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Editor’s Preface

t

Growing specialization and diversification have brought a host of monographs and
textbooks on increasingly specialized topics. However, the ‘“‘tree” of knowledge
of mathematics and related fields does not grow only by putting forth new bran-
ches. It also happens, quite often in fact, that branches which were thought to
be completely disparate are suddenly seen to be related.

Further, the kind and level of sophistieation of mathematics applied in various
sciences has changed drastically in recent years: measure theory is used (non-tri-
vially) in regional and theoretical econotnics; algebraic geometry interacts with
physics; the Minkowsky lemma, coding theory and the structure of water meet
one another in packing and covering theory; quantum fields, crystal defects
and mathematical programming profit from homotopy theory; Lie algebras are
relevant to filtering ; and prediction and electrical engineering can use Stein spaces.
And in addition to this there are such new emerging subdisciplines as ‘‘completely
integrable systems”, ‘“‘chaos, synergetics and large-scale order”, which are almost
impossible to fit into the existing classifwation schemes. They draw upon widely
different sections of mathematics.

This program, Mathematics and Its Applications, is devoted to such (new)
interrelations as exempla gratia:

— a central concept which plays an important role in several different mathe-
matical and/or scientific specialized areas;

— new applications of the results and ideas from one area of scientific endeavor
into another;

— influences which the results, problems and concepts of one field of enquiry
have and have had on the development of another.

The Mathematics and Its Applications programme tries to make available a
careful selection of books which fit the philosophy outlined above. With such books,
which are stimulating rather than definitive, intriguing rather than encyclopaedic,
we hope to contribute something towards better communication among the prac-
titioners in diversified fields.

Because of the wealth of scholarly reseaxch being undertaken in the Soviet
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Union, Eastern Europe, and Japan, it was decided to devote special attention
to the work emanating from these particular regions.

Thus it was decided to start three regional series under the umbrella of the main
MIA programme.

Graph theory, the topic of the present volume in the MIA (East European
Series), is a fully-established subdiseipline in itself and related to many parts of
{pure) mathematics. It is also eminently and directly applicable in a large number
of concrete situations. This is what this book is about. For people who want to
know how to apply graph theory (or who need examples for lectures on the topic)
it has an almost ideal structure in that it first sets out the original problem, then
proceeds to discuss the graph theory involved, and finally presents the algorithm(s)
which exist to solve them. :

The unreasonable effectiveness of Aslong as algebra and geemetry pro-

mathematics in science ... ceeded along separate paths, their ad-
Eugene Wigner vance was slow and their applications

limited.
Well, if you knows of a better ’ole, go But when these sciences joined com-
to it. pany they drew from each other fresh

Bruce Bairnsfather vitality and thenceforward marched

on at a rapid pace towards perfection.

What is now proved was once only . A :

imagined. Joseph Louis Lagrange
William Blake

Amsterdam, March 1983 Michiel Hazewinkel
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The present book is a translation of the textbook Anwendungen der Graphentheorie
which was published by Deutscher Verlag der Wissenschaften in 1978. It is meant
for students studying all branches of operations research, and for graduates and
practical men to give them a means for modelling and solving organization and
optimization problems, in particular with a combinatorial component. ‘

The application of graph theory implies two aspects. On the one hand, it is
applied graph theory with attention being given to the numerical ascertainment
of the characteristic values of a given graph (e.g. the question arises of how to
find & minimal set of arcs in a graph after the removal of which the graph is cir-
cuit-free ; cf. Chapter 9). On the other hand, it implies the application of theorems
and algorithms of graph theory in other scientific domains (when determining an
optimal sequence of computation in algorithm, a decisive role is played, for exam-
ple, by loops, and the question arises how ‘many feedback arcs have to be cut
to make the running of the algorithm loop-free; cf. Chapter 9). Both aspects
are connected with each other and are discussed in the book.

The short introduction contains the most necessary concepts of graph theory
which will be used in the text, and those concepts, which-are required for one chap-
ter only, are defined. Chapter 1 forms the basis for all other chapters dealing with
flow problems, while the remammg chapters are, i1 essence, independent. .-

On the basis of well-known theorems of graph and network theery which will
be discussed in more detail in the first chapter, a number of theorems will be formu-
lated and proved, resulting in practicable algorithms. These will then be given
at great length and elucidated by means o&aanmples Particular attention has
been attached to the choice of examples used. They are by no meansaimple, but
have been chosen, where possible, such that. 1] ﬁfioultles, and also all subtleties
of the algorithm, become apparent. Although ﬂm -algorithms given are construct-
ed such that they can be directly executed by computer engineering means, we
had to desist from further preparation for those with practical expenence, asinoe
the character of a textbook should be W : :

In some chapters (Chapter 5 and 10) the bounds of current applications re-

.search are touched upon but, in general m‘%n is made-in the bxbhogmphy of =
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more or less dispersed methods which give an insight into the variety of spheres
of application. Of course, completeness has not been aimed at and numerous
examples of application (e.g. graph spectra in chemistry) could not be included.
Much attention has been given to flow and tension and supply and transportation
problems, and to planarity studies. : .

All theorems mentioned are proved and the reader who is primarily interested
in the approaches and algorithms may skip the proofs for the time being. The more
mathematically inclined reader, however, has the chance of checking his own
capabilities in attempting to solve the numerous exercices contained in the text.
The large number of figures are not only helpful for understanding, but they also
point out the advantages offered by the possibility of representing graph and net-
work problems in an illustrative way. The reader should thus become acquainted
with standard problems and procedures and should also be enabled to recognize
the combinatorial core of many other problems and, finally, to solve them on the
basis of graph- and network-theoretical approaches. :

In the framework of the translation the problematic nature of the complexity
of problems (NPC problems), which has come to the fore at an even higher degree
in recent years, has been indicated only briefly (cf. Chapter 6 “Assignment and
travelling salesman problems”).

Many thanks to all my colleagues who helped me to elaborate on the German
original version and I wish to thank Mrs. Brigitte Schénefeld for having conscien-
tiously typed the manuscript. My special thanks are due to Mrs. Ursula Nixdorf,
who made the translation, and to my wife Ute who showed a lot of understanding

for this work.

Ilmenau, February 1983 Hansjoachim Walther
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Chapter 0

Introduetion

Many problems encountered in various spheres of life involve graphs, directly or
indirectly. Who would not have tried, as a schoolboy, to draw the ‘‘House of
Santa Claus” with a single stroke (cf. Fig. 0.1) or to solve the problem of the three
houses and the three factories (cf. Fig. 0.2) requiring each house to be connected
with each factory by strokes which do not cross? Though less obviously, some of
them may be formulated as problems of graph theory like, for example, the fol-
lowing: '

A group of seven chess-players wants to find the best lightning-chess-player
among them. Each one of them has to play twice for five minutes against each
of the others. How can the match be organized so that after seven rounds each of
the players has played one game against each of the others?

Fig. 0.1 ' Fig. 0.2

By assigning a suitable graph to the problem, we transform the task into the
following: assign a node to each player, connect each node with each of the others
by an edge and then try to split up the resulting graph, which is a complete graph
with seven nodes, in such a way that in each partithere are exactly three edges
and six nodes. In the language of graph theory: try to decompose the graph into’
seven matchings.

To the credit of the chess-players, it should bé said that in fact they solved
this problem long ago, for any number of players. In the case of an odd number
of players, each of them plays exactly as many times as black, and in the case
of an even number of players, half of them have white once more often than they
have black and the other half have black once more often than they have white.”
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Let us now define some terms which we will use more frequently:

By a graph G = G(X, 1), we mean a set 11 of edges (or arcs), a set X of vertices
and an ¢nctdence function f assigning to each of the edges u € 11 an ordered or an
unordered pair (X, Y) of vertices X and ¥ from X. X and Y are called the end-
points of the edge u; if X = Y, u is called a loop. If only ordered pairs of vertices
are assigned to them, the graph is called directed or oriented, otherwise undirected.
In the case of a directed graph G and f{u) = (X, Y), X is called the initial vertex
and Y the terminal vertex of the arc «. '

~ Dirscted graphs will be represented as in Fig. 0.3, the undirected ones s in
Fig. 0.4. Graphs which are partially directed and partially undirected will not
be considered here. The elements of ¥ and 11 will often be chosen from the set of
patural numbers as shown in Fig. 0.5. '

If several edges of an undirected graph have the same end-points, for example,
the three edges of Fig. 0.4 having the end-points T'.and Y, the set of those edges is
called a multiple edge. (In the case of the example cited, a triple edge.) Correspond-
ingly, arcs which have the same initial and terminal vertices are called multiple
arcs. Thus, in Fig. 0.3, the arcs with the initial point 4 and the terminal point B



Introduction 3

form a quintuple arc, the two arcs with the terminal points X and Y, respectively,
do not form a double arc, because the ares are distinctly oriented.

Let uy, ug, ..., u, be adges of an undirected graph &, with for each subscript ¢
(i =2,3,...,7 — 1) the edge u;_, having one of its end-points in common with ;_,
and the other in common with u,,,. Then we call W = (uy, us, ..., %,) & chain of G.
Thus,u, v, w, 4, 2, y in Fig. 0.4 form a chain. A chain is calied a simple chain when:
it does not use the same edge twice, for example (w, 4, v, ¢). A simple chain that
does not encounter the same vertex twice is called elementary, for example (¢, w,
u, ). If a simple chain is closed, without the same vertex being used twice, we
call it a circuit, as for example in Fig. 0.4 (¢, w, u, 2, y, 8).

1 Qg

Fig. 0.5 *

8 F— e YA

A graph G is called connected if there exists an elementary chain for each pair
of distinct vertices of G. The graphs in Figs. 0.1, 0.2 and 0.5 are connected ; that
in Fig. 0.4 is.not connected, it possesses five components. A component i 8 maxi-
mal connected subgraph of & graph. : )

Two vertices X, Y are called neighbouring or adjacent if there is an edge » with
fluy = (X, ¥); X and Y are said to be incident with u. A vertex that is not inei-
dent with any edge is called isolated, 8s it is, for example, vertex Z in Fig. 0.4.
The number of edges incident with a vertex X is called degree v(X) of X. In
Fig. 0.4, »(S) = 4 holds. Furthermore, we put v(X) = 5 (the incidence with a loop
shall yield an increase of the degree of 2).

Let us comsider some further concepts relating to directed graphs (details will be
given in the first chapter):

A sequence y, Uy, ..., %, of arcs forms an’ elementary chain (or simply, chain)
if it goes,over into a path of the resulting undirected graph, with the orientations
of the arcs being ignored. If all arcs are oriented in the direction of the traversing
of a-chain, then the chain is a simple path (or an elementary chain). In Fig. 0.3,
a, d, e, h, m form a chain, but not & stmple path, connecting the vertices Aand X,
and p, 7, , b, ¢ form a simple path connecting the vertices Y and C.

A directed graph is called connecfed if there exists, for each pair of vertices,
a chain joining these vertices, if thé undirected graph resulting from ignoring all
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orientations is connected. We call it strongly connected if for each pair of vertices
there exists a simple path joining these two points.

The graph represented in Fig. 0.3 is strongly connected, that of Fig. 0.6 only
connected. )

Explaining the vertices as statesof a Markov’s chain and joining X and ¥ by an
arc — if it should be possible to go from state X over to state ¥ with positive
probability — would mean that the resulting graph would be strongly connected
so that the states of the Markov’s chain form a class of essential states.

We shall deal exclusively with finite graphs. These are graphs with a finite
number of vertices, edges or arcs.

Finally, let us explain two more concepts: We shall frequently use the terms
mazimal and mazimum (correspondingly ménimal and minimum). A clear distinc-
tion has to be made between them. We always use maximal in the sense of relati-
vely maximal, whereas maximum is used in the sense of absolutely maximal. We
explain this by means of an example which is typical for the following expositions:
We consider the graph G in Fig. 0.6. The vertices X, ¥, Z span a maximal strongly
connected subgraph G’ since there is no “‘larger” strongly connected subgraph of &
containing G'. But because of the strong connectivity, the graph G’ is not a
maximum subgraph, since the subgraph spanned by the vertices 4, B, C, D, Eis
also strongly connected and contains five vertices.

We take another example (cf. Fig. 0.5): We search for those sets of vertices
which represent all circusts, i.e., for a set 9 of vertices containing at least one vertex
from each circuit. ' ,

Evidently, {5, 6, 7, 8} represents all circuits. This set is even minimal, because
there is no proper subset representing all circuits. On the other hand, {2, 3, b} or
{2, 3, 4} forms a minimum set representing all circuits.

If we think, however, of a vertex valuation w(X) (weighting) to be given, say
in the form w(X) = v(X), i.e. if its degree is assigned as valuation to each vertex,
then for the above minimal sets such valuations result that {5, 6, 7, 8} with a
total weight of 12 becomes a minimum set, just like {2, 3, 5}. '

In the course of our expositions, we shall constantly come across such weight-
ings or valuations of vertices (say by potentials) or of edges or arcs (by flows,
tensions, lengths, capacities, costs, etc.), and it is through the valuation of the ele-
ments of a graph that we leave the hard graph theory as denoted by G. A. Dirae¢
and come to the network theory or to the application of graph theory.




Chapter 1

Flows and tensions on networks

' 1.1. BASIC CONCEPTS

" For setting up a theory of flows and tensions the condepts of cycle and cocycle are
of fundamental significance. Therefore, we want to put them at the top of our

considerations.
Let G(X, 1) be a directed graph with m arcs uy, ..., %,. A cycle u is a cyclically
ordered set of arcs u,, ..., u;, of G that are pairwise different, with the property

that the arc u; has one of its end-points in common with one of the end-points
of u; _, and the other of its end-points in common with one of the end-points of

u; . Here, j is to be reduced modulo & (Fig. 1.1).
) +1

elementary cycle

*  We denote by u* the set of all ares in u, without taking into consideration the -
order:
uF o= (U, o %y} - , '
By the cyclic order of the arcs the cycle u is given a direction of traversing decom- -
posing u* into two classes u* and u~. The set u* contains all arcs in u* that ard
in the direction in which the cycle u is traversed, and the set u~ contains all arcs”
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in u* that are in the opposite direction in which u is traversed. Thus, we get the
relation

p¥ =pt o,
Let u* and u~ be the characteristic vectors of u* and u~, respectively. We assign
to the cycle u the vector

p=pt —p
such that if we put
H = (/l'l’ /‘29 ey ,“m)!
it holds:
[ 1 if u; is contained in eycle s and is in the direction in which this cycle
i8 traversed,
pi =4 —1 if u; is contained in cycle 4 and is in the opposite direction in which
this cycle is traversed,
0 if u; is not contained in cycle 4.
If the direction of traversing is inverted, a cycle x4 will be transformed into a
cycle fi. Evidently, it holds for the related vectors:

fit=yp, @ =p fi=-—p (1
We can also write
o= —p.

The set of the terminal vertices of the arcs of a cycle u is called the set of vertices

of p.

A cycle u is called an elementary cycle if, when traversing it, no vertex is encoun-
tered more than once. A cycle u is called minimal if the set u* of its arcs contains
no proper subset the arcs of which may be arranged themselves to form a cycle
The following theorem is evident (task!):

THEOREM 1.1. 4 cycle is minimal i and only if it is an elemcntary cycle.

If for a given cycle u pairwise arc-disjoint cyeles u?, ...‘, #¢ with ¢ = 1 can be
found such that the appertaining vectors satisfy the equation

po==pl+pd A,

it is said that u can be partitioned into the cycles u*, pf, ..., us.
Furtliermore, it holds:

THEOREM 1.2. Each cycle u can be partitioned tnto elementary cycles.

Proof. Follow a traversing of u and split off an elementary cycle u! when reaching
for the first time a vertex already traversed. If 4 is not identical to u!, then pursue
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the traversing and split off an elementary cycle u? correspondingly, ete., until
all arcs of pu are traversed (Fig. 1.2).

REMARK. Fig. 1.2 shows that, in general, the partition into elementary cycles
is not unique.

A cycle is called a conformally directed cycle u (c-cycle for short) if all of its arcs
are directed in the scnse of the orientation of x (cf. Fig. 1.3). Thus, it holds y; = —1
for all ¢’s. We call a conformally directed elementary cycle an elementary circust
{(shortly also, circust (cf. Fig. 1.3)).

In order to get the concept of a cocycle, we proceed as follows. Let the set X of
the vertices of G(¥, 11) be partitioned into two non-empty classes U, B such that
the following relations hold:

ANuB =%, AN B =0, A = O, B 4.

Furthermore, let o* be the set of those arcs that have one of their end-points in %
and the other end-point in B (we assume that w* 5 ). Considering the classes

startintg paint

starting point
Fig. 1.2

c-cycle

circuit

Fig. 1.3



