~ CONFERENCE RECORD OF
" THE IITH ANNUAL ACM

-~ SYMPOSIUM ON

~ THEORY OF COMPUTING

~ Symposium, 1979

Conference Record of
The
ELEVENTH ANNUAL ACM SYMPOSIUM

on

THEORY OF COMPUTING

Papers Presented at the Symposium
Atlanta, Georgia
April 30 - May 2, 1979

Sponsored by the

ASSOCIATION FOR COMPUTING MACHINERY
SPECIAL INTEREST GROUP ON AUTOMATA AND COMPUTABILITY THEORY

With the Cooperation of

The IEEE Computer Society Technical Committee on
Mathematical Foundations of Computing

Permission 10 copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial
advaniage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/ or specific permission.

ADDITIONAL COPIES OF THIS VOLUME ARE AVAILABLE PREPAID FROM:

SINGLE COPY ORDER DEPARTMENT
ASSOCIATION FOR COMPUTING MACHINERY, INC.
P. O. BOX 12105

CHURCH STREET STATION

NEW YORK, N. Y. 10249

PRICE: ACM 0r SIGACT MEMDEIS ..t cvvveeeerirnnnnnnreeraneneaocessennns $12.00
DTS & v o veee s e e eeeesneseeenneesecesassosassaseosssnsssssasnsssens $15.00

Copyight ©1979 by the Association for Computing Machinery, Inc. Copying without fee is permitted provided that the copies are not made or
distributed for direct commercial advantage and credit 1o the source is given. Abstracting with credit is permitted. For other copying of articles
that carry a code at the bottom of the first page; copying is permitted provided that the per-copy fee indicated in the code is paid through the
Copyright Clearance Center, P. O. Box 765, Schenectady, N.'Y. 12301. For permission to republish write to: Director of Publications,
Association for Computing Machinery. To copy otherwise, or republish, requires a fee and| or specific permission.

©1979 ACM 0-898791-003-6/79/0400

FOREWORD ,

The papers in this volume were contributed for presentation at the 1llth Annual ACM Symposium
on Theory of Computing, Atlanta, Georgia, April 30 -‘Hay 2, 1979. The conference was sponsored by the
Special Interest Group for Automata and Computability Theory of the Association for Computing Machinery.

The articles in these Proceedings were selected on January 5 at a meeting of the full program
committee from among 111 extended abstracts submitted in response to the call for papers. Selection
was based on originality and relevance to the theory of cbmputing. The papers in these Proceedings
were not formally refereed, and several papers represent préliminary reports of continuing research.
It is anticipated that most of these papers will appear in more polished and complete form in
scientific journals.

The conference organizers wish to thank all of those who submitted abstracts for consideration,
those colleagues who helped in the evaluation of the many abstracts, the sponsoring organizations for
their assistance and support, and the many individuals who contributed to the success of the
conference. The Program Chairman is grateful to Ms. Marcia Riedel and the secretarial staff of the
Computer Science Department at the University of Washington for their great assistance in handling
the many details involved in the committee's work. The organization of the conference was facilitated

by the use of TheoryNet (supported by NSF Grant MCS78-01689).

Program Committee

MichsellJ. Fischer, chairman
Allan Borodin

Sheila A. Greibach

Michael A. Harrison

David S. Johnson

Nick Pippenger

Vaughan R. Pratt

Larry Snyder

1i4i

ORGANIZING COMMITTEE

Program Chairman
Michael J. Fischer

Department of Computer Science
University of Washington

Seattle, Washington 98195

Local Arrangements Chairpersons
Richard A. DeMillo and Nancy A. Lynch

School of Information and Computer Science
Georgia Institute of Technology

Atlanta, Georgia 30332

Publicity Chairman

Walter A. Burkhard
Department of Applied Physics and Information Sciences
University of California at San Diego

La Jolla, California 92093

Conference Chairman

Alfred V. Aho ~
Computing Science Research Center
Bell Laboratories

Murray Hill, New Jersey 07974

iv

1979 ELEVENTH ANNUAL SYMPOSIUM ON
THEORY OF COMPUTING
ATLANTA, GEORGIA

APRIL 30 - MAY 2, 1979

TABLE OF CONTENTS *

Monday, April 30

Session I: Nick Pippenger, Chairman

The Recognition of Series Parallel Digraphs .
by Jacobo Valdes, Robert Endre Tarjan and Eugene L. Lawlerccoveuccoerconscancccassnncnnsons

Network Flow and Generalized Path Compression
by Zvi Galil and Amnon Naamad ...ceeerceosoroasosesoasesvsscanessnssoseanessnsassccasasanosossasnse

On Determining the Genus of a Graph in O(VO(S)) Steps .
by I. S. Fillotti, Gary L. Miller and John H. Redficivirvrerrenocrcncoccssosecssscanannonons

Decomposing a Polygon into its Convex Parts
by Bernard Chazelle and David Dobkin ..cuieeererieesseesassoesoocancssssnsssssssessssoosannsenns

Computing Integrated Costs of Sequences of Operations
with Application to Dictionaries
by P. Flajolet, J. Frangon and J. Vufllemin ...cceeuiierennoonvesveccaonsssssosesnnceonnnnonnanse

A Near Optimal Data Structufq for a Type of Range Query Problem
by Michael L. Fredmanc.ceceeeeeeseeseooesossocssosssssossessssssaassesssoncsncsssonnnsaosss

On a Multidimensional Search Problem
DY S. RAO KOBATXAJU . oeviitateeeereoeeeeceasesesessasosossssnssssssossssssscassssssssssasnssansss

The Complexity of Finding Periods
by Robert Sedgewick and Thomas G. SzymanSKLceeceecceccocesceosonssorsssencenssoscssossssssss

Session II: Michael Harrison, Chairman

Area~Time Complexity for VLSI

by C. Di ThOMPBON et sseessnsscoosseasssssossssssesssssosssssssssosenssossssssnsosnnassssnssssss

Deadlock-Free Packet Switching Networks
by Sam Toueg and Jeffrey D. ULIMAN cueveeoeononsscaoensessosssssssacsoassocscsoannnaseonasanesas

Storage Representations for Tree-Like Data Structures
by Arnold L. Rosenberg, Derick Wood and Zvi GaAlllveeeeeveveooosseoooancconnsacoosoosascanses

Implicit Data Structures
by J. Ian Munro and Hendra Suwand@c.eeeeeececncavsosnsscsessssssssssssssoanccscscnaoncnnes

On the Cryptocomplexity of Knapsack Systems

by AdL Shamir ...ceeiuierirsoseeetcecereneersoctsosesosssessnssssscssassssnasssossocaoscnnansosass

Finding Patterns Common to a Set of Strings
by Dana AnBludn ...ueeireiieuoesoosensnceseesosvarosocssensnsssesssasscsssasasesosocensoseannsss

The Complexity of the Equivalence Problem for Counter Machines,
Semilinear Sets and Simple Programs
by Eitan M. Gurari and 0scar H. Tbarracceeeeereecencesccsscancssoncsscassccascscsssnncsas

13

27

38

49

62

67

74

81

89

99

108

118

130

142

Tuesday, May 1

Session III: Vaughan Pratt, Chairman

Some Connections between Mathematical Logic and

Complexity Theory

by Richard A. DeMillo and Richard J. LIptOn .cceeercescssesossstscsseosscsvecsascssasscnsancasse

A Completeness Technique for D-Axiomatizable Semantics .
by Francine BermAN ..ccueeeeceveesesrsoccsssossosvsenssesosesnsssssssssacssssssassassssssssssnssse

On the Expressive Power of Dynamic Logic
by Albert Meyer and Karl Winklmannccccecececsossseacesococesoseccosssrcsesssesacansnsonsans

A Programming Language Theorem Which is Independent

of Peano Arithmetic

by Michael O'DONNELL ...ceeeeanacsesosssesnssnssnassssassssssoscsssssossessscssasconsaneseossass

Negation Can Be Exponentially Powerful

DY Lo Go VAlI8NE cuveeevensteesorocesesosaensesssasesoseassssssoscsossssoscssssssacessvsssnsansvens

On the Complexity of Bilinear Forms with Commutativity
by JoBePh Ja'JA' .iuieeiteteeernttstottaranttossssetacetsacetiotsatctossaractstseresesesnsosers

Session IV: Larry Snyder, Chaitman

Some Complexity Questions Related to Distributive Computing

by Andrew C. Y80 .evvcevvenctocsoonnenn

The Complexity of Problems in Systems of Communicating

Sequential Processes

R R R R I R A)

by Richard E. Ladnereeveveeceoonoesoacsosnssssessssosssssssssssncsnssssssssssssssssnssssnnns

Time-Space Trade-0Offs for Asynchronous Parallel Models -

Reducibilities and Equivalences

DY G. L. PELEIBOM +reeseeunooscossosnsrssssssessasantssasnsessssossosssososscsesosssssasossosonass

.Fast Parallel Processing Array Algorithms for Some Graph Problems

by S. Rao KOSAraju ..ccccevsssceceoosssnscssssonsosssnes

The Pebbling Problem is Complete in Polynomial Space

cseses e s erersesrsssesss0sesses e

by John R. Gilbert, Thomas Lengauer and Robert Endre Tarjan ceeetcencttttannnn e

Completeness Classes in Algebra

DY L. G. VAl1ANt .vvvevronescesssnosscsssesocassoasssoscsssssossssbasvessoaansossessnaasscssssnse

Upper and Lower Bounds on Time-Space Tradeoffs
by Thomas Lengauer and Robert Endre Tarjanciceieecesccccecnceescasccncncorccoastosonenaccs

On y-Reducibility Versus Polynomial Time Many-One Reducibility

by Timothy J., LODE ...vvvveecenccsscossns

Universal Games of Incomplete Information

by John H. Reifcocvvervnnn

Wednesday, May 2

Session V: David Johnson, Chairman

Computable Queries for Relational Data Bases

seessses

...... R R R R I R A S R R I R R

R R RN

by Ashok K. Chandra and David Harelc.ceeeiceisoncenceactosarossoaceossocsccstansnsonssccses

Equivalence of Relational Database Schemes
by Catriel Beeri, Alberto O. Mendelzon, Yehoshua Sagiv and Jeffrey D. UllmAn c.oveesecssnscasses

Minimum Covers in the Relational Database Model

by David Maierccv0v0veeene

sesesenee

csescsesce

vi

153

160

167

176

189

197

209

214

224

231

237

249

262

278

288

309

319

330

pPeterministic CFL's are Accepted Simultaneously in
Polynomial Time and Log Squared Space
by Stephen A. COOK .cvvrvrrronosnrsassassssssssssssscssncsoces

Real-time Simulation of Concatenable Double-ended Queues

by Double-ended Queues

by S. Ra0 KOBAYAJU ovvvvrcereersosesnonsssoas™sososssnsesaseerssssosnsasanas

Tree-Size Bounded Alternation

by Walter L, RUZZO ..ceveeecncnnsescnncesnencscocnnns

Lower Bounds on the Size of Sweeping Automata

by Michael Sipser

vii

338

346

352

360

The recognition of Series Parallel digraphs

Jacobo Valdes*
Department of Electrical Engineering and Computer Science
Princeton University
Princeton, N.J. 08540

Robert E. Tarjan*
Computer Science Department
Stanford Uhiversity
Stanford, Ca. 94305

Eugene L. Lawlert
. Computer Science Division
University of California at Berkeley
Berkeley, Ca. 94720

Abstract: we present an algorithm that recognizes the class of
General Series Parallel digraphs and runs in time proportional to
the size of its input. To perform this recognition task it is neces-
sary to compute the transitive reduction and transitive closure of
any General Series Parallel digraph. Our analysis is based on the
relationship between General Series Parallel digraphs and a class
of well known models of electrical networks.

1. Introduction

The interest of the directed acyclic graphs that we study in this
paper is due to their application to the problem of scheduling
under constraints. A number of problems of this type known to
be NP-complete when the constraints between the tasks to be
scheduled are arbitrary, can be solved efficiently when the con-
straints form a General Series Parallel (GSP) digraph ([LAW],
[MON], [SID]). These efficient algorithms use the simple recur-
sive ‘structure of the GSP constraints in a "divide and conquer”
approach.

Our main result is a linear time algorithm that determines
whether any given digraph is GSP, and if it is, describes its struc-
ture in a concise form suitable to be used by the scheduling algo-
rithms mentioned above. This recognition procedure works by
exploiting the relationship between GSP digraphs and the well stu-
died class of Two Terminal Series Parallel (TTSP) multidigraphs
(IADA], [DUF], [RIO], IWALY], [WEID.

Additionally, our analysis allows us to prove a simple forbid-
den subgraph characterization of GSP digraphs and design linear
time algorithms for the transitive closure and transitive reduction
of GSP digraphs as well as for the isomorphism of GSP digraphs
that are minimal.

Our work also raises the possibility of the existence of a poly-
nomial time algorithm to solve the subgraph isomorphism problem
for transitive and minimal GSP digraphs, and relates this problem
to a particular case of the subtree homomorphism problem.

The remainder of this paper is divided into four sections. The
first one provides the definitions and elementary facts needed to
understand the recognition procedure. In the second, the pro-
cedure itself is first outlined and shown correct, and an implemen-

* Work supported by NSF Grant MCS-75-2287¢ and ONR Grant
N00014-76-C-0688.
+ Work supported by NSF Grant M(S$-76-17605,

tation of it that runs in linear time discussed in detail. The third
section presents the forbidden subgraph characterization of GSP
digraphs and the last section presents some of the consequences of
our work.

2. Basic deﬁnitions and relations

2.1. Graph theoretical definitions

Most of the graph theoretical terms used are standard (see
[HARY] for instance). We therefore limit ourselves to defining the
most commonly used terms and those that may produce confu-
sion. ‘

A graph G=<V E>, consists of a finite set of verrices V and a
finite set of edges E. Edges are pairs of distict vertices; if the edges
of a graph are unordered pairs the graph is wndirected and if they
are ordered the graph is directed. We will abreviate directed graph
as digraph.

A digraph G=<V_E> is complete bipartite if V can be parti-
tioned into H and T so that E=HxT. The set H is called the head
and T is called the rail of G.

If the set of edges of a graph may be a multiset, that is, if we
allow multiple edges between the same two vertices, the graph is
called a mulrigraph. We will abreviate directed multigraph as mul-
tidigraph. The terms that we define for graphs in the rest of this
section can be applied to multigraphs as well.

A vertex v of a digraph G is a source if no edge of G enters v.
Similarly a vertex v is a sink if no edge of G leaves v.

A path in a-graph (directed or undirected) is a sequence of
vertices v,,V,.....v, such that for all 1<i<n+1 the pair (v;_,,v;) is
an edge of the graph. If vi=v,, the path is called a cycle. A graph
(directed or undirected) that does not contain cycles is called acy-
clic. 'We will abreviate directed acyclic graph as dag.

A dag is rransitive if it contains an edge (u,v) between any two
vertices such that there is a_path from u to v. The wansitive closure
of a dag G=<V,E>, is the dag Gy=<V.,E{> for which E is
the minimal subset of VxV that includes E and makes Gy transi-
tive. N :

An edge (u,v) of a dag is redundant under transitive closure or
simply redundant if there is a path from u to v in the dag that does
not include the edge. A dag that does not contain any redundant
edge is called minimal. The transitive reduction of a dag G is the

unique minimal dag having the same transitive closure as G.
The line digraph of a digraph G is a digraph L(G) that has:
- a vertex f(e) for each edge e of G; and

- an edge (f(e;).fe,)) for each pair of edges of G of the form
e;=(u,v), e;=(v,w).

A graph G =<V E\> is a subgraph of another G=<V E>
if V, is a subset of V and E, is a subset of E. For any subset S of
the vertices of a graph G, the induced subgraph of S is the maxi-
mal subgraph of G with vertex set S. We sat that G contains a
subgraph homeomorphic to H if H can be obtained from G by a
sequence of the following operations:

- removal of an edge;

- replacement of two edges of the form (u,v), (v,w) by an
edge (u,w) when v has degree 2.

The assumptions used to analyze our algorithms are standard
and can be found in [AHUI.

2.2. Minimal Series Parallel digraphs

We define the class of GSP dags in relation to the subclass of
its members that are minimal. The dags in this subclass are called
Minimal Series Parallel (MSP), and are defined recursively as fol-
lows:

Definition 1: [Minimal Series Parallel dags)
(i) The dag having a single vertex and no edges is MSP.

Gi) if Gy=<V,E;> and G,=<V,,E,> are two MSP dags,
so is either of the dags constructed by the following opera-
tions:

() Parallel composition: G, =<V UV, E|UE,>.

(b) Series composition: G,=<V,UV,E|UE,U (N xR,)>,
where N, is the set of sinks of G, and R, the set of
sources of G,. O

We now define the class of GSP dags as follows:
Definition 2: [General Series Paralle! dags)

A dag is GSP if and only if its transitive reduction is a MSP
dag. O

Figure 1 shows the construction of a MSP dag by a sequence
of series and parallel compositions. Figure 2 shows a GSP dag
whose transitive reduction is the MSP dag of fig.1.

A MSP dag constructed by the operations of def.l can be
represented in a natural way by a binary tree as shown in fig.3.
This tree has been constructed by (i) associating the trivial tree
having one node with the MSP dag having one vertex and no
edges, and (ii) using the rules of fig.4 to build larger trees from
smaller ones as the process of building the MSP dag by series and
parallel compositions progresses.

The result is what we call a binary decomposition tree: a binary
tree having a leaf for each vertex of the MSP dag it represents,
and whose internal nodes are labelled S or P to indicate respec-
tively the series or parallel composition of the MSP dags
represented by the subtrees rooted at the children of the node.
Binary decomposition trees provide a concise description of the
structure of a MSP dag.

It should be noticed that several non isomorphic binary
decomposition trees may represent the same MSP dag. This is due
to the symmetry of the parailel composition operation and to the

]
s\ ¢ -
a [z .e
* § h i
N
b d
a ke e b
—bo—ne
. 6 b ¢
Fig.1

Construction of 4 MSP dag by series and parallel compositions.

Fig.2
A GSP dag.

associativity of consecutive series or parallel compositions. The
symmetry of parallel compositions makes the left-right ordering of
the children of a P node irrelevant and the associativity of each of
the two operations introduces the ambiguity typical of
unparenthesized infix expressions. These characteristics are illus-
trated in fig.5.

A property of MSP and GSP dags that plays an important role
in our recognition procedure, involves the partial order induced by
the edges of a MSP dag on the set of its vertices.

b ¢ d s
\?/ \/ .
N Y
\‘/ \5/
. \?/
Fig.3

Binary decomposition tree representing
the MSP dug of fig.1.

L& ok

N <

o

Fig.4
Rules used to construct T and T}, (the binary
decomposition trees of G, and G, of def.1)
from T, and T, (the binary decomposition trees
of G| and G in the same definition).

ie ! ? e 4
@) \ / \/
e P ?
'S & 3 4 : 3
(.b) . —_— \8/ s \’s/
\ b/ N g/
40 \]) X 3
€ rars \?/ | \7/
AN \N_7/
3 ?
Fig.5

Sources of muitiplicity of binary decomposition trees.
(a) Symmetry of paralicl compositions.
(b). (c) Associativity of series and parallel compositions.

In general, the binary relation among vertices of a dag G
defined by : "u— v i and only if there is a path from u to v in G' is a
partial order. Any partial order on a set can be defined as the
intersection of several total orders on the same set, and the
minimum number of total orders needed to define the partial
order in this fashion is called its dimension. As an example, fig.6
shows a MSP dag and two total orders on the set of its vertices.

The intersection of the total orders defines the same partial order
as the relation "—" described earlier: there is a path from vertex u
to vertex v in the dag if and only if u appears before v in the two
total orders. Thus the partial order induced by the dag of fig.6 is
at most two-dimensional.

b 4 Torae ompers :
abedefghi
CLC e { aghicbedy
s k.

Fig.6
A MSP dag. and two total orders on its vertices whose
intersection gives the partial order induced by its cdges.

It should be noted that the partial order induced by any dag is
the same as the one induced by its transitive closure or its transi-
live reduction, since the relation “—" is defined in terms of paths
between vertices.

The partial order induced by the edges of any MSP dag is at
most two-dimensional, that is, it can be obtained as the intersec-
tion of at most two total orders. This fact will be proved by
describing an algorithm that takes a binary decomposition tree uas
input and provides two partial orders whose intersection defines
the MSP dag represented by the tree. We postpone this descrip-
tion however until a global outline of the GSP recognition pro-
cedure in which it is used has been presented.

2.3. Two Terminal Series Parallel multidigraphs

In our recognition algarithm for GSP dags a central role is
played- by the relationship between MSP dags and the class of Two
Terminal Series Parallel (TTSP) muitidigraphs. Consequently this
section is devoted to the definition of this class and 10 a review of
the relevant properties of its members. '

The class of TTSP multidigraphs (named in this fashion
because all its members have a single source and a single sink) is
defined recursively as follows:

Definition 3: [Two Terminal Series Parallel Multidigraphs}
(i) A- digraph consisting of wo vertices joined by a single
.edge is TTSP.
(ii) If G, and G, are TTSP multidigraphs, so is the multidi-
graph obtained by either of the following operations:
(a) Two rerminal parallel composition: identify the source of
G, with the source of G, and the sink of G, with the
sink of G,. :

(b) Two rerminal series composition: identify the sink of G
with the source of G,. O

The construction of a TTSP multidigraph using the operations
of def.3 is shown in fig.7. TTSP multidigraphs are obviously acy-
clic, since the trivial TTSP multidigraph has only one edge, and
the operations of def.3 do not create cycles when applied to acyclic
multidigraphs.

Fig.7
Construction of a TTSP multidigraph by two terminal
serics and two terminal parallel compositions.

The class of multigraphs containing precisely the undirected
versions of all TTSP multidigraphs has been extensively studied
({IaADA), [DUF), [RI0O), [WAL], (WEI]D because of its relation-
ship with the networks constructed by connection in series or in
parallel of electrical components (resistors, capacitors, etc.). The
properties of TTSP multidigraphs described in this section are, for
the most part, simple extensions of known properties of their
undirected versions, and therefore only summary proofs are pro-
vided for them. A precise description of the relationship between
TTSP multidigraphs and their undirected versions, as well as com-
plete proofs of the properties we describe, can be found in [VAL].

Given the formal similarities between def.3 and def.1. it
should come as no surprise that everything said about decomposi-
tion trees for MSP dags applies to TTSP multidigraphs almost ver-
batim. As an example, fig.8 shows the binary decomposition tree
corresponding to the construction process of fig.7. note that the
decomposition tree has now a leaf for each of the edges of the
TTSP multidigraph it represents.

The formal similarity of their definitions suggests also a
vertex-edge duality between MSP dags and TTSP multidigraphs.
The following lemma shows that this is indeed the case, and
‘relates the two classes through the line digraph transformation.

Lemma 1: An acyclic multidigraph with a single source and a
single sink is TTSP if and only if its line digraph is a MSP dag.

\/ \?/ o A
N\ \./ .
At KA

Fig.8
A binary decomposition tree for the TTSP
multidigraph of fig.7.

Proof: follows by induction on the number of edges of the
multidigraph with the aid of two facts:

(i) the line digraph of the trivial TTSP multidigraph (two ver-
tices joined by a directed edge) is the trivial MSP dag (one
vertex and no edges),

(i) the line digraph of the two terminal series (parallel) com-
position of G, and G, is the series (parallel) composition
of the line digraph of G| and the line digraph of G, O

A further consequence of the relation given by (i) and (ii) in
the above proof is that if T is a binary decomposition tree of a
TTSP multidigraph G, and we regard it as the binary decomposi-
tion tree of a MSP dag, then T represents the line digraph of G.
As an example, it is trivial to test that the line digraph of the
TTSP multidigraph of fig.7 is the MSP dag of fig.] and that both
can be represented by the same binary decomposition tree (shown
in fig.3 and fig.8).

Another important characterization of TTSP multidigraphs
based on the reductions shown in fig.9 is given by the following
lemma:

@) ot » 7
B (o > "
Fig.9

(a) Series reduction. (b) Parallel reduction.

Lemma 2: A muultidigraph is TTSP if and only if it can be
reduced to the trivial TTSP multidigraph (two vertices joined
by a single edge) by a sequence of series and parallel reduc-
tions.

Proof: This lemma is a trivial generalization of the results of
Duffin [DUF] for undirected TTSP multigraphs, and can be
established by an easy induction (on the number of reductions
applied for the "if* part, and on the number of edges for the
"only if"). The details can be found in [VAL] or [DUF]. O

This characterization is the basis of an efficient algorithm to
recognize the class of TTSP multidigraphs that we will use later on
as part of our recognition procedure for GSP dags: to test whether

a multidigraph is TTSP we repeatedly apply series and parallel
reductions to it until no more reductions are possible, and then
test whether the remaining digraph consists of a single edge.

Lemma 2 is not sufficient however to guarantee that the
recognition procedure just outlined will provide the correct answer.
The lemma does indeed ‘say that ‘we will succeed in reducing the
‘multidigraph to a single edge only if it is TTSP. Nevertheless the
temma does not guarantee that we will succeed in reducing a TTSP
multidigraph by applying to it arbitrarily selected series and parallel
reductions and only states that there exists at least one sequence
of such reductions that will reduce the multidigraph.

Fortunately, the reduction systém that we are using has a
property — known as the Church-Rosser property — that guarantees
that the characteristic of being reducible to a single edge is
preserved by the application of any series or parallel reduction.
We can therefore carry out any applicable reduction at any point
without fear of hurting our chances of ultimately reducing the
multidigraph to a single edge.

Symbo! manipulation systems possessing the Church-Rosser
(CR) property are useful in many areas of Mathematics and Com-
puter Science, and several sufficient conditions for a system to
posses this property are known ([ROS], [SETD). Using these
sufficient conditions it is simple to prove that the reduction system
consisting of series and parallel reductions has the CR property.
The proof requires however a good deal of background irrelevant
for our purposes and is omitted (see {HKS] or (WAL] for a proof
of the CR property of the undirected version of our reduction sys-
tem that can be easily generalized to the directed case.)

Just as important for .our purposes as the simplicity of the
recognition algorithm for TTSP multidigraphs described. is the fact
that a binary decomposition tree of the multidigraph being reduced
can be obtained as a byproduct of the reduction process.

In order 1o obtain the decomposition tree, we associate i labe!
with each edge of the multidigraph being reduced. Initially the
label of each edge is a trivial binary tree consisting of a single
node. As the reduction process introduces new edges we use the
rules of fig.10 to compute the binary trees used to label them.

T T
\’
I s A
T
T, /T‘

> 2,

il
Fig.10

Computing the label of 4 new cdge
introduced by u scries or parallel reduction.

The binary decomposition tree of the initial multidigraph is
obtained as the label of the only remaining edge after the reduc-
tion, a fact that can be proved by an easy induction that we omit
(see [VAL]). An example of this process is shown in fig.11.

-
~
-
‘ﬂ\(‘.
&
W

Iﬂ
LY

\4
/
“
2\

-

Fig.11
Example of how a binary decomposition tree of a TTSP
multidigraph can be obtained from the reduction process.

3. The GSP recognition algorithm

We have finally collected enough facts to be able to outline
our procedure to recognize the class of GSP dags and provide a.
proof of its correctness.

Algorithm 1: [Recognition procedure for the class of GSP
dags]

Input: a dag G. :

Output: YES if G is GSP, NO otherwise.

Step 1: Pseudo wansitive reduction of G. Given G=<V.E>,
partiion E into Ep and Ey so that if G is GSP, then
Gy=<V.Ey> is its transitive reduction (and therefore
MSP). If G is not GSP, Gy may be MSP (we have to pay this
price in order to be able to implement this siep in linear time
since it is unlikely that a linear time transitive reduction algo-
rithm exists for arbitrary dags [AGUD.

Step 2: Compute the line digraph inverse of Gy Test whether
G, satisfies a sufficient condition (satisfied by alt MSP dags)
for having a line digraph inverse L-'(Gyy). If Gy does not
satisfy this condition we answer NO and stop, otherwise we
compute L™'(Gyy) so that Gy is MSP if and only if L™ (Gy)
is TTSP (lemma 1).

Step 3: Test whether L™'(Gy) is TTSP using the characteriza-
tion of lemma 2. If L-'(Gy) is TTSP compute a binary
decomposition tree T for it, otherwise answer NO and stop.
According to what we said earlier, T is a decomposition tree of

L-'Gy,) as a TTSP multidigraph and of Gy (its line digraph)

as a MSP dag.

Step 4: Test whether Gy is the transitive reduction of G. That is,
test that the edges in E; belong to the transitive closure of
Gy If they do, answer YES and output T, otherwise answer
NO and stop. This step will be performed by using T 10 com-
pute two total orders on V whose intersection defines the par-
tial order — on Gy, then using them to test, for each edge
(u,v) of Ey, whether there is a path from u to v in Gy by
testing whether u appears before v on both 1otal orders. T

We can prove this procedure correct by the following argu-
ment.

If G is GSP, then Gy, will be MSP and will satisfy the test of
Step 2. If Gy is MSP, according 1o lemma | L™'(Gy) will be
TTSP and thus will satisfy the test of Step 3. Step 4 will simply
certify that Step | performed the transitive reduction of G and the
algorithm will answer YES.

If, on the other hand, G is not GSP we have two possibilities:
either Gy is not MSP or it is not the transitive reduction of G. In
the first case the algorithm will answer NO in either Step 2 or Step
3, since according to lemma | L-'(Gy) cannot be TTSP if Gy, is
not MSP, and in the second case the algorithm will answer NO in
Step 4.

In either case the algorithm produces the right answer, and we
conclude that it recognizes the class of GSP dags as claimed.

Unfortunately, the above description of the algorithm is far
from being precise enough to establish the linear upper bound on
its running time that we want. We will therefore devote the rest
of this section 1o providing enough details about its implementa-
tion so this linear bound can be established.

3.1. The transitive reduction of GSP dags

We will now describe how to implement Step 1 of the GSP
recognition algorithm so it runs in a number of steps that grows
linearly with the size of the inpui dag. Remember that we want a
procedure that computes the transitive reduction of GSP dags and
may do anything on a dag that is not GSP.

Consider the following functions defined on a dag G with n
vertices:

The layer function: Lg;: V—{0,1.2,....n-1}.

L;(v)=0if v is a source, otherwise the length of the longest

path from a source of G to v. O

The jump function: §;;: E—{1,2,...,n-1}.

J(u,v)) =L(v)-L;(w). O

The minimum jump function M;: V—{0,1,2,....n-1}.

M¢(v)=0if v is a sink of G, otherwise the minimum value of

Ji; over all edges that leave v. O

Figure 12 shows the values of these three functions for the
MSP dag of fig.1.

i ®
L‘:o 3 3
{ 2 3

Fig.12
Values of L¢;. J¢; and Mg; for the MSP dag of fig. 1.

Our interest in these fuctions is due to the following facts:

Lemma 3: Let G be a dag. For any edge (u,v) of G that is
redundant under transitive closure M;(u) < J;({u,v)).

Proof: Because G has no multiple edges, the path from u to v
not including (u,v) has to have at least two edges. Let (u,x)
be the first edge on that path; by definition, the values of L;
must increase along any path in G, and there is a path from x
to v therefore L;(v) > Lg(x). By definition J;((uv)) >
J;;({u,x)) and the prosition must be true since M(;(u) cannot
be greater than J;((u,x)). O

Lemma 4: If G is MSP then M(;(u)=1J;((u,v)) for any edge
(u,v) of G.

Proof: We prove the proposition by induction on the number
of vertices of G.

If G has one vertex, the proposition is trivially true; oth-
erwise let the proposition hold for all MSP dags with fewer
than k vertices, and let G be the series or parallel composition
of G, and G,, each having at most k-/ vertices.

We discuss in detail only:the case when G is the series
composition of G, and G, since the analysis of the other case
is quite similar.

When G is the series composition of G, and G, there are
three possibilities: (i) (u,v) is an edge of Gy, (i) (u,v) is an
edge of G,, and (i) (u,v) joins a sink of G, to a source of
G,.

When (u,v) is an edge of G, the proposition follows
immediately from the induction hypothesis and the fact that
JG((u,v))-Jol((u,v)) for all edges of G, (this is a trivial

consequence of the fact that LG(V)-LGl(v) for all vertices of

G, which in turn follows directly from the definitions of the
layer function and series composition).

Let now (u,v) be an edge of G, and q be the length of the
longest path in G,. This path has to end in a sink of G, and
therefore, by definition of the layer function,
LG(x)-L(,-z(x)+q+l for any vertex x of G;. Because J; is

defined by the difference of two layer values, this implies
Ju(e)-.l(;z(e) for any edge e of G, from this fact and the

induction hypothesis the proposition follows trivially.

Finally, if (u,v) joins a sink of G, to a source of G, we
know that L¢;(y)=q+1 for any source y of G,. Since any edge
e leaving a sink u of G, must enter a source of G, it must be
that J;(e)=q+1-L;(u) and therefore M(;(u)=J;(e) for all
edges leaving u. From this fact the proposition follows trivi-
ally once again. O

The jump and minimum jump functions were defined in terms
of the layer function, which in turn was defined in terms of long-
est paths in a dag. Because a path of this type cannot contain
edges that are redundant, the values of these three functions on a
dag are insensitive to the addition or removal of redundant edges.
As an example, it is trivial to test that the values given in fig.12
for the MSP dag of fig.1 are identical to the values that one would
obtain for the GSP dag of fig.2.

This fact together with lemmas 3 and 4 directly implies the fol-
lowing:

Corollary 1: Let G be a GSP dag and (u,v) one of its edges.
The edge (u,v) is redundant under transitive closure in G if
and only if Mg (u) < J(uv)). O

As a consequence, we know that it is enough to compute the
values of the jump and minimum jump functions to perform the
transitive reduction of a GSP dag. Because these two functions
can be trivially computed from the values of the layer function,
and the layer values can be computed by a trivial modification of
the topological sort algorithm ([KNU]), we can implement Step 1
of the GSP recognition procedure to run in O{(n+m) steps for a
dag with n vertices and m edges.

3.2. The inverse line digraph of a dag

We now consider the problem of implementing Step 2 of the
recognition procedure.

The problem of characterizing the dags that have line digraph
inverses has been studied from a non-algorithmic point of view by
several authors ([HN], [KLED), and the problem of computing the
inverse line graph for an arbitrary graph has been solved by Lehot
[LEH]. : :

Unfortunately Lehot's approach does not work for dags mostly
because several nonisomorphic multidigraphs may have the same
line digraph, as shown in fig.13.

We will solve the problem in two steps: first we use a charac-
terization due to Harary and Norman [HN] to determine whether
the dag has a line digraph inverse, and, once we know that it does,
we then compute a specific line digraph inverse out of the several
possible ones.

Definition 4: (Complete Bipartite Composite dags]

A dag G is Complete Bipartite Composite (CBC) if there
exists a set of complete bipartité subgraphs of G: B,,B,,....B,,
called the bipartite components of G, such that:

1 .3

L(6): L) ¢ 4

Fig.13
Two nonisomorphic multidigraphs
that have the same line digraph.

(a) each edge of G belongs to exactly one bipartite com-
ponent;

(b) every vertex v of G, except the sinks, belongs to the head
of exactly one bipartite component denoted h(v);

(c) every vertex v of G, except the sources, belongs to the
1ail of exactly one bipartite component denoted t(v). O

It is a trivial exercise to prove that the bipartite components of
a CBC dag are unique (see [VAL]).

The first part of the characterization we seek is given by the
following lemma:

Lemma 5: A dag has a line digraph inverse if and only if it is
CBC.

Proof: See [HN]. O

This lemma solves the question of whether a dag has a line
digraph inverse, but says nothing about the multiplicity of inverses
mentioned earlier. Fortunately Harary and Norman provide the
answer to this problem as well:

Lemma 6: Let G; and G, be two multidigraphs such that
L(G,) = L(G,). The multidigraphs obtained from G, and G,
by merging the sources into a single source and the sinks into
a single sink are isomorphic.

Proof: Harary and Norman [HN] prove that the inverse line
digraph is unique if the sources and sinks are deleted instead
of merged. The modification of their argument to prove our
lemma is trivial and is omitted. O

From now on any mention of the line digraph inverse L~'(G)
of a CBC dag G, will refer to the unique multidigraph having a
single source and a single sink whose line digraph is G.

These results would be irrelevant for our purposes but for the
following fact:

Lemma 7: Every MSP dag is CBC.

Proof: In the construction of a MSP dag by series and parallel
compositions new edges are introduced exclusively by series
compositions, and each series composition introduces edges
that form a complete bipartite subgraph of the complete MSP
dag. It is trivial to check that the subgraphs defined by the
series compositions satisfy the conditions of def.4 and are
therefore the unique bipartite components of the MSP dag. O

We have therefore solved the first part of our task: we have
found a property (being CBC) satisfied by all MSP dags that is a

sufficient condition for a dag to posses an inverse line digraph.
We will now complete our task by showing (i) how to test a given
dag for this property and (ii) how to compute its line digraph
inverse in a number of steps proportional to the size of the dag.

We can test whether a dag is CBC as follows. We select an
edge (u,v) of the dag that has not been assigned to a bipartite
component yet and assign it 1o a new bipartite component B,. We
now mark all the predecessors of v as belonging to the head, and
all the succesors of u as belonging to the tail of B,. We then test
whether there is a complete bipartite subgraph of the dag with the
head and tail just identified; if no such subgraph is found, the dag
is not CBC. We continue the process by selecting a new edge and
repeating the operation until no edge remains unassigned. While
performing this process, we decide that the dag is not CBC if we
ever atlempt to assign an edge to more than one bipartite com-
ponent, or mark a vertex as belonging to more than one head or
one tail.

Because of the uniqueness of the bipartite components, this
process will identify a new component every time an unassigned
edge is selected and processed as described above. Therefore, by
assigning all edges to components, this process proves that the
input dag was CBC by identifying its bipartite components.

Because the implementation of this procedure to run in a
number of steps proportional to the size of the input dag is a
trivial exercise in data structures, we find ourselves closer to our
immediate goal of implementing Step 2 of the GSP recognition
procedure in linear time. We therefore proceed to consider the
remaining problem: computing the inverse line digraph of a CBC
dag.

Consider the following transformation of a CBC dag:

Definition 5: [The inverse line digraph of a CBC dag]

Let G be a CBC dag with bipartite components B|,B,.....B,.
The vertex set of L~'(G) is {B,.,B,,B,.....B,.B,} and its edge

set has an edge for each veriex of G defined as follows:
(a) for each source v of G, L~'(G) has an edge (B_,h(v));

w

(b) for each sink v of G, L™'(G) has an edge (1(v),B,);

(c) for each vertex v that is both a source and a sink of G,
L-"(G) has an edge (B,,B,); and

(d) in ail other cases, the edge of L~'(G) that corresponds to
vertex v of G is (t{v),h(v)). O

w?

The name given 10 this transformation is justified by the fol-
lowing property:

Lemma 8: For any CBC dag, L(L " '(G))=G.

Proof: For each vertex of G, L~Y(G) has an edge, and for
each edge of L~1(G) there is a vertex in L(L~'(G)) according
to the definition of the line digraph. This establishes a one to
one relationship between the vertex sets of G and L(L-'(G)).
The inverse line digraph transformation was defined so that
_there is an edge between any two vertices of G if and only if
there is an edge between the corresponding vertices of
LIL-YGNH. O

The algorithm sketched earlier 10 test whether a dag is CBC
actually computed the bipartite components of the dag being
tested, and given these components it is trivial to compute the
inverse line digraph as given by the above definition. Since the
line digraph inverse has an edge for each vertex of the CBC dag
from which it originates, it should be clear that we have described
a procedure to compute the line digraph inverse of a CBC dag G
in time proportional to the size of G.

-Furthermore, the line digraph inverse of any CBC dag has a
single source and a single sink (B, and B, respectively) so it fol-
lows from lemmas | and 8 that the line digraph inverse of a CBC
dag G is a TTSP multidigraph if and only if G is a MSP dag.

We have thus achieved the goal of implementing Step 2 of our
recognition procedure so it runs in linear time.

3.3. The recognition of TTSP multidigraphs -

The algorithm to be used in Step 3 has already been described
in section 1.2: apply series and paralle! reductions to the multidi-
graph given until no more reductions are possible, and then test
whether the remaining digraph consists of a single edge. Thus our
only task here is to show that this method can be implemented to
run in time proportional to the size of the given multidigraph.

The same problem for undirected graphs is suggested as an
exercise in [AHUJ (exercise 5.8), but unfortunately no solution is
presented- for it. A detailed discussion of two solutions of this
exercise can be found in [VAL) together with their generalization
to directed multigraphs. Therefore the description that follows has
been reduced to a minimum.

The basic data structure is a list of vertices that we call the
unsatisfied list. Initially this list includes all vertices of the input
multidigraph except the source and the sink, and in general it will
contain all the vertices on which some work has to be performed
(except the source and sink, which are never added to it).

The algorithm proceeds by removing any vertex v from this
list and performing as many parallel reductions on the edges
incident to it as it is possible before either leaving the vertex with
a single entering edge and a single exiting edge, or discovering that
the vertex still has at least two distinct predecessors or two distinct
succesors. In the first alternative, the vertex is removed by a
series reduction and the two vertices adjacent to it added to the
unsatisfied list if they are not there already. This process is
repeated until the unsatisfied list becomes empty, at which point
the same process is applied to the source and the sink (in order to
eliminate any multiple edges between them) béfore stopping.

We can prove that this method will correctly recognize the
class of TTSP multidigraphs using the characterization of lemma 2
as follows. The unsatisfied list becomes empty, either because all
vertices (except source and sink of course) have been deleted by
series reductions or because every remaining vertex has two dis-
tinct predecessors or two distinct successors. In the first case the
multidigraph has been reduced (except for possible multiple edges
between the source and the sink which will be deleted in the last
step) and in the second no vertex can be eliminated by a series
reduction until some other vertex is eliminated, which clearly
implies that no more vertices can ever be deleted.

The running time of this procedure cannot be analyzed unless
we look more closely at the processing of each vertex deleted from
the unsatisfied list. Let us assume tnat each vertex has two lists of
pointers to edges associated with it. One list contains pointers to all
the edges entering the vertex, while the other contains pointers to
all the edges leaving the vertex. The processing of a vertex con-
sists of applying to these two lists the following algorithm:

while size of the list is greater than one do
if cither of the first two elements points 10 a deleted edye then
delete the pointer from the list
elseif the first two clements point to edges with the same endpoints then
carry out a parallel reduction and delete the pointers
else exit
end;

Clearly the processing of a vertex terminates when each of its
two lists has either a single element or contains pointers to edges
with different endpoints. If appropriate data structures are used,
this process can be implemented so it takes a constant number of
steps every time the process is initaited plus a (different) constant
number of steps for every pointer deleted.

We will therefore be able to guarantee a linear time upper
bound on the running of the total reduction process if we prove
that (a) a linear number of vertices are processed (i.e., deleted
from the unsatisfied list) and (b) the total number of pointers to
edges deleted is linear. :

In a multidgraph with n vertices and m edges, we will have n-
2 elements in the unsatisfied list initially. New vertices are added
to this list only after a series reduction is performed, an operation
that decreases the total number of vertices of the multidigraph by
one. Thus at most n-2 series reductions can be performed and no
more than 2(n-2) additions to the unsatisfied list will occur, since
at most two vertices are added for each reduction.

Initially, we will have a total of 2m pointers 10 edges in all the
lists associated with the vertices since a pointer to (u,v) will appear
in the list of edges entering v and the in the list of edges leaving u.
New edges, and therefore new pointers, are added by parallel
reductions as the algorithm progresses, but since each of these
reductions decreases the total number of edges of the multidigraph
by one, no more than m-! of them could possibly be performed
and no more than 2(m-1) new pointers introduced. Thus a total
of no more than 2m+2(m-1) pointers to edges will be manipu-
lated.

One more problem has to be considered: we want to obtain
the decomposition tree of the multidigraph being reduced so we
have to compute the labels for the new edges using the rules of
fig.10. Clearly any reasonable implementation of this computation
will not construct the new label from scratch, but will instead com-
bine the labels of the edges being deleted. In this fashion each
new label can be computed in a constant amount of time.

This completes our argument, and we conclude that Step 3 of
the GSP recognition procedure can also be implemented to run in
time proportional to the . number of Vertices 4nd edges of its input.

3.4. The two dimensionality of MSP dags

This section cémpletes our description of the implemgmmion
of the GSP recognition procedure by showing how Step 4 can be
implemented in linear time.

It is useful to remember the task to be performed: given a
binary decomposition tree of a MSP dag. we wunt to compute two
total orders on the set of its vertices whose intersection detines the
same partial order as the edge set of the dag, that is. two total ord-
ers such that for any two vertices of the dag u.v there is a path
from u to v if and only if u appears before v in both total orders.

Let us regard a total order on a set of n-elements as & one-to-
one correspondence between the set and {1.2,...n}. Thus. given
two total orders on a set, we cun consider them as assigning two

integers to each of the elements of the set, and regard this pair of
integers as cartesian coordinates of the element. In this fashion an
intuitive correspondence can be established between the two total
orders whose intersection defines a MSP dag and an embedding of
the MSP dag in the cartesian plane in which the coordinates of any
pair of its vertices u.v satisfy the relationship x,>x, and y, >y, if
and only if there is a path from u to v in the dag. As an example
fig.14 shows the embedding of the MSP dag of fig.6 resulting from
intgrpreting in this fashion the two total-orders given in the same
figure. We will use this interpretation in the discussion that fol-
lows.

) Fig.14
Embedding ol the MSP dag of lig.6 in the plane using -
the two total orders of the same figure as coordinates.

The first observation we make, is that an MSP dag with n ver-
tices can be embedded in an nxn square of the cartesian plane,
since the integers assigned to its vertices are in {1,2,....n}. Know-
ing this fact, we can use the approach shown in fig.15 to reduce
the problem of embedding a1 MSP dag G to that of embedding two
smaller MSP dags, G, and G,, whose series or parallel composi-
tion produces G. A look at that figure should convince the reader
that for any pair of vertices, ueG, and veG,, there is a path from
u to v if and only if both coordinates of u are smaller than the
corresponding coordinates of v, i.e., only in the case of the series
composition.

Clearly this approach cian be applied recursively to reduce the
problem of embedding an MSP dag with n vertices to the n trivial
problems of embedding the MSP dag with one vertex and no
edges at a specific location of the plane.

To complete the details of how this process may be per-
formed. let us assume that the position of the embedding of a
MSP dug with n vertices in the cartesian plane is giv’en by the
coordinates of the lower left corner of the nxn square that con-
tains all its vertices. With this convention, if we let n, and n,
denote the number of vertices of G, and G, in fig.15, the follow-
ing formulae will provide the positions of G, and G, given n,, n,y
and the position (x.y) of G:

Series composition: X=X
Y11=y
Xxy=x+n,
yy=y+n,

