t B OC &

ISCAS' b 43 i 4

1

AL R e B HiE

e ‘ | (19

» ' 191 |

ON THE QUADRATIC EXTENSION OF THE CANONICAL
PIECEWISE-LINEAR NETWORK

JI-NAN LIN AND ROLF UNBEHAUEN

UNIVERSITAT ERLANGEN-NURNBERG
Lehrstuhl fiir Aligemeine und Theoretische Elektrotechnik
Cauerstrasse 7, D-8520 Erlangen, Federal Republic of Germany

Abstract ~ The network based on the canonical piecewise-
linear representation (CPWL) is a new type of neural net-
works. Compared to the conventional mapping networks,
e.g., the back-propagation network and the radial basis net-
work, the CPWL network has advantages in both learning
and implementation aspects. In this paper, an extension of
the CPWL network called the network of canonical
piecewise-quadratic representation with linear partitions
(CPWQ-L) is proposed. The CPWQ-L network shares the
advantages of the CPWL network in explicitly and compactly
realizing a spline approximation of nonlinear functions, while
it extends the approximation capability of the latter at a low
cost in computation and implementation. Examples of com-
puter simulations are presented to demonstrate the superior-
ity of the CPWQ-L network in some applications.

L. INTRODUCTION

Various mapping networks based on different ways of
function representation or approximation are developed. The
representative ones are the back-propagation network [1]
and the radial basis network [2]. Recently, a new type of net-
works has arisen which learn to realize a nonlinear mapping
in form of the canonical piecewise-linear representation
(CPWL) of functions [3,4]. The basic representation of the
CPWL [5] can be writen as

o
y=fx)=b"x + Y |a'x |,

i=1

(1

where x =[xy x, X, *** xy]” with x, =1 and N being
the dimension of the domain. b and a; are parameter vec-
tors, and ¢; are constant parameters. Compared to other

representation methods of piecewise-linear (PWL) fyncuonps,
this representation has superior properties. It takeg 3jierse
form with the minimal number of free coefficegnts tar
describing a large class of continuous PWL funcofis I8t
which is easy to be dealt with in both theoretical spuay ana
applications. This representation has an explicit megnuygpor
the vectors a; indicate directly the ¢ linear partitien fyetin-

This work is supported by the Deutsche Forschungsgemeingthaftj;¥¥d.
Rep. of Germany.

daries of the domain of a PWL function. From the viewpoint
of neural networks, (1) implies a two-layer feedforward net-
work with the nonlinearity of the hidden units being the ab-
solution |.|. It is not difficult to derive a back-
propagation-like learning algorithm for this network. Com-
pared to the conventional mapping networks, the network
based on (1) (which will be called the CPWL network) has
advantages in both learning and implementation aspects.

In this paper we propose a quadratic extension of the
CPWL and some simplifications. On this basis, mapping
networks are developed with corresponding learning algo-
rithms. The advantages of these networks are related with
some computer simulation examples, in comparison with the
CPWL network.

H. A QUADRATIC EXTENSION OF THE CPWL
We extend (1) in the form

y =f(x)=x"Bx + i(cfx) | a/x |

i=1

)

with B := {B,, } being a parameter matrix. (2) represents a
class of continuous piecewise-quadratic (PWQ) functions
with linear partitions of the domain. Since it stems from the
CPWL, we will call it "the canonical piecewise-quadratic
representation with linear partitions" (denoted as CPWQ-L).

By substituting the first term on the right-hand side (called
the base function) with a bilinear or a linear form, we get
simplifications of (2), i.e.

y =f@) = bI)GX) + (i) | afx | 3)
i=]

o

TIRA) =b7x + Y(ckx) | alx | . @)

im]

WH Benote these two simplifications (3) and (4) by
CPWOH(T) and CPWQ-L(II), respectively. Clearly, the
CPROQJL(I) and the CPWQ-L(II) have successively smaller
represemtation capabilities of PWQ functions than the
CREWOIL. However, these three are all extensions of the
CPWLand, henge, are able to modify it.

316

0-7803-0593-0/92 $3.00 1992 IEEE

The CPWQ-L’s share the advantages of the CPWL over
the conventional spline representations of functions, i.e., they
take an explicit and compact form. The additional number
of free coefficients of them over the CPWL can be regarded
as a cost for the extension, which, as will be seen, is worthy in
many cases.

III. THE CPWQ-L NETWORKS

According to the CPWQ-L representations (2), (3) and
(4), we can build up feedforward networks as shown in Fig.
1, where the subnetwork Ny implements the base function.
This network requires the same basic components as the
CPWL network, i.e., linear correlators and absolutors. Addi-
tionally, it require multipliers. The number of multipliers re-
quired by the CPWQ-L network is N(N + 1)/ 2 + o, while,
by the CPWQ-L(I), o + 1 and by the CPWQ-L(II), 0.

Similar to the derivation of the learning algorithm for the
CPWL network [3,4), we can derive the learning algorithms
for the CPWQ-L networks. By using the LMS algorithm to
minimize the cost function of the mean squared errors
(MSE)

Sie kSeti= L0 -1 = L5 -rw,)
T ¢ [/7 I T t : ’

(=] =] =1

where {(x,,d,) | t =1,2,...,T} are the training samples, we
have the learning procedures as follows:

a;(k+1) = a;(k) + pe (k)u; (k)sgn(v;(k)x (k), (6)

ci(k+1) =c;(k)+ pme(k)|vi(k)|x(k), 7
with

(k)= c(k)x (k)

vi(k):=al(k)x(k), i =1,2,..,0,
and for the CPWQ-L network
Byg(k+1) = By (k) + pe (kY (K eg(k), (8-1)

for p =0,1,..,N,q =0,1,..,p, for the CPWQ-L(I) net-
work

by(k+1) = by (k) + pe (k)ug (k)x(k), (8-2-1)

by (k+1) = by (k) + pe(k)ug (k)x(k),
with
Uy (k) := b] (k)x (k),

(8-2-2)

uop (k) := b7 (k)x(k),
and for the CPWQ-L(II) network

b(k+1)=b(k)+ ue(k)x(k), (8-3)

317

with (x(k),d(k))e{(x,,d,) | t =1,2,..,T} for
k=12,...

We have only considered the single output case, but it is
easy to extend to the multi-output case. A direct way is to
take a mapping of R¥ — R™ as M functions of
RY —> R and to obtain a network of multi-output through
parallelling M subnetworks of single output [6]. A simplifi-
cation is also possible. For example, if we assume that there
is always an optimal partition of the input space for all the
functions of the different outputs, the array of

|a/x |, i =1,2,..,0 can be common for the subnetworks
of different outputs.

IV. SIMULATIONS

This section concerns the significance of the quadratic ex-
tension of the CPWL, i.e., the CPWQ-L’s. Examples of our
computer simulation results are presented to demonstrate
the advantages of the CPWQ-L networks over the CPWL
network. For convenience of illustration, the examples
presented here have all to do with the 2-D input space and a
single output. But similarity with higher input and output di-
mensions is obvious.

Ex. 1: Surface fitting Learning of a mapping network from
some given training samples can be considered as surface fit-
ting, from the viewpoint of function approximation, We
know that the CPWL is suitable for representing a large class
of PWL functions. However, a PWL representation is not al-
ways effective in approximating arbitrary functions. To satis-
fy a degree of accuracy in some applicatons of the CPWL
network, fine and close partition of the input space is often
required, which causes not only a high cost in computation
and implementation, but also difficulties in learning. In these
cases, improvement can be achieved by using the CPWQ-L
networks. Here we present one of the computer simulation
results, where the CPWL network and the CPWQ-L net-
works were used to fit continuous surfaces in terms of given
groups of training samples. Fig. 2(a) shows the original sur-
face in this simulation. 1000 training samples were drawn
from this surface randomly. The CPWL network learned
from these training samples. Fig. 2(b) shows a typical result
of the CPWL network with o = 10. 80 epoches of learning
was required to reduce the residual MSE to 0.051. Then, the
CPWQ-L networks were used to learn from the same group
of training samples to fit the surface. Fig. 2(c) shows the
typical results of a CPWQ-L(I) network with o0 =5. The
corresponding residual MSE is 0.014, which was obtained
after 40 epoches of learning,

Our simulations demonstrate that the CPWQ-L networks
behave, in general, superiorly to the CPWL network in sur-
face fitting, i.e., they can achieve a more smooth fitting with
a smaller residual MSE for either fewer partition boundaries
or fewer free coefficients than that of the latter. Since, with
the increase of the number of the boundaries, the conver-
gence of the learning procedure of the CPWL network be-

Yy WAt

comnes difficult and siow, it means that, for a same require-
ment of accuracy, the CPWQ-L networks learn more easily
and quickly than the CPWL network. The simplifications of
the CPWQ-L network through the CPWQ-L(I) and the
CPWQ-L(II) may bring about some degradation, but it is not
much, compared with the improvement over the CPWL net-
work.

Ex. 2: Classification Learning to classifying the input space
in terms of a given group of training patterns is an important
application of mapping networks. Due to some limitations of
the CPWL, the CPWL network is often not effective to work
as a classifier. Fig. 3(a) shows a desired classification. The
input space is partitioned by three lines into six subregions of
two classes. The CPWL network learned this classification in
terms of 1000 random samples from Fig. 3(a). A threshold
device was used at the output of the network, in order to get
the binary output values. The learning strategy was similar to
that of the ADALINE given in [7]. A typical result with
o =3 is shown in Fig. 3(b), which was obtained after 50
epoches of learning. The classification error is 28.9%. Clear-
ly, there is no continuous PWL representation of three boun-
daries which, after the analog-to-binary conversion, is
corresponding to Fig. 3(a). To approximate the classification
more accurately, the number of boundaries need to be in-
creased. Fig. 3(c) shows a typical learning result obtained by
the CPWL network with ¢ = 6, where, after 90 epoches of
learning, the classification error was reduced to 15.3%.
Thanks to the curved property of the CPWQ-L, the CPWQ-
L networks can approximate the classification more effec-
tively. With o =3 the CPWQ-L(II) achieved after 30
epoches of learning the result shown in Fig. 3(d) where the
classification error is 5.3%.

Ex. 3: Global learning It is known that, when the partition of
the input space is fixed, the learning of the CPWL network
becomes global, i.e., it converges uniquely to a global solu-
tion. This property is attractive in cases where the boundaries
are pre-provided. For example, a regular (e.g. grid) partition
of the domain is familiar for spline-approximation of func-
tions, which can be effective in some cases. It is also expect-
ed that the global learning property of the CPWL network
can provide a way to get an appraisal of an unknown function
without the trouble of local solutions. However, with a regu-
lar partition of the domain a continuous PWL representation
degenerates simply to a sum of univariate subfunctions,
which limits its capability in approximating an arbitrary func-
tion. This limitation, however, is overcome by the CPWQ-
L’s. With fixed boundaries the learning procedures of the
CPWQ-L networks are also global. The example presented
here is to illustrate the problem of the CPWL network with a
pre-provided regular partition of the input space and the ad-
vantages of a CPWQ-L network in this cases. The original
function is shown in Fig. 4(a). The CPWL network learned
to estimate the form of this surface in terms of 1000 random

318

samples. It had 10 boundaries which were fixed as a uniform
grid in the input space. The resulting surface of the estima-
tion is shown in Fig. 4(b), with the residual MSE 0.025. In
this case, adding the boundaries could not improve the esti-
mation. The CPWQ-L(II) network was also employed to es-
timate the surface in terms of the same group of training
samples. With four boundaries fixed as a uniform grid in the
input space, it achieved the result shown in Fig. 4(c), where

the residual MSE is 0.0023.

V. CONCLUSION

In this paper, the CPWL representation is extended to a
quadratic version denoted by CPWQ-L, accompanied by
some simplifications. The CPWQ-L networks and the
corresponding learning algorithms are developed. The
CPWQ-L networks share the advantages of the CPWL net-
work in explicitly and compactly realizing a spline approxi-
mation of nonlinear functions, while they extend the approxi-
mation capability of the latter at a low cost in computation
and implementation. Examples of computer simulations of
learning to approximate functions are presented, which
demonstrate that the CPWQ-L networks can generally
achieve a more satisfactory result with either fewer partition
boundaries or fewer free coefficients than the CPWL net-
work. For a given requirement of accuracy, the CPWQ-L
networks learn more quickly than the latter. Meanwhile,
they can overcome some drawbacks of the latter in applica-
tions, e.g., classification or learning to approximate with a
preprovided partition.

Some theoretical aspects concerning the quadratic exten-
sion of the CPWL are under current study. For instance, as
with the CPWL, we can derive the existence conditions for
the representation of CPWQ-L.

REFERENCES

(1] D. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning inter-
nal representations by error propagation,” in D. Rumelhart and J.
L. McClelland (Eds.), Parallel Distributed Processing, vol. 1, pp.
318-362. MIT Press, Cambridge, MA, 1986.

2] D.S. Broomhead and D. Lowe, "Multivariable functional interpo-
lation and adaptive networks,” Complex Systems 2, pp. 321-355,
1988.

[3] J-N. Lin and R. Unbehauen, "Adaptive nonlinear digital filter
with canonical piecewise-linear structure,” IEEE Trans. Circuits
Syst., vol. 37, pp. 347-353, Mar. 1990.

4] R. Batruni"A multilayer neural network with piecewise-linear
structure and back-propagation learning," IEEE Trans. Neural
Networks, vol. 2, pp. 395-403, May 1991.

{5] L.O.Chuaand A. C. Deng, "Canonical piecewise-linear represen-
tation,” IEEE Trans. Circuits Syst., vol. 35, pp. 101-111, Mar.
1988.

[6] V. Y.Kreinovich, "Arbitrary noulinearity is sufficient to represent
all functions by neural networks: A theorem,” Neural Networks,
vol. 4, pp. 381-383, 1991.

[7) B. Widrow, R. G. Winter, and R. A. Baxter, "Layeres neural nets
for pattern recognition,” IEEE Trans. Acoust., Speech, Signal Pro-
cessing, vol. 36, pp. 1109-1118, July 1988.

3y

(x

Fig.2 (a) The original function for Ex. 1; (b) A learning result of the
CPWL network with 0 = 10 (epoches: 80, residual MSE:
0.051); (c) A learning result of the CPWQ-L(I) network with
o =5 (epoches: 40, residual MSE: 0.014)

d

Fig.3 (a) The original classification for Ex. 2; (b) A learning result of

319

the CPWL network with 0 = 3 (epoches: 50, classification error:
28.9%); (c) A learning result of the CPWL network with 0 = 6
(epoches: 90, classification error: 15.3%); (d) A learning result
of the CPWQ-L(II) network with ¢ = 3 (epoches: 30, classifica-
tion error: 5.3%)

e L T
S

Fig. 4 (a) The original function for Ex. 3; (b) The learning result of the
CPWL network (fixed partition of uniform grid) with ¢ = 10
(epoches: 50, residual MSE: 0.025); (c) The learning result of the
CPWQ-L(II) network (fixed partition of uniform grid) with
0 =4 (epoches: 20, residual MSE: 0.0023)

DOUBLE SCROLL AND CELLULAR
NEURAL NETWORKS

Fan Zou and Josef A. Nossek

Institute for Network Theory and Circuit Design
Technical University of Munich, FRG

Abstract — This paper reports a chaotic attrac-
tor with an autonomous three-cell Cellular Neural
Network (CNN). It is shown that the attractor has
a structure very similar to the double scroll attrac-
tor. Through some equivalent transformations this
circuit in three major subspaces of its state space
is shown to belong to Chua's circuit family, although
originating from a completely different field.

1 Introduction

It has been long recognized that both real and mathematical
models of neural systems can give rise to complex nonperi-
odic i ~chaotic™) dyvnamies. It is also recognized that brains
are nonlinear networks composed of chaotic subsystems [4].
Therefore, it is important 10 investigate dynamical behav-
iors of minimalsized networks. which exhibit chaos. Unfortu-
nately such chaotic attractors ohserved in continuous analog
models of neural networks are rarely reported.

Recently. chaos lias been observed in a two-cell nonrecip-
rocal NN with sinusoidal excitation [3]. For autonomous
analog circuits three cells are needed to generate complex
dynamic behavior. In this paper such a chaotic attractor
is shown with a three-cell CNN. This attractor has a sur-
prising similarity to the double scroll attractor [2]. In fact.
with some approximations and equivalent transformations
this three-cell (NN can be interpreted as a circuit, which
in its major operating subspaces belongs to Chua's circuit
family.

First the system equations are given and some related
aspects are discussed in Section 2 briefly. Some simulated
results from the proposed system are also given in this sec-
tion. In Section 3 relations of this circuit to Chua’s circuit
family will be discussed.

2 System Description
Consider the CNN of Fig. 1(a). where the function f(-) is

graphically shown by Fig.1(b). The dynamics of the system
can be described by the set of ordinary differential equations:

.i‘] +.I'1 =])1_/(.1'1)—Sf(.'l‘g)—sf(:l's)
Iyt an = —sf(ry) + paf(xe) —rf(xs) (1)
Pyt = =sflrp) e flrs) - pafixs)

with the outpnt function
| .
) = 5@+ 1= le) = 1) (=1.2.3) ()

where py > 1. p,>1. p3>1. r>0, s>0.

One may notice that a normalized description is used for
convenience. and the inputs v,;;'s and bias currents I;;’s are
all omitted.

(a)
ir fix)
1
x&
-1 Ji o
-1
(b)

Figure]. (a) The autonomous three-cel]l CNN ;
{b) The output function

Fig. 2 shows the chaotic attractor observed by solving
(1) with the following parameter set
=125 p,=1.1. s = 3.2,

p3=1. r=44 (3)

and initial condition
z(0)=[0.1 0101)7 .

It is obvious that Fig. 2 shows an amazing similarity
to the double scroll attractor. System (1), (2) along with
the parameter set (3) has only three equilibria, which are all
unstable. Therefore. the unstable solution of the system is
not surprising. It will be shown that the eigenspaces of the
equilibria have the same structure as the double scroll, so
that the strong similarity is not a accidental phenomenon.

0-7803-0593-0/92 $3.00 1992 IEEE

A

r r

0.4) -
4 VY, 4 E 3
03r b
b
.l =
1+ ,f' 1 -
o / P -
[} s ’ e 4
2 o
Q1f < > P 1
] &z
02}
03} ,."' 1
FiRY -
2 A3 05 05 91 o1 0 o1 0r o or o
x1
y J
0sf t\k..‘ l
NN |
03F "l \\. ‘[
g 02}) - \ 1
otr SR i
NG TN i
s o oY, !
air N :
22p \ e 1
N i
03} U *
\.\:.\ "[N
04r Ny
13 -1 05 0 05 ! 13 : V5 2 93 oz o1 0 o1 0T o os os
<! x1 I
(c) (d)
0.2 > i
L8) / !
oust L .
H 3 .,”
1 o
olf »
1 .-.f:a';\“'
o r b 1
0.05 Iy
o) P4 |
L { o of e
0 /»,./. o
oos K e T
0.5F 1 N 2o .
Ok "\,
i 1 st ped
. /’,
S Ls AT o o1 0% 0 o o1 o o
=W 9 |
Fig. 2 The chaotic attractor. (a) Projection onto the (zy, z,)-plane. (b) Cross

section of the (z,.r;)-plane with z; = 0. (c) Projection onto the
plane. (d) Cross section of the (z1,z3)-plane with z, = 0.

(1, x3)-
(e) Projection onto

the (xz..r3)-plane. (f) Cross section of the (22, z3)-plane with z, = 0.

321

Let us define the following three subsets of R3:

Dy, = {{r1.05.23) |23 21, |ao| - Jza] < 1}
Do = {{r1.2.73) | |z] - jo| - 23] < 1} (4)
Doy = {(ar.0pa3) [1, fzof - [23f < 1} .

With the parameters in (3). the equilibria are given by:

P, = (1.1971.0.7273,-0.7107) € D,,
Po = (U0.0)EDQ (5)
P_, = (-1.1971.-0.7273,0.7107) € D_,

The eigenvalues of Jacobi-matrix at these equilibria, and
hence in the whole subspaces respectively, are calculated as:

% = —10: o, % jw,=0.05=£ 3543997 in Dy, and D_,
Yo = 1.935 0p % jwo = —0.7925 £ j1.1593 in Dy

Let £¢(P4) be the eigenspace corresponding to the real
eigenvalue 7, at Py and let E*(Py4) be the eigenspace cor-
responding to the complex eigenvalues o, + jw, at P . Fol-
lowing the same way. we define E¥(Pp) and E*(Pj) corre-
sponding to 4y and oy = jwy. respectively. Then,

dim £ (Py)
dim EY(Py)

dim E*(Pg) = 1
dim £5(Py) = 2

i

Now we see that the eigenspaces of the equilibria have
almost identical structures with the double scroll, this gives
some reasons. why both attractors share nearly the same
appearance and form.

3 Relations to Chua’s Circuit

Let us imagine that the output variables of cell 2 and 3 are
not saturated. i.e. f(x,) = x; and f(z3) = z3, (notice that
this is the case in the subspaces D4y, Dg, and D_,). Then,
because of the opposite-sign weights +r and —r, which can
be interpreted as a ideal gyrator, these two cells construct a
oscillatory circuit. This transformation is shown in Fig. 3.

ITUSE

yr

~a
—~ kb
7B =

Figure 3. Circuit equivalent transformations of cell 2 and
cell 3

On the other hand, cell 1 can be approximately substi-
tuted by a circuit with a linear capacitor and a nonlinear

resistor (Fig. 4(a)). The nonlinear function of the resistance
is given in Fig. 4(b). Now it is very obvious that the whole
circuit shown in Fig. 5 really belongs to Chua’s circuit fam-
ily.

Vys ip
Al %
R g(t) -1 hl o
(a) (b)
Figure 4. Approximation of the cell 1
R ZN
—

Jp S

Y25

Figure 5. Approximation of the whole circuit

As one can sec from Fig. 2. the output variables of cell
2 and 3 do not exceed the linear region (|z;| < 1) for most
operating time. so the approximation above gives a reason-
able circuit-theoretic interpretation of the chaotic behavior.
But it would be misleading to identify this attractor with
the double scroll. because &, and r3 do reach the saturation
region (|r;| > 1) for a not negligible time. It seems, that it
is this saturation function that makes the chaotic behavior
possible here. If py = 1. s = 3.2 and r = 4.4 are fixed, the
following relationship can be obtained: for a large p, (and
consequently large p;) one has a bad approximation and vice
versa. An exaniple to show this is given in Fig. 6.

4 Conclusion

An autonomous chaotic attractor with a three-cell CNN has
been found. which has very similar structures with the dou-
ble scroll.

References

(1] L. O. Chua and L. Yang, “Cellular Neural Networks:
Theory™. IEEE Trans. CAS, vol. 35, No.10, pp1257-
1272, Oct.1988.

[2) T. Matsumoto. L. O. Chua and M. Komuro, “The Dou-
ble Scroll”. IEEE Trans. CAS, vol. 32, No.8, pp798-818,
Aug. 1983

(3] F. Zou and J. A. Nossek, “A Chaotic Attractor with
Cellular Neural Networks”, IEEE Trans. on CAS, vol.
38, July, 1991

[4] K. Aihara,“Neural Networks and Chaos”, Proceeding of
IEEE ISCAS. 1991, pp 1367-1368

I - S,

.

Fig. 6 The chaotic attractor with the parameters p; = 1.99, p, = 2, p; =
1. & = 3.2, » = 4.4: and initial states #(0) = [0.1 0.1 0.1]7. (a) Projection
onto the (ay.ry)-plane. (b) Cross section of the (z;,z;)-plane with z3 = 0.
(c) Projection onto the (z,, z3)-plane. (d) Cross section of the (23, z3)-plane
with ., = 0. (e) Projection onto the (z4,z3)-plane. (f) Cross section of the
{x9, r3)-plane with r, = 0.

323

vi

PLRAY

PARTITIONING ON BOLTZMANN MACHINES*

A, Noenig

N.Wehn !

M. Glesner

Institute for Microelectronic Systems
Darmstadt University of Technology
D-6100 Darmstadt. Karlstrasse 15
Germany

Abstract

Recently neural networks have been claimed to be well suited
for solving a class of optimization problems such as the trav-
elling salesman problem. The Boltzmann Machine is a repre-
sentative of a special class of neural networks, viz. probabilis-
tic neural networks. The Boltzmann Machine’s algorithm is
very similar to the simulated annealing algorithm, with the
additional advantage of inherent massive parallelism. This
[feature motivated the investigation and application of Boliz-
mann Machines for a plethora of optimization problems. In
this paper we present a study to determine if the Bolt=mann
Machine is applicable to the partitioning problcm which is
one of the key problems in VLSI-synthesis. Various models
wdl be derived. Sequential and parallel implementations of
these models will be presented and their vesults will be com-
parved to existing heuristies,

1 Introduction

In the last years the field of neural networks experienced a
tremendous lot of activities. due to the great technological
advance in VLS]-design. These advances offer the possibility
of the implementation of large neural networks by dedicated
VLSI-hardware. Neural networks are attractive for combina-
torial optimization problems, because optimization problems
can conveniently be mapped onto those networks. The main
property of neural nets. beside adaptivity, is their inherent
parallelism, thus offering computational power far bevond
conventional approaches. In the past the Hopfield model
was emphasized by different researchers (2], [3], (4] and only
little attention was payed to the Boltzmann Machine. In our
opinion the Boltzmann Machine seems to be well suited for
optimization since it is very similiar to simulated annealing
which has been proven to be a very efficient optimization
strategy in many related CAD-VLSI fields. However the dis-
advantage of simulated annealing is its computational com-
plexity. In contrast parallel Boltzmann machines provide
equal performance and additionally offer, due to their inher-
ent parallelism, the possibility of speed up of orders of mag-
nitude by means of dedicated hardware implementations. In
this paper we investigate the true potential of Boltzmann
machines for the graph partitioning problem which is one of
the key problems in VLSI svnthesis [6]. [7].
“Supported by EEC (ESPRIT project 3281 "ASCIS”)
N, Wehn is also with Siemens AG Corporate R & D

324

2 The Boltzmann Machine

The Boltzmann Machine. introduced by Hinton & Sejnowski
[3]. is a neural network with a stochastic state transition
mechanism. As in Hopfield's model, the units have binary-
valued states, i.e. they are either “on” or “off”, and the
cunnections are bidirectional. The strength of a Boltzmann
Machine’s connection. i.e. the edge weight, can be considered
as the desirability that the units incident with this connec-
tion are both “on™. The units in a Boltzmann Machine try
to reach a maximal consensus about their individual states,
subject to the desirabilities expressed by their connection
strenghts. To accomplish this aim units adjust their states by
means of a probabilistic state transition mechanism. which
is governed by the simulated annealing algorithm (1]. The
Boltzmann Machine can be employed in the domains of clas-
sification. learuing and combinatorial optimnization. In this
paper the Boltzmann Machine (BM) is applied for combina-
torial optimization only. Basic terms and definitions cau be
found in {1], that has been the foundation of our work.
3 Bipartitioning

In this approach ouly bipartitioning is considered. i.e the
nodes V of an instance graph are divided in two sets 1. 15
so that the sum of the edge weights incident with nodes of
those two sets is optimal. Introducing, without loss of gen-
erality, some restrictions on the node and edge weigths, this
can be formulated as :

Definition 1 : Let G(V,E) be a graph with n vertices
and let w: V — [1] and ¢ : E — [0.1] be the node and
edge weighting function, respectively. Let a cost function

f(Vi, V1) be defined as \
33 Y e

fW. W) =
1=1 €€E, 5y,

Eeots = {e € Ele N Vi # 0,e\V; # 0) (1)

Then a Bipartition of the set V in the sets V1 and V; subject
to an additional balance constraint is defined as

(V]

Wub,=vV:vinl, =0 (2)

[Ml= 1l (S e V] 2 <a< (3)
2

fVi, W)= -I;Z E c(e) optimum (4)

T =1 e€Fegei

0-7803-0593-0/92 $3.00 1992 IEEE

24

Minimizing the sum of equ.4 is denoted as MIN CUT, max-
imizing as MAX CUT. Equ. 3 expresses the balance con-
straint imposed during optimization to exclude. e.g. the triv-
ial solution Vi =@ and Vo =V, or ¥y = V and V, = 0. All
other solutions not satisfying the balance constraint are also
rejected. The cost function for the general CUT problem
can be reformulated. if w;; = ¢(e,;) and z; represents the 0-1
variable associated with v; and x;, =0 — v; € V] ; ; =
1 — v € Vy

) =30 Y wil(l—ze + 2l —2,) (5)

1=1 y=i41

4 Development of Boltzmann
Machine Models

This section is dedicated to the development of several dis-
tinct BM implementations (denoted BM models) for the MIN
CUT problem. There are two alternative approaches. In (1]
a BM model has been tailored for the MAX CUT problem,
on which the transformed problem could be mapped. Alter-
natively, a BM model could be specifically tailored for the
MIN CUT problem.

4.1 Implementation by graph transforma-

tion

As mentioned above. the MAX CUT problem has been al-
ready successfully implemented on a BM. Let C,={{u;. u;}| ¢ €
Vyand Cyp = {{u,.1,} | {i. 7} € E}. Then the cost function
(COF) of the BM is :

Clky= > b+ Y vgk(uk(ey) (6)
{0,)y {4y }eCy
Choosing
b = Wy, vy = =2uw;, (7)
=1 /
This results in
n R n n
Cky =3 S wylzi+a,) Y Y —2wy, (8)
i=1 g=i41 i=1 j=i4+1

which is identical to the COF of equ.5 and so the consensus
function (CF) is feasible and order-preserving |[1].
This result can be used to implement the MIN CUT problem
on a BM by means of a little artifice.
The idea is to find an algorithm that transformes the graph
so that the MIN CUT solution of the original graph is iden-
tical to the MAX CUT solution of the transformed graph.
This algorithm is defined as follows :
1. Find the greatest edge weight w* = max’, w;
2. Increment this value, i.e. w* = w* + 1
3. Complete the graph with zero weighted edges, omitting
loops, i.e.
E*=E U {{vi,u;}] {ui, (;}NE)#0Vi=1.n,j=
14 1.n}
4. Transform edge weights :
for i:= 1 to |E"| do w; := w™ — wy

325

5. Apply BM MAX CUT solution to the transformed
graph. It has to be mentioned, that unfortunately this
solution does not comply with the balance constraint.
Only the trivial solution is excluded, because the trivial
solution is no local maximum.

So the balance constraint of equ.3 is reduced to

[l = V2l S [VI=1 (9)
4.2 Direct implementation of the Min Cut

Development of a Two-Layer Model The direct im-
plementation is hampered by an obstacle origining from the
opposed directions of “growth” of the CF and the COF dur-
ing optimization. The CF of the BM increases, whereas the
COF should decrease. This problem can be mended if, in-
stead of minimizing the Cut sum. the sum of edge weights
outside of the Cut is maximized. So a new COF f(X)~ is
introduced

f(X)y = Z Z wij(air; + (1 = x;)(1 = r))) (10)

=1 y=i141

Furthermore the stringent balance constraint of equ.3 can be
softened to a balance dependend penalty term in the COF
so that a modified COF f(X)™ results :

JXy"=f(X)y+P (1)

The penalty term is required to have a parabolic character-
istic, centered at full balance. Based on this modified COF
a two layer BM model (2LM) has been devised (Fig. 1).

Each layer mirrors the problem graph structure and the ac-
tivity of a unit corresponds with its membership in the set
left or right of the Cut. Since a node cannot be member of

“ees A

Figure 1: Two-Layer Model

both sets at once an additional fine term is introduced.
The COF has to be rewritten for the 2LM.

f(X)sim = Z Z Wi T T + Z Z WijTiaZ52

=1 j=t41 =1 j=i41

+ZZ(II,;;I‘!2 (l-)')
=1 =1
The CF for the 2LM is identical to the COF plus the addi-
tional fine term.
Theorem 1 : Let Cypp(k) be the CF of a BM implementing
a 2LM

¥y

FLAY

n

Cumlk) =D Y wilzazy + z0;)

=1 j=i+1

+Zza$n~'rn + Zbifﬂul}z (13)
t=1 j=1 =1
and let the weights b; and a be determined by the following
equations
b < —(w}, + (n = 1)a) (14)

w; denotes the edge weight sum of all edges incident with
node i, i.e. wi; = {3 _, wijle; N V; # 8},

4

a > ;2—3 w;; (15)
then the CF of the 2LM is feasible and order-preserving.
The proof of theorem can be found in [9]. In this proof it
is shown, that any configuration k, with no fine term active,
and with n “on” units is a local maximum of the CF and
corresponds to a feasible solution of the COF and further,
that the penalty term is maximal at full balance. Addition-
ally, the motivation for the choice of the parameters b and «
is presented.
Development of a One-Layer Model It is also possible
to derive a one-layer-BM-model (1LM) that implements the
balance constraint.

Figure 2: One-Layer Model

Theorem 2 : Let C(k) be the CF for a BM just implement-
ing the balance or penalty term

C(k):ic-x;-{-iidw;xi (16)

=1 t=1 j=i41]
Then, if ¢ and d are chosen

d<0 ; c=—-————d("2—]) (17)
the CF will be maximal for perfect balance. The proof of
theorem can also be found in [9). Now the straight forward
approach would be to superimpose the COF of equ.10 and
this balance term. But unfortunately edge weights of the
COF and the balance term have opposed signs. which re-
sults in the unwanted elimination of edges. The MAX CUT
approach of equ.8 does not have this drawback, so that a
balanced MAX CUT can be implemented on the 1LM. In
conjunction with the graph transformation algorithm a bal-
anced MIN CUT implementation on the 1LM is possible.

Additionally
8
d < —n—2 Z LT (18)

326

has to hold. This constraint is imposed to ensure that the
worst balanced solution has a greater consensus than the
best unbalanced solution. The parameter d determines the
slope of the penalty term, and thus the emphasis on the two
dual optimization aims of cut sum minimization and balance,
respectively. The 2LM model has a complexity of 2n nodes
and 1.5n% 4+ 0.5n edges, the 1LM has nnodes and 0.5(n? +n)
edges.
5 Simulation and Evaluation of

BM Models

As problem instances three different graphs were randomly
generated. Node number and connectivity is mirrored in
the graph’s name, edge number is 613, 2475 and 5588 for
N50D50, N100D50 and N150D50, respectively. A connectiv-
ity of 50% was chosen, because for sparse graphs a heuristic
procedure would perform better and for dense graphs, close
to full connectivity and edge weights equal to one, parti-
tioning becomes trivial. The graphs were partitioned with
both BM models and, as a reference, with the Fiduccia-
Mattheyses heuristic (FMH) [8].
The time steps displayed in all tables are relative, i.e. the
number of trials of the BM during optimization Las been
counted. The best results obtained by simulations of the
two models for the N50D50. the N100D50 and the N150D50
graph are displayed in Table).

Obviously, the 1LM outperforms the 2LM in both cases.

Time o Cut | o | Best
29750 | 1123 | 257.3 1 254
43050 | 756 | 298.4 | 12| 271
257.0 257
1087.8 | 6 | 1077

Mod. | COF | ¢
ILM | 2462.2 | 1
2LM | 9248 | 8
FMH
1LM [12079.7 | 6

65750 | 3027

2LM | 3959.0 | 14 | 85600 | 916 | 1231.8 | 16 | 1201
FMH 1119.0 1119
ILM [22169.0 | 10 | 104250 | 5335 | 24902 | 10 | 2476
FMH 2496.0 2496

Table 1: Results of N30D50 graph

So for the N150D50 graph the 2LM is no longer taken in
consideration. The 1LM provides in any case results equal
to or even superior than the FMH. It can be stated as the
conclusion of this part, that a sequential BM implementing
the MIN CUT problem by means of a 1LM can compete eas-
ily with known heuristics. In the following sections the topic
of parallel BM will be addressed.

6 Parallel Boltzmann Machines
The advantage of neural networks is their inherent paral-
lelism. Up to now only sequential BM have been considered.
Now the possibilities of parallelisation of the BM will be ex-
amined. Theoretical background and proofs of convergence
will be beyond of the scope of this paper but can be found in
[1]. Focus of this work is on synchronously parallel BMs with
unlimited parallelism. To efficiently implement parallelism it
is necessary to localize all calculations to reduce global com-
munication and thereby the complexity of a design. The
following calculations have been localized :

g

oy

¢ Consensus difference AC,(k), Cooling schedule,
Markov chain length and Stop criterion|l]

e Acceptance propability A.(u,c) The AP can be lo-
cally calculated based on the AC (k) of a unit u, but
is then of course strongly influenced by the miscalcu-
lations occuring during the evaluation of AC,(k).

¢ Generation propability G(u) and the related se-
lection mechanism The GP of a BM applying un-
limited parallelism can be chosen in the interval

1 ,

TAEOES (19)
A global selection mechanism consists of just one ran-
dom source, that selects one or a fixed amount of units.
If the selection mechanism is changed and the global
random source is replaced by |V independent random
sources, one for each unit u, then the selection can
take place without any global communication. This
localisation of the selection mechanism introduces an
interesting aspect. A global selection mechanism gen-
erates a state transition for an exactly fixed number
of units, e.g. 60% for G(u) = 0.6 , whereas the local
mechanism obeys the following rule :

P(X <m)=) P(X =k)
m h=0
=3 (1M 6wt -Gy 0
k=0
If|U|=50, m=30and G(u) = i = 0.6 is chosen
this will provide P(X = 30) = 0.11456 and P(X <
30) = 0.43904 . P(X > 30) = 0.4464.

7 Simulations with Parallel BMs

A BM with the features described in the preceding section
was implemented and simulations were carried out. The pa-
rameters K, L and o where chosen K =10,L = % V] a=
0.95. Fig. 3 illustrates results obtained for the N50D50
graph, using the 1LM. Evidently no convergence has been
achieved. This result contradicts those reported in [1]. To
verify the optimizers performance it has been tested with
the MAX CUT problemn, that has already been solved in [1}.
The results of the optimizer for the MAX CUT problem and
the graph from [1] were as expected and predicted. This
proves the validity of our implementation of a BM applying
unlimited parallelism.

8 Conclusion and Future Aspects

In this paper we have presented different models for the so-
lution of the partitioning problem on a BM. Sequential and
paralle] BM optimizers were implemented and compared to
existing heuristics. As it can be seen from the results the se-
quential implementation can compete with classical heuris-
tics, but in this case there is no advantage in time com-
plexity and behavior compared to simulated annealing. On
the other hand the parallel implementation, which repre-

327

(4 10 20 30 40 so 60 70

T S T S W Gl Sum

Figure 3: Parallel BM (1LM) and N50D50 graph

sents the advantage of the BM, is not applicable in this form
for optimization problems. Convergence cannot be guaran-
teed and will not be achieved for dense graphs close to full
connectivity, as is the case for the 1ILM. Thus the BM im-
plementing the described dynamics is not directly applicable
for general problems. This contradicts statements found in
the literature. Current research investigates the application
of dynamics providing the desired convergence properties.

References

[1] E. Aarts, J. Korst, Simulated Annealing and Boltzmann Ma-
chines, John Wiley & Sons, Wiley-Interscience Series in Dis-
crete Mathematics and Optimization, 1988

[2] M. L. Yu, A Study of the Applicability of Hopfield Decision
Neural nets to VLSI CAD, 26. DAC, 1989, pp. 412-417

(3] R. Libeskind-Hadas, C. L. Liu, Solutions of the Module
Orientation and Rotation Problems by Neural Computation
Networks, 26. DAC, 1989, pp. 400-405

[4

J. S. Yieh, P. Mazunder, A Neural Network for Circuit Par-
titioning, 26. DAC, 1989, pp. 406-411

[5] G. E. Hinton, T. J. Sejnowski, D. H. Ackley, “Boltzmann
Machines : Constraint Satisfaction Machines that Learn”,
Tech. Rep. CMU-84-119 , Carnegie-Mellon- University, 1984

(6] W.E. Donath, Logic Partitioning, The Benjamin Cummings
Publishing Company 1988, Physical Design Automation of
VLSI Systems, pp. 65-80

(7

-

T. Lengauer, The Combinatorial Complezity of Layout Prob-
lems, The Benjamin/Cummings Publishing Company 1988,
Physical Design Automation of VLSI Systems, pp. 461 - 488

8

—

Fiduccia, Mattheyses, “A Linear time Heuristic for Im-
proving Network Partitions”, Proc. 19t Design Automation
Conference, pp.175-181, ACM/IEEE 1982

[9

—

A. Koenig, “Ein Ansatz zur Loesung des Partitionierung-
sproblem auf der Basis der Boltzmann Maschine”, Tech. Re-
port DAT DA KOEN 84, Technische Hochschule Darmstadt,
FG Mikroelektronische Systeme, 1990

W &

_[V”"\:

An Improved Algorithm for Kohonen’s Self-organizing Feature Maps

Chau-Yun Hsu

and Hwai-En Wu

Department of Electrical Engineering Tatung Institute of Technology
Taipei Taiwan 10451 R.O.C.

Abstract--About artificial neural network, the
well-known architecture and algorithm of self-
organizing maps has the important property of
topology-preserving mapping of various features of
input signals and their abstractions with noise
involving, However, in the formation (learning) of
the mapping, the topological orders preserved in
the map are not all “"correct", e.g. for some
topological orders there is no such feature
relations in the 4input signals; also some
"correct"” topological orders corresponding to
actual feature relations of the input signals are
“lost" in the map. So it is more proper to call it
a "piecewise-correct" map. This is due to two
dominant factors: the initial weight problem and
the input sequence order problem. Here we propose
a modified algorithm which induces (1)insertion
and deletion of cells (2)Coulomb effect of the
learning factor to efficiently reduce those two
dominant problems and successfully form the
topologically correct map. Provided simulation
results show the great improvement and excellent
performance achieved by the proposed algorithm.

1. Introduction

The self-organizing feature maps were
initially introduced by Kohonen ([1}[2] attempting
to simulate the formation of topology-preserving
neural projection found in various area of the
brain. The well-known architecture and algorithm
of self-organizing maps has the important property
of automatic formation of topologically correct
maps of various features of input signals and

their abstractions. By using this important
property, the self-organizing maps has been
particularly successful in various pattern

recognition tasks involving very noisy signals
with acceptable computation complexity, such as
speech recognition [3], robotic control {4),
optimization problem (5}[6], etc.

The network used in the self-organizing model
consisting of interconnected adaptive PEs (cells)
whose connection arrangement is generally one-
dimensional or two-dimensional (rectangular,
hexagonal, etc.), and the input signal (vector) is
assumed to be fully connected in parallel to all
the cells in the network. Every cell has a
reference weight vector, and the output response
is obtained from the cell where its weight vector
get a best matching to the input vector, so this
network performs a dimensionality reduction
mapping of input vectors (generally in high
dimensional space) onto a low-dimensional (usually
one or two-dimensional) discrete lattice of PEs,
or cells.)

The learning algorithm of self-organizing
maps is a kind of competitive learning which have
all the cells in a neighborhood of the best
matching cell (winner) reinforced as training
proceeds. The reinforcement ies accomplished by
moving the weight vectors of these cells toward

328

the input vector. It has been verified that with
proper settings of neighborhood range and
adjusting rate, the network will converge to a
stable equilibrium to form the final mapping.
Also, many simulation experiments show that in the
learning process of the self-organizing maps, the
location of the cell in a network where the
response is maximum (best matching) becomes
specific to a certain characteristic or feature in
the set of input signals with the same (correct)
topological orders which is presented in the
relations of the input signal patterns, so the
resulted mapping is able to preserve the
topological relations. .

There are some modifications have been
suggested to self-organizing maps, but in stead of
fitting it to some application, here we present
the Kohonen’'s feature maps problem in a more
general way. As in the self-organizing maps, those
topological orders are not all “correct" or
"complete" corresponding to the feature relations
of input signals as discussed in section 2. As a
remedy, we propose a combined algorithm in section
3 which induces the procedure of insertion and
deletion of cell and applies Coulomb effect to the
weight updation in order to give much more chance
for each PE to characterize the distribution of
the original event properly. In section 4 we
provide some simulation results that show the
performance of the modified algorithm on several
simple examples. Finally, a brief conclusions are
summarized in section 5.

2. Learning in the Self-organizing Maps

The learning procedure of 'a self-organizing
map consists of two steps: (a) to find the best
matching cell (winner) (b) to update the weights
of the winner and its neighbors [7]. we summarize
these two steps as follows:

a. Given a sequence of randomly chosen input
samples X(k) from the input vector space, the
matching meagsurement is generally the Euclidean
distance between the weight vector of a cell
and the present input vector

NX(e)-we(e) || = minlx(t)-w; ()] i=1,2,..,M (1)
2

Where t is the discrete time index for input
sequence, W;(t) is the weight vector of cell i,
Wy (t) is that of the best matching cell, and M
is the number of cells in the network.

b. The weights of the winner and its neighbors are
updated as follows

Wi(t+l) = Wi(t) + Lp(dija(t)[X(t) ~ Wij(t)]
i=1,2,0..,M (2)
Where a(t) is the learning factor which is
monotonically decreasing with time index t.
Ly (i) is the lateral interaction function which
define the neighborhood of the winning cell k

0-7803-0593-0/92 $3.00 1992 IEEE

e ot O et s e

and the relative strength of adjustment of the
winner and its neighbors. It requires that

=1 for i=k
Ly(i) { <=1 for 1€ N
=0 otherwise

In most cases, Lyp(i)=1 for all i€N;, where Np
is a neighborhood of cell k which is symmetric
defined .around the «cell k and shrink
monotonically with time index t. This procedure
makes the winner and its neighbors to learn the
mean average and results a lateral interaction
between cells in the network, to perform self-
organization

As the learning proceeds the winner's
location in the network becomes specific to a
certain characteristic or feature in the set of
input signals with the same topological orders in
the original relations of input signals.
Unfortunately, some times these topological
orders on the map are not all "correct" or
"complete" corresponding to the relations of input
signals. For some topological orders on the map,
there is no such feature relations in the input
signals (incorrect), or some "correct" topological
orders corresponding to actual feature relations
of input signals are "lost” in the mapping (the
map fail to preserve these topological orders -
incomplete). For this reason, it is more proper to
call it a “"piecewise correct" map.

For the ease of understanding, we cite a
simple example which takes a one-dimensional
network to "learn" the topology-preserving mapping
of an distribution of input signal in two-
dimensional vector space. As we can see from Fig-
1, there are both the "incorrect" topological
relations and the "lost" topological relations
corresponding to the original signals. For the
display purpose, the input vector distribution and
the weight vectors of cells are plotted together
with the alphabet shape standing for uniform input
distribution, dots for weight vectors and lines
between dots for spatial orders on the map.

Further we found that, when the input
distribution is a convex region, there is no
"incorrect and lost" problem, but when the input
distribution is a concave region especially when
the distribution region is getting more spatially
complex, the "incorrect” and "lost" situations
are getting serious, even the feature map becomes
poorly-organized because of the fragmentation due
to too many "incorrect" relations.

This phenomenon can be explained as follows:
Before the network learning begins, the initial
weight vectors of cells are preset to distribute
in the input vector space randomly or in a manner
we prefer, anyway the initial topological orders

of these weight vectors have already been
determined in the beginning of learning . With
"the winner takes all" learning rules, as the
competition learning begins, the starting

"positions" of the weight vectors in the input
space will influence the competition results so as
to determine the initial "moving directions" of
weight vectors, therefore also limit the outcome
of the feature maps. Once, Kohonen made the point
that if the self-organizing map has any relevance
to biology, it tells why it is so important for
genetics to provide a Dbasically correct
topological lay-out for the nerve axon fascicles
which later self-organize into precise topological
mappings.{8] So the initial weight is a dominant
factor to the development of the feature maps.

On the other hand, as the learning proceeds,
the sampled input vectors are "fed" to the network
one by one for learning as a sequence of time
index. So, for fixed distribution samples, the
order of the input sequence will also limit the
competition, and the moving directions of weight
vectors. Different order may even induces the
totally different results.

The two factors mentioned above are combined
to dominate the way which the network "fits" the
input distribution. Kohonen has proved that it
will certainly converge to fit the input
distribution [2], but it was mentioned also by
Hecht-Nielsen that in practice it is "lack of
conformity"” to the desired probability density

- function [92), and it is often out of luck to fit

329

the distribution well. If we could preset the
weight to have orders in some way similar to those
of the input distribution, or if we could know the
importance of the input samples in order to design
a proper ordering sequence in advance, we would
have much more chance to fit it well. But
unfortunately these are impossible in practical,
as we generally can not have any information about
the characteristic of the distribution of input
data. Whereas, the work we are dedicated can
improve these two problem as describing in the
following.

3. Modified Learning Algorithm

In point to the "piecewise-correct" mapping
problem, the work here we intended to do is to
apply some additional algorithm and architecture
to the original ones of Kohonen'’s self-organizing
maps in order to reduce the probabilities of
"incorrect” and "lost" phenomenon in the resulted
maps. For this purpose, we add two procedures to
the learning rules of the self-organizing maps.

a. Insert and Delete

This algorithm was first introduced by B.
Angeniol’s group (5}, but we make a little
modifications here. In the competitive learning of
self-organizing maps, we adopt a network (for
simplified example, a linear array) with a dynamic
size. Initially the network has only a few
(generally one or two) cells. As the learning
begins, we count the times it wins in the
competition (be a winner) for every cell in each
learning turn (with all input samples presented).

Insert: When the winning times of a cell
excesses an upper-bound, one cell (or a few cells)
of PE is inserted to its nearest neighborhood with
the weight vector being set to all most the same
of the original cell (except a little shift from
the latter in the expanding direction of the
network or just in a random direction).

Delete: When the winning times of any cell
during a full learning turn is beyond a lower-
bound, we delete it from the network.

As the learning begins, every time a cell
respond to too many input samples, it makes a new
copy of itself to "share" its "burden", so the
network "grow" from a small size to a larger size
by cell insertion, also some redundant cells
(cells that are seldom win) are deleted and
finally a stable network size is reached with
those cells which win steadily. Since there are
only a few cells in the network initially, and the
weights of those sucessively inserted cells are
determined by the former. So, the initial weight
problem mentioned in previous section will be
greatly reduced. On the other hand, those cells of
finally resulted network will have about the same
winning times (between two bounds). This means
that each of them maps a roughly equiprobable
region of input distribution. This has the same
effect with conscience mechanism [10].

b. Coulomb Effect

Coulomb effect has been combined with neural
network in some research [11]. According to the
Coulomb law, the attractive force between two
charges with opposite polarity is inverse
proportional to the square of the distance between
these two charges. Here we apply this law to the
learning factor a(t). The modified learning factor
would be :

% i

. a(t)
a (t) =

ct) Ix(t) - wee) 2,
Where C(t) is the Coulomb effect coefficient
function which is monotonically decreasing with
time index t.
To avoid infinite value resulted from division
by zero, we further make a little modification :

a(t)

a*(t) =

5 (3)
[Cle) Ix(t) - we(e)f? + 1)

So the weight updating rule in equ.(2) becomes

Wi(t+l) = Wi(t) + Ly(i)a“(t)[X(t) - Wi(t)]
i=1,2,7..,M (4)
With the coulomb effect, the learning factor
would be much stronger when the present input
vector are getting closer to the winner’s weight
vector, so those weights of the input vectors
which are near to the winner’s weight are much
favorable in the updation procedure, e.g. the
cells of the network would learn the "nearer"
input patterns faster than others. Since the
nearer inputs have more influence on the winner
and its neighbors, so the sequence order of the
feeding input samples to the network becomes less
important. Therefore the influence of the input
sequence order mentioned in previous section is
also greatly reduced.

The total effect of combining these two
algorithms is actually to make the network "grow
along the distribution” to form the correctly
topology-preserving maps, so it is understandable
that the network would get much more chance to
"fit" the distribution region of input vectors and
have better exemption from topologically
"incorrect" connections. As a consequence, it
becomes more adaptive to complex feature
distribution. Using these two strategies, we could
efficiently alleviate the initial-weight problem
as well as the input-sequence-order problem. For
the ease of presentation, some simulation
experiments are also presented to verify the
performance in the next section.

4. Simulation Results

In a series of computer simulations,
performance of the proposed algorithm is examined
for several input distributions of various
complexity in this section. Also, a comparison of
the results of the proposed algorithm with those
of the original one is provided to illustrate the
improvement.

For the ease of discussion, we adopt one-
dimensional networks to learn the mapping from
two-dimensional vector space. The input space is
assumed to be a unit square, and the input samples
are uniformly distributed in the alphabet shaped
region within the unit square. In all the figure
of results, the alphabet shaped region stands for
the input distribution, the weight vectors’
positions in the input space are marked by dots,
and those lines between dots stand for the
neighborhood relations of cells

The lateral interaction function Lk(i) we use
in all simulation are chosen to be a Gaussian
function center on cell k., Where

2% |i-k|
. expl -
Ly(1)={ 0 R(t)

] for |i-k|<=R(t),

otherwise ;

where R(t) is the radius of the neighborhood
region which is monotonically decrease with time
index. Lk(i) is an approximation of the "Mexican
hat" shaped function introduced by Kohonen for
lateral interaction.[1)

In the first part of simulations, we use two
one-dimensional networks (one has a fixed size and

330

the other has a dynamic size) to present the time
history of the learning processes of both the
modified algorithm and the original one in the
case that the original algorithm usually get
failed in the mapping of this input distribution.

In these two learning processes, we use
different initial values of the learning factor. A
larger value is used in the modified case because
the Coulomb effect will actually reduce the
average strength of the learning factor. The
initial value of each parameter in both algorithm
is selected by trial to make the results as good
as possible. So these two processes are both
representative examples.

With the comparison of Fig-5 and Fig-6, it is
found that the modified algorithm really makes the
network growing along the distribution region,
while the original algorithm just have the network
swell out until it is "attached" to the input
distribution region, so the ill-mapping results.

In the second part of simulations, we have
both of two networks with different algorithm
learn various input distribution. In the learning
of every input distribution we take 100 trials
with different input sequence order and initial
weights for each network, and count the times of
case in which they successfully learn the mapping.
Fig-2 to Fig-4 show the successful result of each
distribution and table-1 1list the counting
results. Again, the initial value of each
parameter in both algorithm is chosen by trial to
make the result as good as possible.

The results in table-1 show the performance
improvement achieved by the modified algorithm in
these simulation experiment. On the other hand,
the counting times in which it succeeds with
modified algorithm in those four input
distribution regions tend to go down while the
input distribution region gets "sharper” folds
(with larger curvature, for example a "w" shaped
distribution region). This is because the sharp
folds of distribution region causes confusion when
the network grow along the input distribution
region. But anyway, the proposed algorithm has a
much better performance than the original
algorithm.

— !

= — / -]
| i
b incorriect .relation
e k
i T | \»—————-———-\\
//\\-«// !
lost relation
%

i ! I [
Fig-1 Fig-2 .

The incorrect and the
lost phenomenon in
the feature map.

The correct map in the
"S" shaped distribution

f\\ e ﬂ\\\\
\\<\\v//// \\
A AN
i \\

\
\?/ OO\
\\\\

Fig-4 Fig-3
The correct map in the The correct map in the
"M" shaped distribution “N" shaped distribution

,)
L)
I L
Fig-5 Learning time history of the original
algorithm with the initial values: a(0)=0.1, R(0)
=8, M=36, number of input samples=1092.

[reo— P] pm__wes

— |] .

| 1 (

LT) e
i | D

— i ,

! T:__“;:______:] f:#;:—- 1 iff:lfi__—____—f‘J

!(L‘*—“—::::::~ﬁ !k! ~7 U

;;=fiw_wng \-~——_~}\i ————

R s)

Fig-6 Learning time history of the modified
algorithm with the initial values: a(0)=0.8, R(0)
=8, C(0)=1000, upper-bound=60, lower-bound=30,
final number of cells M=27, number of input

samples=1092.
Times Distrib. |"S" shaped|"M" shaped|"N" shaped
samples’ samples’ samples’

Algorithm| Initial no.=1092 no.=1464 no.=137¢
a(0)=0.1

Original |R(0)=10 7 46 14
M=36
a(0)=0.9

Modified |R(0)=6 100 66 63
C(0)=1000

?able-l The successful times of both algorithm counted
in 100 trials in mapping three different distribution

5. Conclusion and Discussion

This paper presents a modified algorithm for
the learning procedure of the self-organizing
topology-preserving maps to improve the
"piecewise-correct” problem which happened
frequently in the original self-organizing maps.
The "piecewise-correct" problem are generally
caused by two dominant factors existing in the
learning procedure of the original algorithm. The
one is the initial-weight problem and the other is
the input-sequence-order problem. While our
algorithm can efficiently reduce the influence of
these two factors and successfully "guide" the
network to form a topologically correct map.

In the new proposed algorithm, we adopts a
dynamic network which allows cells to be inserted

331

and deleted and it adds the Coulomb effect to the
learning factor. The insertion and deletion
procedures are controlled by the upper-bound and
lower-bound of the winning times to try to keep
all cells mapping a roughly equiprobable region of
the input distribution, and since most cells’
initial weights are assigned to those of their
“father" cells, the initial weight problem becomes
no more serious. While the Coulomb effect
adaptively changes the value of the learning
factor to have all cells adapt themselves more to
the "nearer" input pattern, therefore it reduce
the importance of input sequence order.

Simulation results indicate excellent
performance of the modified algorithm in the
learning of the mapping of two-dimensional input
vector distribution using a one-dimensional
network. In the learning process the network is
guided to trace the distribution instead of just
blindly matching it. In the simulation results
show, a great improvement has been achieved by the
modified algorithm. Moreover, the distribution
tracing of the modified algorithm may also fail as
the input distribution region gets "sharp" folds
which easily causes a confusion in topological
relations.

Here we would like to point out that the
selection of initial values of all parameters in
these simulations are made by experience, but
since the example is a typical case with input
space normalized to unit space (square, cube or
hypercube), so these initial values used here can
be treated as typical values for other cases.
Whereas, some modifications might be needed for
insertion and deletion procedures in the learning
of a two-dimensional network.

Many application using self-organizing maps
have been succeeded because of the important
property of automatic formation of topologically
correct maps. Since the proposed algorithm can
greatly improve the correctness of the mapping, so
we can get a better performance via our algorithm
in many applications.

Reference

{1} T. kohonen, "Self-organized formation of
topologically correct feature maps," Biol.
Cybern., vol.43, pp.59-69, 1982.

[2]) —-eommee : "Self-organization and Associative
Memory, " Springer-Verlag, New York, 1984.

[3] ~mememen » "The ‘neural’ phonetic typewriter,"
Computer, vol.21, pp.l11-22, March 1988,

[4) HB. Ritter and K. Schulten, "Extending

Kohonen's self-organizing mapping algorithm
to learn ballistic movements," NATO ASI
Series, vol.F4l, pp. 393-406, 1988.

[5] B.Angeniol, G. del la Croix Vaubois, and J.-
Y. Le Texier, "Self-organizing feature maps
and the travelling salesman problem," Neural
Networks, vol.1, pp.289-293, 1988.

[6] Chau-Yun Hsu, M-H Tsai and W-M Chen,"A study
of feature- mapped approach to the
multiple travelling salesmen problem, "
Proc. IEEE Int Symp. of Circuit and System,
vol.3 pp.1589-1592, Tvme, 1991.

[7] T. Kohonen, "The self-organizing map,” Proc.
IEEE, vol.78, no.S$, PP.1464-1480, Sep. 199%0.

[8) ~-eemee- , movie shown at the 1985 annual
meeting of the Optical Society of America in
Washington, D.C.

[9) R. Hecht-Nielsen, "Neurocomputing,” Addison-~
Wesley, 1990.

[10) D. DeSieno, "“Adding a conscience to
competitive learning” Proc. IEEE Int.
Conf. on Neural Network, (New-York, July
1988) pp.I1117-124.

[11] C.L.Scofield, "Learning internal
representations in the Coulomb energy
network,"” Proc. IEE, Int. Conf. on Neural

Networks, ICNN-88, pp.I271-276.

et

