces over its associated division ring. Once the proper
categorical notions were realized, Morita [M1,58] characterized cate-
gory equivalences between the categories of left modules of two rings
as those given by the covariant Hom and Tensor functors affored by
progenerators (i.e. finitely generated projective generators).

Later, Fuller [Fu2,74] characterized the equivalences between cer-
tain subcategories of the category of modules over a ring (not nec-
essarily with identity) and the category of all unital modules over
another ring. The equivalences are determined by a certain kind
of modules that we call quasi-progenerators (i.e. finitely generated
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quasi-projective and generate their own submodules).

Early in 1986, Y. Miyashita generalized the the concept of tilting
modules over finite dimensional algebras to the case of finite projec-
tive dimension over any ring. He gave a local version to the tilting
theorem. After that, Colby and Fuller [CF,90] presented a rather
complete version of the Tilting theorem for an arbitrary ring R. In
particular, if Tg is a classical tilting module (using the notion in
[CT2,95]) and S = End(Tg), then the Brenner-Butler theorem holds,
L.e., there are two category equivalences between ker(Tor{ (—,T)) and
ker(Extp (T, —)) = Gen(TRr) induced by —®¢T and Hompg(T, -), and
between ker(— ®s T') and ker(Homp(T, —)) induced by Tor{ (-, T)
and Exth(T, -).

Consequently, the equivalences induced by quasi-progenerators
and by classical tilting modules generalized Morita equivalences. Me-
nini and Orsatti [MO2,89] gave a unified treatment to the two genera-
lizations above mentioned. There they introduced a class of modules
which are called *-modules later. The notion of *-modules seems to
be the most natural generalization of the two important notions of
contemporary module theory, classical tilting modules and quasipro-
generators.

Other generalizations for Morita equivalences were investigated
by several authors, among them Sato [Sa1,78], [Sa2,79], Azumaya

[Az1,75], [A22,79], D’Este [D1,90], [D2,94], D’Este and Happel [DH,90].

The other direction of generalizing the Morita equivalence theory
for rings is to discuss the equivalence of rings without the assumption
that the rings have identities. Such equivalences are called Morita-
like equivalences [XST,93].

On the other hand, I.P. Lin [L1,74] found some results for the
equivalences of categories of comodules over coalgebras, which are
similar to those of Morita; Takeuchi [Ta,77] used co-tensor and co-
hom functors to investigate the equivalences of categories of comod-
ules over coalgebras and obtained the Morita theorems for such equiv-
alences, his strategy is quite different from that of Lin’s. Meanwhile,
Takeuchi obtained a well-known characterization of the categories of
comodules in [Ta, 77), i.e., it is of the finite type.

This book consists of two parts. One is to discuss Morita equiv-

alences of the categories of modules over rings with identity, their
generalizations, and Morita-like equivalence introduced by Xu-shum-
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Turner in [XST,93]. The other is to discuss the Morita-Takeuchi
equivalences of the categories of comodules over coalgebras and its
generalizations.

Chapter 1 is the preliminaries for this book. First, we collect some
basic categorical concepts, especially the concept of Grothendieck
category. Secondly, it also contains some basic characterizations of
Morita equivalences and many other properties preserved by Morita
equivalences. This is the classical part of Morita theory. At last, we
give some basic facts for coalgebras and comodules. We are not going
to give the proofs for the results in this chapter.

In Chapter 2, we state Fuller’s generalization for Morita equiva-
lences, and the theory of quasi-progenerators. This is the beginning
for generalizing Morita equivalence theory.

In Chapter 3, we state some results of Sato [Sal,78], [Sa2,79], Azu-
maya [Az2,79], and Morita [M2,73] for subcategories equivalences.
These results yield a further refinement and clarification of Fuller’s
characterization in Chapter 2.

In Chapter 4, we consider the equivalences induced by classical
tilting modules and by tilting modules having finite projective dimen-
sion, which are basically due to Colby-Fuller [CF,90] and Miyashita
[Mi,86], respectively. After these works, many ring-theorists began to
study rings by tilting methods. We also give some characterizations
of classical tilting modules in this chapter, these results are taken
from Colpi’s paper, but we avoid using the concept of *-modules
here. Many further characterizations for classical tilting modules will
be given in Chapter 6.

In Chapter 5, we consider the equivalences induced *-modules,
which are the generalizations of the two very important concepts in
contemporary module theory: quasi-progenerators and classical tilt-
ing modules. In this chapter, we state the surprising result obtained
by Trlifaj [T3,94] that any *-module over an arbitrary ring is finitely
generated. By using the newest result we give some characterizations
for *-modules over any ring.

In Chapter 6, as an application for the theories of *-module,
we first characterize classical tilting modules by the concept of *-
modules. Then we give a representation theorem for equivalences
between projective modules and injective modules over hereditary
Noetherian rings. And we give many examples to show that the
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classes of progenerators, quasi-progenerators, classical tilting mod-
ules, and *-modules, do not coincide with each other in general. At
last, we measure the gaps between the classes of *-modules, quasi-
progenerators and classical tilting modules by a well-known theorem
obtained by Trlifaj [T1,94]. These works are due to Colpi, Menini, Or-
satti and Trlifaj. By the way, the authors in [CDT,97] introduce the
concept of quasi-tilting modules, we can say, roughly speaking, that a
module gV is quasi-tilting if and only if gV is “tilting in Gen(gV)".
This situation is analogous to that of quasi-progenerators, which can
be considered as “progenerators in Gen(gV)”.

In Chapter 7, we give some results about Monta-like equivolence,
which are due to professor Y. H. Xu, K. P. Shum and R. F. Turner-
Smith [XST,93].

In Chapter 8, we first give some basic results about two functors:
“h—c(=,—)", “~O¢—", and locally finite abelian categories. Then
we give a very useful characterization of categories of comodules.

In Chapter 9, we present the equivalence theory for categories of
comodules over coalgebras which now called Morita-Takeuchi equiv-
alence [Ta,77]. Such an equivalence can be represented by some func-
tors, for example, “h—¢c(—, ~)” and “—O¢ —~". These results provide
us with some effictive methods to study coalgebras.

In Chapter 10, we present the strongly equivalence theory of the
categories of comodules, which is due to I. P. Lin [L1,74]. By using
some results in Chapter 9, we can give some improvement to Lin’s
results.

In Chapter 11, we first study QcF-coalgebras which are dual to
QF-rings. About such a class of coalgebras, we characterize it in many
ways. We also generalize some results of co-Frobenius coalgebras to it.
After that we dualize Noetherian algebras and obtain an interesting
class of coalgebras, i.e., conoetherian coalgebras. After which we
obtain some characterizations which are dual to those of Noetherian
algebras.

In Chapter 12, we first introduce a new class of coalgebras, i.e.,
conoetherian coalgebras which are invariant under Morita-Takeuchi
equivalence. Secondly, we prove the tilting theorem for the situation
of classical tilting comodules over conoetherian semiperfect coalge-
bras. So we obtain two equivalences of subcategories of comodules.
It is a generalization of Takeuchi equivalences [Ta,77].
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In Chapter 13, we give some important properties which are pre-
served by equivalence of the categories of comodules.

In the final chapter, we list some interesting open problems in
ring theory and module theory, some of them are very well-known.

I express my sincere thanks to my Ph.D adviser, Professor Yonghua
Xu (Fudan University), for his encouragement. I also wish to express
my gratitude to Professor Weimin Xue, Professor Huiling Li, Profes-
sor Daoji Meng, Professor Fuchang Cheng and Professor Zhong Yi,
for their helpful suggestions.

Wang Mingyi

Institute of Mathematics, Southwest Jiaotong University,
Chengdu, 610031, P. R. China

Institute of Mathematics, Nankai University, Tianjin, 300071,
P. R. China

January 25, 2000
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Chapter 1

Preliminaries

This chapter contains some basic concepts and the basic char-
acterizations of Morita equivalences. In section 1.1 we collect some
concepts of categories, functors, natural transformations, the equiva-
lences of categories. In section 1.2, we state the concept of Grothend-
ieck category, which plays an important role in the theory of rings of
quotients. Section 1.2 is a basic introduction to Morita equivalence
and most results in this section are taken from the standard ring the-
ory book, Anderson-Fuller ([AF, 92] section 22). In the last section,
we collect some basic concepts of coalgebras and comodules which
come from any standard book for Hopf algebras.

1.1 Some Basic Concepts about Equivalences

Definition 1.1.1 A category C consists of

1. A class obC of objects (usually denoted by 4, B, C, etc.).

2. For each ordered pair of objects (A4, B), a set homg(A, B) (or
simply, hom(A, B) if C is clear) whose elements are called morphisms
with domain A and codomain B (or from 4 to B).

3. For each ordered triple of (4, B,C), a map (f,g) — gf of the
product set hom(A, B) x hom(B, C) into hom(4, C).

It is assumed that the objects and morphisms satisfy the following
conditions:

Cl1. If (A4, B) # (C, D), then hom(A, B) and hom(C, D) are dis-
joint.
C2. (Associativity) If f € hom(A, B),g € hom(B,C), and h €
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hom(C, D), then (hg)f = h(gf).(As usual, we simplify this to hgf.)

C3. (Unit) For every object A we have an element 14 € hom(A, A)
such that f14 = f for every f € hom(A, B) and 149 = g for every
g € hom(B, A)(14 is unique).

A category D is called a subcategory of the category C if obD is a
subclass of obC and for any A, B € obD, homp (A4, B) C homc (A4, B).
It is required also (as part of the definition) that 14 for A € obD and
the product of morphisms for D is the same as for C. The subcate-
gory D is called full if homp (A, B) = hom¢(A, B) for every A, B € D.

Let us give a list of examples of categories:

1. Set, the category of sets.

2. Grp, the category of groups, the morphisms are homomor-
phisms (mapping 1 into 1).

3. Ring, the category of (associative) rings (with unit for the mul-
tiplication composition), the morphisms are homomorphisms (map-
ping 1 into 1).

" 4. grM, the category of left modules for a fixed ring R; rRFM,
the category of finitely generated left modules for a fixed ring R.

5. Cogy, the category of coalgebras over a fixed field k, the mor-
phisms are the co-linear maps; Ccogy, the category of cocommutative
coalgebras over a fixed field k, the morphisms are the co-linear maps.

6. MC, the category of right comodules over a coalgebra C, the
morphisms are the co-linear maps of comodules.

Definition 1.1.2 A morphism f: A — B is called an isomor-
phism if there exists a g : B — A such that fg = ig and gf=14.1f
J:A—> B,g:B— Aand gf = 1,4, then f is called a section of g
and g is called a retraction of f.

A morphism f: A - B is called monic (eplc) if it is left (right)
cancellable in C.

Proposition 1.1.1 A morphism in kM or Grp is monic (epic)
if and only if the map of the underlying set is injective (surjective).

A morphism in Cogy or in Ccogy is epic if and only if it is sur-
Jective for the vector space.
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Proposition 1.1.2 A morphism in Ring is monic if and only
if it is injective. However, there exist epics in Ring that are not
surjective.

Definition 1.1.3 If C and D are categories, a covariant (con-
travariant) functor F' from C to D consists of

1. A map A = F A of obC into obD.

2. For every pair of objects (A4,B) of C, a map f — F(f) of
homg(A, B) into homp (F A, FB).

We require that these satisfy the following conditions:

F1. If gf is defined in C, then F(gf) = F(g)F(f)(F(f)F(g)).

F2. F(14) = 1pa.

A functor F is called a faithful functor (full) if for every pair of
objects (A, B) in C the map f — F(f) of hom¢(A, B) into homp(F A,
FB) is injective (surjective).

Definition 1.1.4 Let F and G be functors from C to D. We
define a natural transformation n from F to G to be a map that
assigns to every object A in C a morphism 74 € homp(FA,GA)
such that for any objects A, B of C and any f € homc¢(A, B) the
rectangle in

FA 4, GA
LF(f) LG(f)
FB ™ GB

is commutative. Moreover, if every n,4 is an isomorphism then 7 is
called a natural isomorphism.

Definition 1.1.5 We say that the categories C and D are iso-
morphic if there exist functors F: C — D and G : D — C such that
GF = 1¢ and FG = 1p. More generally, we say that the categories
C and D are equivalent if there exist functors F : C - D and
G : D — C such that GF ~ 1¢ and FG ~ 1p, where ~ denotes the
natural isomorphism of functors.

Proposition 1.1.3 Let F be a functor from C to D. Then there
exists a functor G : D — C such that (F,G) is an equivalence if and
only if F is faithful and full and for every object A’ of D there exists
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an object A of C such that FA and A’ are isomorphic in D, that is,
there is an isomorphism contained in homp(FA, A').

Definition 1.1.6 Let {As|a € I} be an indexed set of ob-
jects in a category C. We define a product [[ A, of the A, to be
a set {A,pa]|a € I} where A € obC,p, € homc(A, A,) such that if
B € obC and f, € homg(B, Ag), @ € I, then there exists a unique
f € homg(B, A) such that fo = paf.

Definition 1.1.7 Let {A,|a € I} be an indexed set of objects
in a category C. We define a coproduct [[ A, of the A, to be a
set {A,iqa|a € I} where A € obC,i, € homg(Aq, A) such that if
B € obC and g, € homc(Aq, B),a € I, then there exists a unique
g € homc(A, B) such that g, = giof. '

Definition 1.1.8 Let f; : A; > B,i = 1,2, in a category C.
Define a pullback diagram of {fi, f2} to be a commutative diagram
c 5 4

{92 lh

such that if

4 B B
is any commutative rectangle containing f; and fy, then there exists

a unique k : D — C such that g1k = h;, g2k = hy. Dually, we can
define the concept of pushout diagram.

Definition 1.1.9 We define the functor hom : C? x C — Set
by specifying that this maps the object (A, B) into the set hom(A, B)
(which is an object of Set) and the morphism (f,g) : (4,B) —
(A, B') into the map of hom(4, B) into hom(A’, B’) defined by

hom(f,g) : k — gkf.

In this way, we can get a covariant functor hom(A, —) determined by
A and a contravariant functor hom(—, B) determined by B.
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Proposition 1.1.4 ( Yoneda’s lemma) Let F be a functor from
C to Set, A an object of C, a an element of the set FA. For any
B € obC let ap be the map of homc(A, B) into FB such that
k — F(k)(a). Then B — ap is a natural transformation 7(a) of
hom¢ (A, —) into F. Moreover, a — n(a) is a bijection of the set F'A
- onto the class of natural transformations of hom¢(A, —) to F. The
inverse of a — n(a) is the map n — na(1,4) € FA.

1.2 Grothendieck Categories

Definition 1.2.1 A category C is preadditive if each set homc
(A, B) is an abelian group and the composition maps hom(B, E} x
hom(A, B) = hom(A, E) are bilinear.

If C and D are preadditive, then a functor ¥ : C — D is additive
if it satisfies

F(f +9) = F(f) + Flg) for f,g € homc(A, B).

Definition 1.2.2 Let C be a preadditive category. Akernel of
a morphism f : A — B is a morphism k : K — A such that

(i) fk=0;

(ii) for every g : X — A with fg = 0, there exists a unigue
h: X — K such that g = kh.

Dually, we can define the concept of cokernel.

Definition 1.2.3 A category C is abelian if

Al. C is preadditive.

A2. Every finite family of objects has a product (and coproduct).

A3. Every morphism has a kernel and a cokernel.

A4. @:Coker(kerf)— Ker(cokerf) is an isomorphism for every
morphism f.

Definition 1.2.4 A limit (or projective limit) of the functor
F : I — C is an object li(r_n F'in C together with a compatible family

of morphisms f; : h;in F — F(1), such that for each other compatible
family g; : X — F(i) there exists a unique h : X — lim F (7) with
fih = g;. -

Dually, we can define the colimit (or inductive limit of a functor

F).
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Definition 1.2.5 A category C is called complete if the limit
exists for every functor F' : I — C when I is small.

Dually, a category C is called cocomplete if the colimit exists for
every functor F : I — C when I is small.

Definition 1.2.6 An object G in C is a generator for C if
hom(G, —) is faithful and E is a cogenerator for C if hom(—, E) is
faithful.

Definition 1.2.7 A cocomplete abelian category C is called a
Grothendieck category if direct limits are exact in C and C has a
generator.

Example The comodules category M is a Grothendieck cat-
egory.

1.3 The Morita Theory of Equivalences

The prototype of (Morita) equivalence is provided by a ring R and
the ring M,(R) of n x n matrices over R. Indeed, the Wedderburn
simple Artinian rings may be viewed as one of the earlist treatments
of the theory of equivalence of rings. In this section we describe the
complete characterizations of equivalences, that are due to Morita
[M1, 58].

First, we present a list of properties preserved by equivalence.

Proposition 1.3.1 Let F : kM — gM be a category equiva-
lence. Then

oM HMmME M 40
is (split) exact in gM if and only if the sequence
0 FM) P M9, 0

is (split) exact in gM.
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Proposition 1.3.2 Let R and S be equivalence rings via an
equivalence F' : gM — gM. Let M, M’ and U be left R-modules.
Then

(i) U is M-projective (M-injective) if and only if F(U) is F(M)-
projective (F'(M)-injective);

(ii) U is projective (injective) if and only if F(U) is projective
(injective);

(iii) U generates (cogenerates) M if and only if F(U) generates
(cogenerates) F(M);

(iv) U is a generator (a cogenerator) (faithful) if and only if F(U)
is a generator (a cogenerator) (faithful);

(v) A monomorphism (epimorphism) f : M — M’ is essential
(superfluous) if and only if F(f) : F(M) — F(M') is essential (su-
perfluous);

(vi) f : M — M’ is an injective envelop (projective cover) if and
only if F(f) : F(M) — F(M') is an injective envelop (projective
cover);

(vii) M has projective dimension k iff F(M) has projective di-
mension k;

(viii) M has uniform dimension & iff F(M) has uniform dimension
k.

Proposition 1.3.3 Let R and S be equivalence rings via an
equivalence F' : RM — gM. Then for each left R-module M , the
mapping defined by

YM K- ImF(iKSM)

is a lattice isomorphism from the lattice of submodules of M onto
the lattice of submodules of F(M).

Proposition 1.3.4 Let R and S be equivalence rings via an
equivalence F' : RM — gM, and let M and M’ be left R-modules,
Then

(i) M is simple (semisimple) if and only if F(M) is simple (semisim-
ple);

(ii) M is finitely generated (finitely cogenerated, finitely pre-
sented) if and only if F(M) is finitely generated (finitely cogenerated,
finitely presented);



