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Preface |

This text has arisen out of a course of lectures on the physical applications of
group theory, given for several years at Heriot-Watt University, and a longer
course on group theory and semiconductor energy~band theory given at
North Texas State University.

The aim is to establish, at a level suitable for those new to the ideas of
group theory, the basic requirements for understanding the electronic band
structure of solids and those transitions between the energy levels that can be
excited by incident electromagnetic radiation. In so doing the groundwork is
¢ veloped for an understanding of absorption selection rules in atoms and
molecules as well as solids, of the vibrational properties of molecules and
solids, and of non-radiative scattering processes in solids.

The text is divided into five parts. Part One contains chapters on the
basic ideas of group theory, in Part Two group theory is used to solve the
classical problem of the oscillations of a harmonically coupled system, and
the electronic quantum states of atoms and molecules are discussed in Part
Three. Part Four is concerned primarily with selection rules for transitions
between electronic states and between states of the quantized coupled
oscillators. Finally in Part Five the symmetries of crystalline materials are
described and applied to the modelling of electron energy bands of solids.

In general each of the nineteen chapters of the text relies on material
presented in earlier chapters. Rather than present all of the concepts of
group theory in an initial section, they are introduced as they are needed, in
the context of the problem being tackled. Thus, for example, direct product
groups do not appear until Chapter 13. Equally Wigner’s theorem is intro-
duced in Chapter 7, to bridge the gap between symmetry ideas and the
physical problems of interest. This theorem is introduced for use in the
normal-mode problem, which is considered to be more intuitive than the
quantum problems tackled in Chapters 9-19.
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Xii Preface

The course has been given as a final year course, corresponding in
length to a US one-semester course, and as part of a course for experimental
post-graduate students wishing to become familiar with the notation and the
essential techniques of group theory. However, very little background know-

- ledge is demanded. Success in use of the text demands a willingness to think
in three dimensions and patience in bearing with the new vocabulary until it
is used in physical situations. A small amount of previous experience of
matrices, harmonic oscillation and semiconductor physics is useful but not

\eSsengal. The reader will need to be familiar with the basic ideas of quantum
mechanics: —__

My thanks are-due to many pzople for helping me put this text together;
to my family for putting'u\p‘witlx my absences, to Art Smirl who conned me
into writing up my notes in the first place, to the students who suffered the
growing pains of the text, and to my iy\mhhgecky, June and Janice.

ian S. Wherrett
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An introduction to group theory

Group theory, in its application to physics, is concerned with the necessary
consequences of symmetry.

By use of group theory one obtains physically significant results that are
a consequence purely of the symmetry of the system under investigation.
The techniques of group theory are deceptively simple, enabling conclusions
to be drawn without recourse to detailed mathematics. The underlying
theme of symmetry and the elegance of the methods of application combine
to produce in applied group theory one of the most beautiful theoretical
topics in physics.

Throughout most of this text group theory will be used to exploit the
symmetrical configurations of atoms that occur in many molecules and
solids. It is, however, worth mentioning briefly some weli-known results of
other forms of symmetry, which emphasize its significance throughout phys-
ics. From a classical viewpoint continuous translational symmetry, that is the
absence of a force or the invariance of the energy of a system with respect to
some direction in space, leads to the conservation of the linear momentum of,
the system. Continuous rotational symmetry, the invariance of energy with
angle or the absence of a torque about some axis, leads to the conservation of
angular momentum about the axis. Also continuous temporal symmetry is
equivalent to conservation of energy. Conservation properties form the very
root of physics as a discipline; without conservation we would find great
difficulty in any attempt to model nature mathematically.

From a quantum-mechanical viewpoint it is necessary to include the
ideas of boundary conditions in a discussion of symmetry. Thus, for example,
bounded periodic, rather than continuous, translational symmetry leads to

3



4 Symmetry ideas

the use of discrete k-wavevectors to label the states of crystal excitations, and
leads to discrete energy eigenvalues. The rotational symmetry of atoms,
coupled with the finite and single-valued properties of electronic eigenfunc-
tions, leads to discrete angular momenta and energies and to the use of good
quantum numbers to label eigenstates.

Given the extremely powerful results to which continuous symmetries
lead it might well be expected that the discrete symmetries with which we are
primarily concerned in this text are also to be associated with conservation
properties of some sort, and with state labelling. As we shall discover the
latter is one of the major results of group theory.

Now the basic problem of quantum mechanics, considered in detail in
Chapter 8, is the solution of the Hamiltonian equation in terms of eigenfunc-
tions and energy eigenvalues. The problem can take the following
mathematical forms:

Hy=Ey; (1.1)

[a] "} [#/- ES'Ya)=[£~ E}; ; (1.2)
Q1a

[#/-E,S§] ,:a,,,] =0. (1.3)

The details of these equations are not of immediate concern; we need only
recognize that the first is a differential equation and that the latter two are
matrix equations. Solution of the Hamilton equation leads to a set of eigen-
functions y, that describe distributions of the particles in the allowed states
of the quantum system, and the energies of these states. In turn a knowledge
of the y, allows one to determine how the system would respond to any given
external influence (for example an incident beam of electromagnetic radia-
tion, or an applied static field).

Group theory has the following uses in the quantum problem. Firstly it
allows one to determine the symmetry properties of the possible states even
though the precise form of the distribution functions, ¢,, might not be
I nown. Secondly, it is often the case that for a given E, there is more than
one distinct eigenfunction; such functions are said to be degenerate. The
second use of group theory is in determining such degeneracies of the states
of asystem. With a knowledge of the state symmetries, further application of
group theory allows the form of a response of the system to be predicted. For
example one can determine whether or not radiation can excite a molecule
from any one particular state to another.

Additionally, if*one does wish to solve the matrix equations, which
generally requires computational methods, group theory may be used to
reduce the dimensions of the matrices one has to deal with, with consider-
able savings in time._



An introduction to group theory 5

Because it is difficult to think intuitively about quantum-mechanical
eigenfunctions, the techniques of applied group theory will be m\roduced
_here by considering instead the coupled-oscillator problem. This problem i is
‘solved in classical physics by exactly the same matrix methods as those
required for the above quantum problem. Thus if we imagine a set of masses
mutually attached by springs, there will be some equilibrium condition—a
configuration of the system as a whole—for which all the masses are statio-
nary. The coupled oscillator problem sets out to answer the question: ‘If the
system is displaced slightly from equilibrium, then what is the subsequent

,, motion of each mass?’ Mathematically this problem is manifested by matrix
equations which have identical form to equations (1.2) and (1.3) above:

‘[a]'l[K‘—-M"wz][a]=[Q’—w 1] (1.4)

ay;
[K’- MWl [ C‘{z:l

or

0. (1.5)

- In these equations X and M“ are known as force and mass matrices and are

\w\tai:ei from a knowledge of the potential and kinetic energies of the

system-of masses under a set of displacements from their equilibrium posi-

tions (Chap . For a system containing N masses, each able to move in

any of three perpendicular directions, there are 3N solutions for w;, and 3N

associated sets of «; values.’ ‘Each_ solutnon represents a normal mode of
oscillation of the system

To appreciate the simplicity of the consequences of symmetry consider
the model, pictured in Figure 1.1, which is trivial to construct.

I want to concentrate on the motion, along their line of connection, of
the two symmetrically placed 100 gramme masses. This system has just two™
degrees of freedom; the smaller mass is uniquely positioned once the posi-
tions of the others are set. Hence any displacement can be defined in terms of
two vectors. If mass 1 is displaced by a small amount and mass 2 held at the
equilibrium, on releasing the masses, 1 begins to oscillate but its amplitude is '
damped rapidly and 2 oscillates. The converse occurs and then the motion
repeats periodically. However, as far as each mass is concerned, it does not
undergo a simple harmonic motion. By direct contrast if both masses are
moved to the same side, by the same small amplitude, and released, then
they oscillate back and forth, in phase, at some frequency w,. Alternatively if
they are given equal but opposite initial dlsplacemcnts they subsequently
oscillate 7 out of phase, at a frequency w,. These two modes of motion of the
system are termed the normal modes; w,, @, are the natural frequencies. The
more complex motion obtained ffom any other initial conditions may be
modelled by some linear combination of the normal mode displacements.

:. 63295
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Figure 1.1 Model of a system that demonstrates the symmetry of normal
modes. Masses 1 and 2 are 100 grammes each. Mass 3 is far
lighter. Effectively the system acts, in the plane of the masses, like
a pair of harmonic oscillators coupled together by the connecting
line and the small mass. A weak spring can in principle be used
instead to couple masses 1 and 2, but the demonstration is easier
to set up as indicated.

The most important point to be brought out here though is that both normal
modes are highly symmetric—in some way they display the symmetry of the
system.

The classical coupled oscillator is a useful macroscopic model for the
vibrational motion of the nuclei in a molecule; the nuclei are coupled
through the electrostatic forces between all the particles in the molecule.
Therefore the first type of problem to which we shall apply group theory will
correspond to the analysis of the vibrations of a polyatomic molecule, such as
NH; (ammonia) or C¢Hy (benzene) which have high symmetry. In the
benzene case it would require the construction and diagonalization of a
36x 36 matrix in order to determine the number of distinct natural frequen-
cies, their values and the displacements. Group theory tells us almost
immediately that there are only 24 such frequencies and that the solution of
eight 2x 2 matrices and two 4 x 4 matrices will give us the remaining informa-
tion. '

Having obtained a set of eigenvectors and frequencies or, in quantum
mechanics, a set of eigenfunctions and energy eigenvalues, the next question
one asks is how can one excite the vibrations, or how can transitions be
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excited from one energy level to another. Again group theory can provide
the answer. Whether the excitation is to be by the absorption of radiation, or
by some scattering process, group theory will tell us if it can be accomplished.

What group theory itself will not tell us, without recourse to further
analysis, is the magnitude of any of the parameters discussed above—the
value of natural frequencies or energies, or the strengths of excitation—the
so-called transition matrix elements. Group theory gives us yes—no selection
rules.

The remaining chapters in Part 1 are included in order to introduce the
basic concepts and to build up the vocabulary of group theory. Where
possible group theoretical ideas are introduced by inspection of particular
groups of symmetry operations; certain important results are given without
any attempt at rigorous proof. The reader is referred to the more abstract
mathematical texts on group theory for these proofs, as indicated in the
bibliography at the end of the book.

The problems provided with each chapter serve two purposes. Prob-
lems marked with an asterisk should be considered as essential exercises;
they are included in order to allow the reader to test his/her understanding
of the text material. Other problems are included in order to indicate some
of the features of group theory that are not considered to be crucial to
progress through the present text.



